

Cryogenic Cooling Schemes for the SPL

U. Wagner TE-CRG

Topics

- Introducing remarks
- General considerations
 - Basic parameters
 - Basic considerations
- Different cooling schemes (seven in total)
 - Cooling scheme options
 - Advantages / Drawbacks
- Topics to be investigated

Introduction

General note

- The SPL is presently in the phase of a Design Study.
- CERN has no experience operating pulsed SC cavities at 2.0K.
- We try to define a "baseline" design for the cryogenic distribution.
 - However this design will look like, we cannot consider this as "the Solution"; it may still be subject changes.
- None of the proposals in this presentation is considered to represent the desired baseline.

Introduction

Availability

- Availability is a key requirement for all accelerators
- The SPL is "second-in-line" of an injector chain
 - Availability even more important
- Operation should be considered under degraded conditions like:
 - Leaks
 - Faulty components
 - High local heat loads

Basic parameters

Assumptions that are considered as decided

- The following is considered as decided:
 - Cooling of the cavities with helium II at ~ 2.0 K
 - Cavities inside the saturated bath
 - To profit from low ∆p and good p-stability
 - (Not cooled by sub-cooled pressurized helium)
- Anything else may be discussed / changed

Basic parameters

Capacities

Installed Cooling Capacity

The choice of the cryogenic distribution may influence the static heat load only!

Basic parameters

Pressures and temperatures

Line	Temperature	Pressure	Design Pressure
Header A	2.2 K	0.3 MPa	2.5 MPa
Header B	2.0 K	3.1 kPa	0.6 MPa
Header C	5.0 K	0.55 MPa	2.5 MPa
Header D	8.0 K	0.50 MPa	2.5 MPa
Header E	50 K	1.8 MPa	2.5 MPa
Header F	75 K	1.7 MPa	2.5 MPa

These values are fixed

The rest is for "orientation" only and may be modified

Basic Considerations

Distribution scheme requirements

- The distribution scheme needs to satisfy requirements for:
 - Nominal operation
 - Cool-down, warm-up and purge
 - Operation under degraded conditions
 - Diagnosis
 - Safety equipment

Considered

To be defined / discussed

Not yet considered

Basic Schemes

Single Cavity Cooling

Basic Schemes

Single Cavity Cooling

Basic Schemes

"series" versus "parallel" cooling

Series cooling

Advantages

- Less equipment
- Simple operation

Disadvantages

- No isolation of single elements in degraded conditions
- "Last-in-line" always on higher limit temperature
- Long response time for control

Parallel Cooling

Advantages

- Isolation of single elements possible
- Little temperature spread
- Short response for control

Disadvantages

- More equipment
- More control effort

Scheme no 1: "Single cavity cooling"

	LP SPL	HP SPL
Diameter "x" [mm]	40	80

- Simply a combination of single cavity cooling loops
 - Liquid HeII: individual per cavity
 - Coupler: in series or parallel for several cavities
 - Thermal shield: in series or parallel for several cavities
 - WU / CD: individual per cavity

- Equipment intensive
- Feasibility seems guaranteed

Scheme no 2: "Common bath cooling"

- Combination of several cavities in one bath
 - Liquid HeII: one loop per bath
 - Coupler: in series or parallel for one or several baths
 - Thermal shield: in series or parallel for one or several baths
 - WU / CD: one loop per bath
- Low amount of equipment needed
- Feasibility seems possible
- Cooling by conduction in the bath requires very big channel diameters
 - Could be feasible for LP version with 3 / 4 cavities per bath

Scheme no 3: "ILC-like"

	LP SPL	HP SPL
Diameter "x" [mm]	40	80

- One cavity per bath with common 2-phase header
 - Liquid HeII: one loop per group of cavities
 - Coupler: in series or grouped for several cavities
 - Thermal shield: in series or grouped for several cavities
 - WU / CD: one loop per group of cavities
- Low amount of equipment needed
- Feasibility of the WU/CD questionable
 - The combination of several 2-phase volumes seems dangerous
 - The equal distribution of flow for CD (less for WU) seems difficult to guarantee
- He II loop should be thermo-hydraulically validated

Scheme no 4: "ILC-like SPL version A"

	LP SPL	HP SPL
Diameter "x" [mm]	40	80

- One cavity per bath with common 2-phase header
 - Liquid HeII: one loop per group of cavities
 - Coupler: in series or grouped for several cavities
 - Thermal shield: in series or grouped for several cavities
 - WU / CD: one loop per cavity
- High amount of WU/ CD valves
- Feasibility seems ok
- He II loop should be thermo-hydraulically validated

Scheme no 5: "ILC-like SPL version B"

	LP SPL	HP SPL
Diameter "x" [mm]	40	80

- One cavity per bath with common 2-phase header
 - Liquid He II: as ILC-like SPL version "A"
 - Coupler: as ILC-like SPL version "A"
 - Thermal shield: as ILC-like SPL version "A"
 - WU / CD: one loop per group
- Low amount of equipment
- Feasibility of WU /CD with contact cooled liquid helium tank to be investigated
- He II loop should be thermo-hydraulically validated

Scheme no 6: "ILC like SPL version "A" with separate cryogenic feeder line"

- One cavity per bath with common 2-phase header
 - Liquid He II: as ILC-like SPL version "A" (or "B")
 - Coupler: "parallel" cooling
 - Thermal shield: "parallel" cooling
 - WU / CD: as ILC-like SPL version "A" (or "B")
- High amount of equipment
- Feasibility as for ILC-like SPL version "A" (or "B")
- All cooling loops of a group of cavities can be completely isolated
- Independent WU/CD not possible

Scheme no 7: "ILC like SPL version "A" with separate cryogenic line equipped for independent cool-down, warm-up and purge"

Comments on scheme no 7

- One cavity per bath with common 2-phase header
 - Liquid He II: as ILC-like SPL version "A" (or "B")
 - Coupler: "parallel" cooling
 - Thermal shield: "parallel" cooling
 - WU / CD: as ILC-like SPL version "A" (or "B")
- Very high amount of equipment
- Feasibility as for ILC-like SPL version "A" (or "B")

25

- All cooling loops of a group of cavities can be completely isolated
- Independent WU/CD and purge possible

Separate cryogenic line

Advantages / Disadvantages

Advantages

- Less complexity for the main cryostat
- Potential to completely isolate "faulty" modules

Disadvantages

- Requires more tunnel space
- Higher static heat load

Cost aspect

- Not easy to identify separate line most probably more expensive
 - More complex cryostat and installation vs. cryostat plus line, two installations and more tunnel space

Single Module WU / CD

Procedure options for exchanges / repairs

- Option 1: WU of complete machine -> exchange / repair -> CD complete machine
 - All machine warm
 - Possible with schemes 1 to 7
- Option 2: WU distribution headers & concerned loops -> exchange / repair-> CD distribution headers & concerned loops
 - No active cooling for rest of machine
 - Possible with scheme 1 to 7 but increased radiation load for schemes
 1 to 5 -> preferable scheme 6 & 7
- Option 3: WU individual module -> exchange / repair -> CD individual module
 - Active cooling for rest of the machine
 - Possible only with scheme 7

Open Topics

To be investigated 1

- Ambient-temperature equipment
 - What can be at ambient, what must be at ambient?
- Magnets cooling
 - If possible at ambient, why operate lower?
- Coupler cooling
 - 5-8 K best compromise? (why not 4.5 K 300 K e.g.)
- WU / CD
 - Contact cooled WU/CD of helium tank feasible? (would save on equipment)

Open Topics

To be investigated 2

- Limits of operation under degraded conditions
 - When is a repair / exchange mandatory
- Cool-down and warm-up times for the whole machine
- "Natural" warm-up by static heat load for
 - Modules without active cooling (scheme 6)
 - Modules without active cooling and warm headers in cryostat (scheme 1 to 5)
- Time necessary for exchange / repair of faulty components

Last Slide

Thank you for your attention