Higgs Coupling Measurement with papas

Colin Bernet (IPNL)

FCC-ee Higgs Working Group

Dec 11, 2017

Goal

- Measure the Higgs couplings for various detector hypotheses and scenarios
- Need:
 - fast simulation (papas)
 - detector models
 - fitting infrastructure
- First step (today): reproduce existing results
 - LEP3 note (validate papas vs CMS full simulation, analysis code)
 - TLEP note (validate global fit method and model)
- Later:
 - update running scenario (Vs, lumi)
 - try other detector models and show improvement w/r CMS

Outline

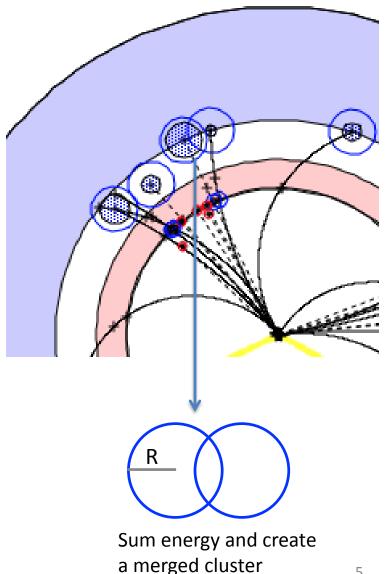
- Tools:
 - papas
 - heppy analysis framework
- Analyses (vs LEP3 note)
 - $-ZH \rightarrow IIX, ZH \rightarrow IIbb, ZH \rightarrow vvbb$
 - yield extraction
- Global fit for the couplings (vs TLEP note)
- Summary and plans

Papas: Tracker

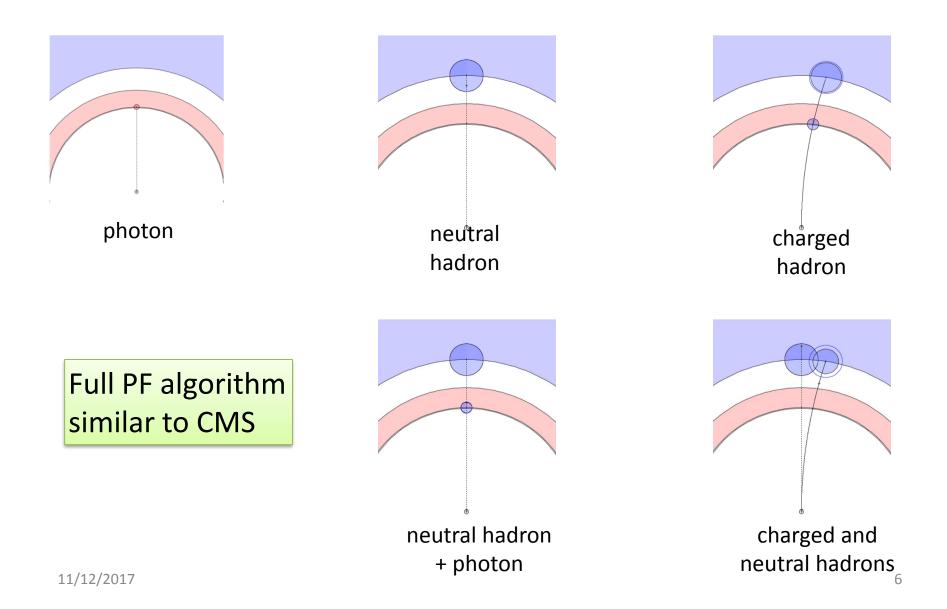
class Tracker(DetectorElement):

```
Define:
def __init__(self):
   volume = VolumeCylinder('tracker', 1.29, 1.99)
                                                               simple geometry
   mat = material.void
   super(Tracker, self).__init__('tracker', volume, mat)
                                                               (cylinder)
def acceptance(self, track):
                                                               acceptance model
   pt = track.p3() .Pt()
   eta = abs(track.p3() .Eta())
   if eta < 1.35 and pt>0.5:

resolution model


       return random.uniform(0,1)<0.95
   elif eta < 2.5 and pt>0.5:
                                                            - (+ B field)
       return random.uniform(0,1)<0.9
   else:
       return False
def resolution(self, track):
```

return 1.1e-2


Easy to create / easy to change Python script → extreme flexibility w/r to a « card » system

Papas: Calorimeters

- Simple geometry (2 cylinders)
- Material
 - hadron shower in ECAL
- Energy resolution and response
- Acceptance
 - thresholds
- Cluster size R
 - models calorimeter granularity

Papas: Particle Flow

Papas: e and mu

- Integration in PF would be very difficult
- Treated separately
 - no lepton / hadron fakes
- Using the Delphes CMS parametrization

```
• Isolation:
```

 particle-based isolation w/r to the surrounding particles from PF

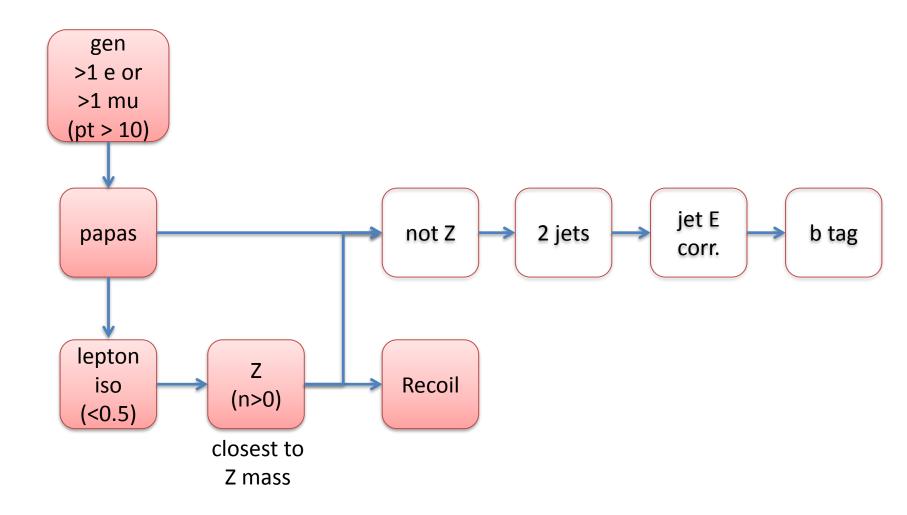
```
def electron_acceptance(self, ptc):
    """Delphes parametrization
    https://github.com/delphes/delphes/blob/master/cards/delphes_card_CMS.tcl
    96d6bcf
    .....
    rnd = random.uniform(0, 1)
    if ptc.pt() < 10.:
        return False
    else:
        eta = abs(ptc.eta())
        if eta < 1.5:
            return rnd < 0.95
        elif eta < 2.5:
            return rnd < 0.85
        else:
            return False
```

Papas: Jets

• Fastjet

- input: reconstructed particles
- ee_kt algorithm
- exclusive reconstruction (e.g. njets=2)
 - different from our previous analyses where an a posteriori resummation was done
- Jet energy correction:
 - flat 1.1 factor
 (~ as in CMS)

- b tagging:
 - input = ROC curve
 - set desired efficiency (fixes fake rate)
 - gen b matching: fraction of rec jet energy arising from B hadron > 0.01
 - extremely efficient and pure
 - matched: apply efficiency
 - unmatched: apply fake rate


heppy

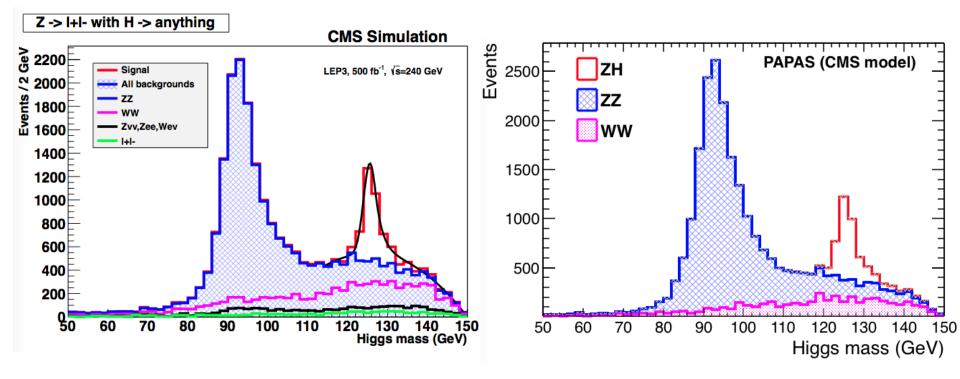
- Event processing framework
- Modular
 - ~ CMSSW, Gaudi, Athena, Marlin,
 but much lighter
- Written in python
- Can read from root trees, CMS, FCC, LCIO
- Widely used in CMS
- Many tools:
 - batch processing, physics tools, ...

Outline

- Tools:
 - papas
 - heppy analysis framework
- Analyses (vs LEP3 note)
 - $-ZH \rightarrow IIX, ZH \rightarrow IIbb, ZH \rightarrow nunubb$
 - yield extraction
- Global fit for the couplings (vs TLEP note)
- Summary and plans

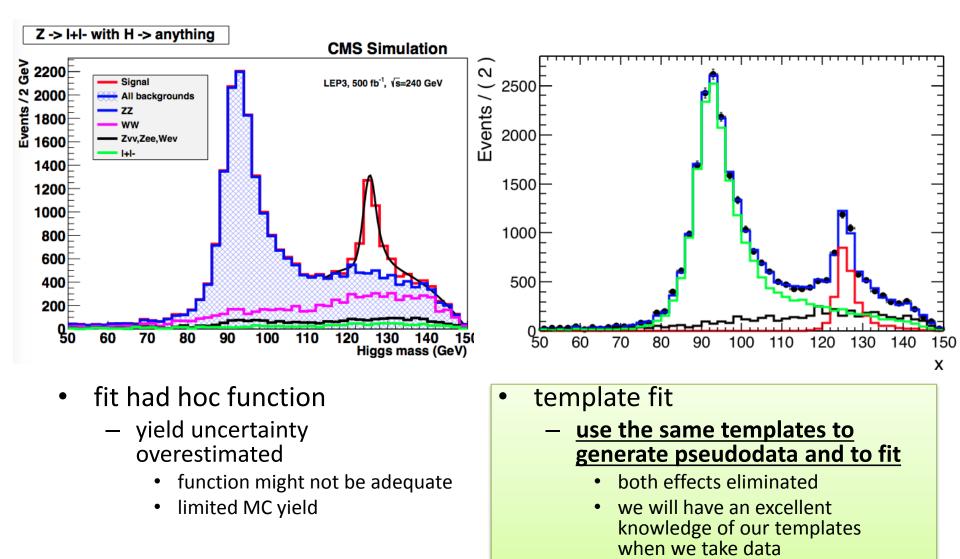
$ZH \rightarrow IIX$: Analysis Sequence

https://github.com/cbernet/fcc-ee-higgs/blob/master/analysis ee ZH llbb.py

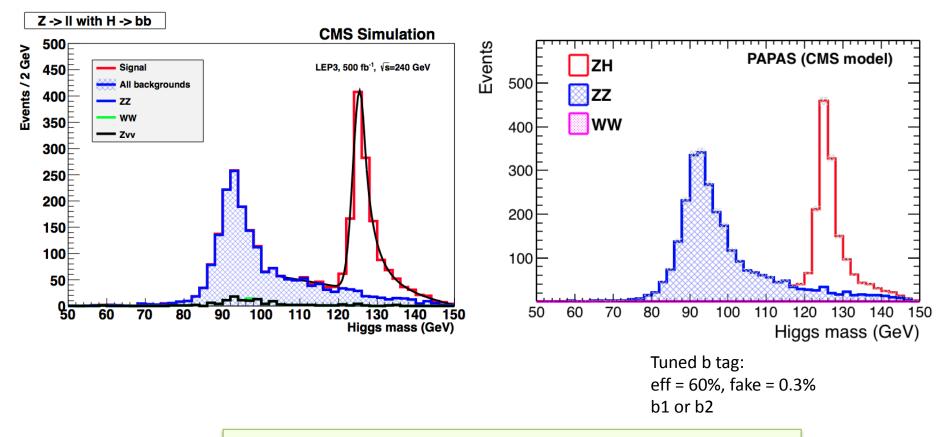

$ZH \rightarrow IIX$: Final Selection

- Leptons:
 - iso < 0.2, same flavour, opposite charge</p>
- Z candidate
 - |m 91| < 4 (not 5)
 - $p_{T} > 10$
 - $-p_{z} < 50$
 - acollinearity > 100

The cuts in red are the ones that were used for the LEP3 note. But they differ from what is written therein. (Thanks P. Janot)

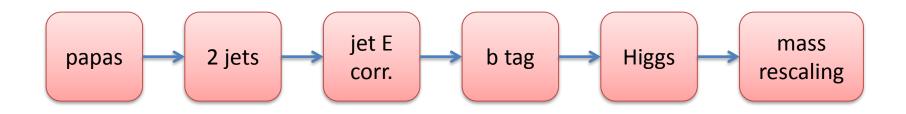

- cross > 10 (not acoplanarity)
- if jets present, photon fraction < 0.8

Recoil mass



Still missing minor backgroundsLepton (electron?) resolution slightly too bad?10% too many events. lepton isolation too efficient?Will not matter much anyway

Yield extraction

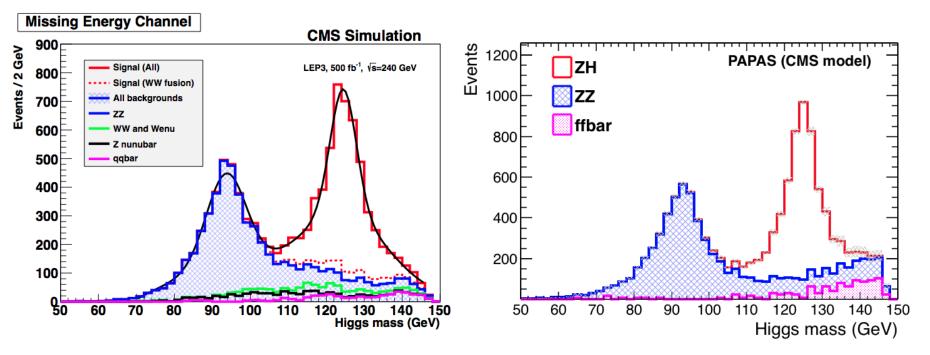


ZH→llbb

Still missing minor backgrounds
Lepton (electron?) resolution slightly too bad?
10% too many events. lepton isolation too efficient?
Will not matter much anyway

$ZH \rightarrow vvbb$: Analysis Sequence

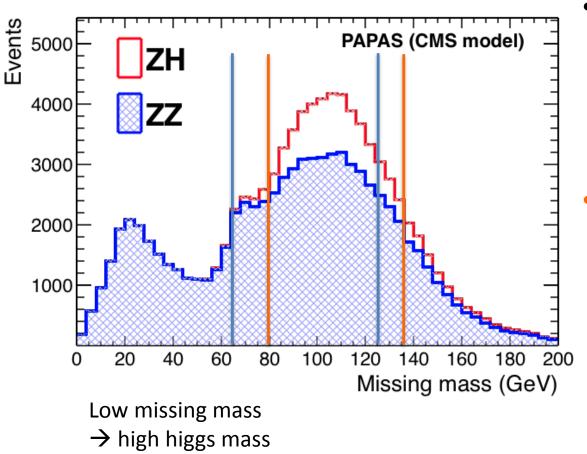
- Higgs mass rescaled:
 - jet energy scaled by a common factor by to bring missing mass to mZ
 - 2nd degree equation
 - only in final plot, not for the cuts


https://github.com/cbernet/fcc-ee-higgs/blob/master/analysis ee ZH llbb.py

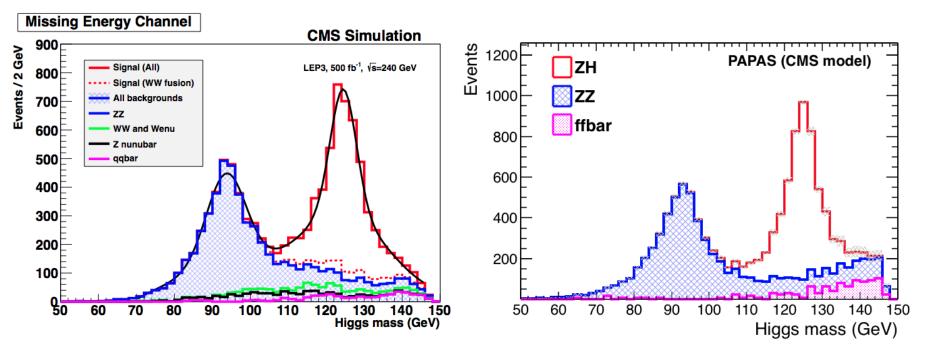
$ZH \rightarrow vvbb$: Final Selection

- Missing Z:
 - $-65 < m_{miss} < 125$
- Higgs candidate
 - b tag as in $ZH \rightarrow IIbb$:
 - eff = 60%, fake = 0.3%
 - b1 or b2
 - $-p_{T} > 10$
 - $-p_{z} < 50$
 - acollinearity > 100
 - cross > 10 (not acoplanarity)

The cut in red is the one that was used for the LEP3 note. But it differs from what is written therein.

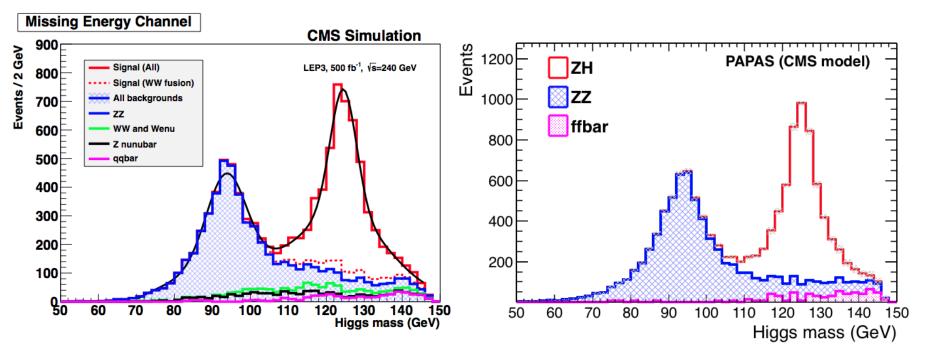

ZH→vvbb

Too many events at high mass (see next slide)


Resolution matches, indicates that the calorimeter model and the particle flow in papas are fine.

$ZH \rightarrow vvbb$: missing mass

- missing Z mass too large
 - jet energy too low
 - jet energy calibration to be reviewed.
- Poor man reoptimization:
 - 80 < m < 135


ZH→vvbb

Too many events at high mass (see next slide)

Resolution matches, indicates that the calorimeter model and the particle flow in papas are fine.

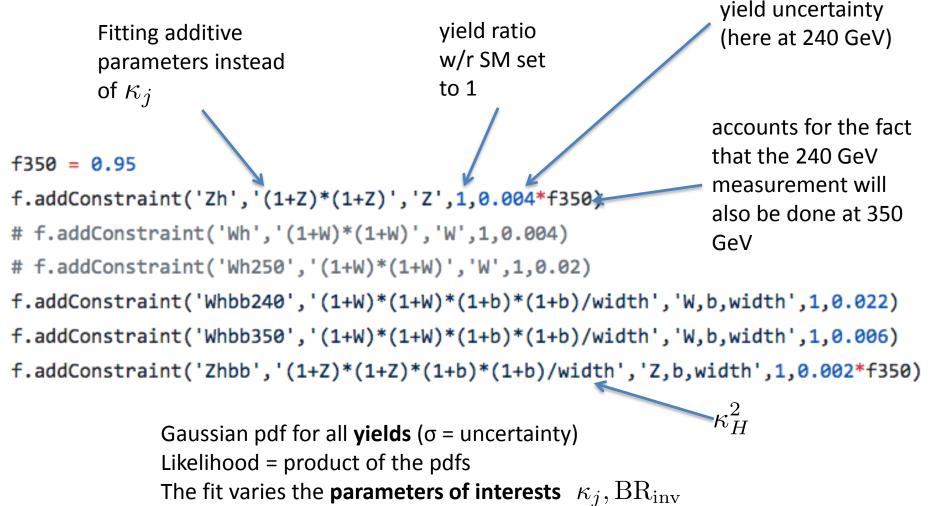
$ZH \rightarrow vvbb$: missing mass: new cuts

Excess at high mass mostly disappears.

But 20% too many events overall. Do proper jet energy correction and review...

Outline

- Tools:
 - papas
 - heppy analysis framework
- Analyses (vs LEP3 note)
 - $-ZH \rightarrow IIX, ZH \rightarrow IIbb, ZH \rightarrow nunubb$
 - yield extraction
- Global fit for the couplings (vs TLEP note)
- Summary and plans


Global Fit

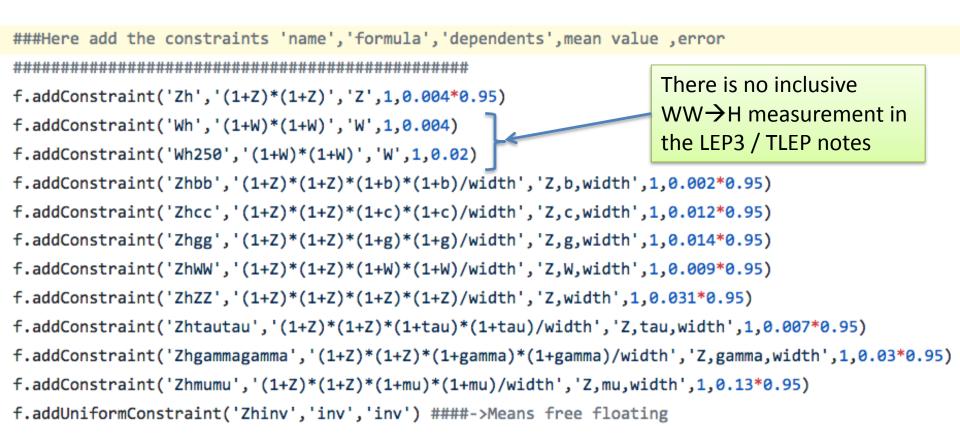
- Concept from M. Peskin
 - <u>https://arxiv.org/abs/1312.4974</u>
- Our implementation (M. Bachtis)
 - <u>https://github.com/bachtis/tlep-couplings</u>
 - used for the TLEP paper
 - fitting code checked, looks correct to me
- Rewritten to add goodness of fit tests:
 - <u>https://github.com/cbernet/tlep-couplings</u>
 - exact same results

Global Fit: kappa framework $\kappa_j \equiv g_j / g_j^{SM}$ coupling $\frac{\sigma_i \times \mathrm{BR}_f}{(\sigma_i \times \mathrm{BR}_f)_{SM}} = \frac{\kappa_i^2 \kappa_f^2}{\kappa_{\scriptscriptstyle II}^2}$ deviation Deviation of the observed yield w/r SM $\kappa_H^2 \equiv \Gamma / \Gamma_{SM} = \sum_i \kappa_j^2 \text{BR}_{j,SM}$ Full width deviation Measure a set of assuming no other mode yields in various channels: - i: ZH, WWH $\kappa_H^2 \equiv \Gamma / \Gamma_{SM} = \frac{\sum_j \kappa_j^2 BR_{j,SM}}{1 - BR_{inv}}$ - f : bb, ττ, ... Fit to find the best values of κ_i , BR_{inv}

Full width deviation allowing for invisible decay modes

More precisely

Uncertainty on the POIs finally taken from the fit


Trying the TLEP model

	Model-independent fit					Constrained fit			
Coupling	TLEP-240	TLEP		ILC	TLEP		ILC		
g HZZ	0.16%	0.15%	(0.18%)	0.9%	0.05%	(0.06%)	0.31%	0.148	
$g_{ m HWW}$	0.85%	0.19%	(0.23%)	0.5%	0.09%	(0.11%)	0.25%	0.195	
$g_{ m Hbb}$	0.88%	0.42%	(0.52%)	2.4%	0.19%	(0.23%)	0.85%	0.442	
$g_{ m Hcc}$	1.0%	0.71%	(0.87%)	3.8%	0.68%	(0.84%)	3.5%	0.717	
$g_{ m Hgg}$	1.1%	0.80%	(0.98%)	4.4%	0.79%	(0.97%)	4.4%	0.802	
$g_{\mathrm{H} au au}$	0.94%	0.54%	(0.66%)	2.9%	0.49%	(0.60%)	2.6%	0.546	
$g_{\mathrm{H}\mu\mu}$	6.4%	6.2%	(7.6%)	45%	6.2%	(7.6%)	45%	6.202	
$g_{\mathrm{H}\gamma\gamma}$	1.7%	1.5%	(1.8%)	14.5%	1.4%	(1.7%)	14.5%	1.49	
$\mathrm{BR}_{\mathrm{exo}}$	0.48%	0.45%	(0.55%)	2.9%	0.16%	(0.20%)	0.9%	6.74	

This should read BR_{inv}

Can reproduce all values except BRexo (factor 10 difference)

Check fit model

Otherwise correct

https://github.com/bachtis/tlep-

couplings/blob/master/runTLEP_250_350_Standalone_Floating.py#L21

11/12/2017

Fixing fit model

f350 = 0.95

f.addConstraint('Zh','(1+Z)*(1+Z)','Z',1,0.004*f350) f.addConstraint('Wh','(1+W)*(1+W)','W',1,0.004) # f.addConstraint('Wh250','(1+W)*(1+W)','W',1,0.02) f.addConstraint('Whbb240','(1+W)*(1+W)*(1+b)*(1+b)/width','W,b,width',1,0.022) f.addConstraint('Whbb350','(1+W)*(1+W)*(1+b)*(1+b)/width','W,b,width',1,0.006) f.addConstraint('Zhbb','(1+Z)*(1+Z)*(1+b)*(1+b)/width','Z,b,width',1,0.002*f350) f.addConstraint('Zhcc','(1+Z)*(1+Z)*(1+c)*(1+c)/width','Z,c,width',1,0.012*f350) f.addConstraint('Zhgg','(1+Z)*(1+Z)*(1+g)*(1+g)/width','Z,g,width',1,0.014*f350) f.addConstraint('ZhWW','(1+Z)*(1+Z)*(1+W)*(1+W)/width','Z,W,width',1,0.009*f350) f.addConstraint('Zhtautau','(1+Z)*(1+Z)*(1+tau)*(1+tau)/width','Z,tau,width',1,0.007*f350) f.addConstraint('ZhZZ','(1+Z)*(1+Z)*(1+Z)*(1+Z)/width','Z,width',1,0.031*f350) f.addConstraint('Zhgammagamma','(1+Z)*(1+Z)*(1+gamma)*(1+gamma)/width','Z,gamma,width',1,0.03*f350) f.addConstraint('Zhmumu','(1+Z)*(1+Z)*(1+mu)*(1+mu)/width','Z,mu,width',1,0.13*f350) f.addUniformConstraint('Zhinv','inv') ####->Means free floating

Table 6: Statistical precision of the TLEP measurement of $\sigma_{WW \to H} \times BR(H \to b\bar{b})$. For illustration, the ILC potential at the same centre-of-mass energies is also indicated.

\sqrt{s} (GeV)	TLEP	ILC
240 - 250	2.2%	10.5%
350	0.6%	1.0%

After the fix

	Model-independent fit				C	onstrained			
Coupling	TLEP-240	TLEP		ILC	TLEP		ILC		
g _{HZZ}	0.16%	0.15%	(0.18%)	0.9%	0.05%	(0.06%)	0.31%	0.148	0.149
g _{HWW}	0.85%	0.19%	(0.23%)	0.5%	0.09%	(0.11%)	0.25%	0.195	0.329
$g_{ m Hbb}$	0.88%	0.42%	(0.52%)	2.4%	0.19%	(0.23%)	0.85%	0.442	0.4 <mark>6</mark> 3
$g_{ m Hcc}$	1.0%	0.71%	(0.87%)	3.8%	0.68%	(0.84%)	3.5%	0.717	0.7 <mark>4</mark> 5
$g_{ m Hgg}$	1.1%	0.80%	(0.98%)	4.4%	0.79%	(0.97%)	4.4%	0.802	0.840
$g_{\mathrm{H} au au}$	0.94%	0.54%	(0.66%)	2.9%	0.49%	(0.60%)	2.6%	0.546	0.5 <mark>8</mark> 0
$g_{\mathrm{H}\mu\mu}$	6.4%	6.2%	(7.6%)	45%	6.2%	(7.6%)	45%	6.202	6.206
$g_{\mathrm{H}\gamma\gamma}$	1.7%	1.5%	(1.8%)	14.5%	1.4%	(1.7%)	14.5%	1.49	1.504
BR _{exo}	0.48%	0.45%	(0.55%)	2.9%	0.16%	(0.20%)	0.9%	6.74	6.77

Main change: uncertainty on W coupling almost x2

Including direct constraint on BR_{inv}

Bug found: the fit was defining:

$$\kappa_H^2 \equiv \Gamma / \Gamma_{SM} = \frac{\sum_j \kappa_j^2 BR_{j,SM}}{1 - BR_{inv}^2}$$

Instead of:
$$\kappa_H^2 \equiv \Gamma/\Gamma_{SM} = \frac{\sum_j \kappa_j^2 BR_{j,SM}}{1 - BR_{inv}}$$

Constraint model for BRinv:

- Gaussian centred on 0, σ = 0.3% (P. Janot)
- Allow values between 0 and 1%

Including direct constraint on BR_{inv}

	Model-independent fit					Constrained fit			
Coupling	TLEP-240	TI	TLEP		TLEP		ILC		
g _{HZZ}	0.16%	0.15%	(0.18%)	0.9%	0.05% (0.06%)		0.31%		0.149
$g_{\rm HWW}$	0.85%	0.19%	(0.23%)	0.5%	0.09%	(0.11%)	0.25%		0.329
$g_{ m Hbb}$	0.88%	0.42%	(0.52%)	2.4%	0.19%	(0.23%)	0.85%		0.4 <mark>6</mark> 3
$g_{ m Hcc}$	1.0%	0.71%	(0.87%)	3.8%	0.68%	(0.84%)	3.5%		0.7 <mark>4</mark> 5
$g_{ m Hgg}$	1.1%	0.80%	(0.98%)	4.4%	0.79%	(0.97%)	4.4%		0.8 <mark>4</mark> 0
$g_{\mathrm{H} au au}$	0.94%	0.54%	(0.66%)	2.9%	0.49%	(0.60%)	2.6%		0.5 <mark>8</mark> 0
$g_{\mathrm{H}\mu\mu}$	6.4%	6.2%	(7.6%)	45%	6.2%	(7.6%)	45%		6.206
$g_{ m H\gamma\gamma}$	1.7%	1.5%	(1.8%)	14.5%	1.4%	(1.7%)	14.5%		1.504
BR _{exo}	0.48%	0.45%	(0.55%)	2.9%	0.16%	(0.20%)	0.9%	-	0.46

BRinv now correct!

Actually, the direct constraints are not needed. The bug fix is enough to bring BRinv to the correct value. Mike had certainly found the bug but had not committed.

Summary and plans

- Preparatory work:
 - 3 analyses done:
 - ZH→IIX, ZH→IIbb, ZH→vvbb
 - papas and global fit validated
 - a few details to be checked (jet E correction)
 - many analyses still uncovered
 - $ZH \rightarrow \tau\tau$, $ZH \rightarrow WW$, $ZH \rightarrow \gamma\gamma$, WWH \rightarrow bb, ...
 - with many subchannels
 - tools ready, let's team up, happy to help

- Do the study
 - update running scenarios
 - use other detector models
 - CLIC-ILD ready in papas, parameter scan
 - reoptimize analyses for each detector model

Thanks to Michalis Bachtis, Patrick Janot, and Janik von Ahnen

Backup

« Op6 » model, also available in tlep-couplings

should not be

there since

```
Whbb350
###Here add the constraints 'name', 'formula', 'dependents', mean value , error
                                                                                is accounted
for
f.addConstraint('Zh','(1+Z)*(1+Z)','Z',1,0.004*0.95)
f.addConstraint('Whbb350','(1+W)*(1+W)*(1+b)/width','W,b,width',1,0.006)
f.addConstraint('Whbb','(1+W)*(1+b)*(1+b)/width','W,b,width',1,0.022*0.95)
                                                                                  analysis not
f.addConstraint('WhWW350','(1+W)*(1+W)*(1+W)/width','W,width',1,0.024) <
                                                                                  mentioned
f.addConstraint('Zhbb','(1+Z)*(1+Z)*(1+b)*(1+b)/width','Z,b,width',1,0.002*0.95)
                                                                                  anywhere?
f.addConstraint('Zhcc','(1+Z)*(1+Z)*(1+c)*(1+c)/width','Z,c,width',1,0.012*0.95)
f.addConstraint('Zhgg','(1+Z)*(1+Z)*(1+g)*(1+g)/width','Z,g,width',1,0.014*0.95)
f.addConstraint('ZhWW','(1+Z)*(1+Z)*(1+W)*(1+W)/width','Z,W,width',1,0.009*0.95)
f.addConstraint('ZhZZ','(1+Z)*(1+Z)*(1+Z)*(1+Z)/width','Z,width',1,0.031*0.95)
f.addConstraint('Zhtautau','(1+Z)*(1+Z)*(1+tau)*(1+tau)/width','Z,tau,width',1,0.007*0.95)
f.addConstraint('Zhgammagamma','(1+Z)*(1+Z)*(1+gamma)*(1+gamma)/width','Z,gamma,width',1,0.03*0.95)
f.addConstraint('Zhmumu','(1+Z)*(1+Z)*(1+mu)*(1+mu)/width','Z,mu,width',1,0.13*0.95)
f.addUniformConstraint('Zhinv','inv','inv') ####->Means free floating
```

https://github.com/bachtis/tlep-

^{11/12/20} <u>couplings/blob/master/runTLEP 250 350 Standalone Floating with 0p6.py 34</u>

« 0p6 » model

	M		and ant ft		TLEP		
	M	bdel-indel	pendent fit				
Coupling	TLEP-240	T	LEP	ILC	model	my fix	
g _{HZZ}	0.16%	0.15%	(0.18%)	0.9%	0.148	0.149	0.148
g _{HWW}	0.85%	0.19%	(0.23%)	0.5%	0.195	0.329	0.317
$g_{ m Hbb}$	0.88%	0.42%	(0.52%)	2.4%	0.442	0.4 <mark>6</mark> 3	0.4 <mark>6</mark> 0
$g_{ m Hcc}$	1.0%	0.71%	(0.87%)	3.8%	0.717	0.7 <mark>4</mark> 5	0.7 4 4
$g_{ m Hgg}$	1.1%	0.80%	(0.98%)	4.4%	0.802	0.8 <mark>4</mark> 0	0.8 <mark>38</mark>
$g_{\mathrm{H} au au}$	0.94%	0.54%	(0.66%)	2.9%	0.546	0.5 <mark>8</mark> 0	0.578
$g_{\mathrm{H}\mu\mu}$	6.4%	6.2%	(7.6%)	45%	6.202	6.206	6.206
$g_{\mathrm{H}\gamma\gamma}$	1.7%	1.5%	(1.8%)	14.5%	1.49	1.504	1.485
BR _{exo}	0.48%	0.45%	(0.55%)	2.9%	3.369	3.387	3.376

The other model is close to my fix (but is not understood) It is not the one used for the TLEP paper either BRexo still 10 times larger Uncertainty on W coupling almost x2

ILC (250 fb-1, 250 GeV)

				0р6					
	Model-independent fit				TLEP		TLEP	ILC	
Coupling	TLEP-240	TI	LEP	ILC	model	my fix	model	(Peskin)	
g _{HZZ}	0.16%	0.15%	(0.18%)	0.9%	0.148	0.149	0.148	0.78	
$g_{\rm HWW}$	0.85%	0.19%	(0.23%)	0.5%	0.195	0.329	0.317	4.6	
$g_{ m Hbb}$	0.88%	0.42%	(0.52%)	2.4%	0.442	0.4 <mark>6</mark> 3	0.4 <mark>6</mark> 0	4.7	
$g_{ m Hcc}$	1.0%	0.71%	(0.87%)	3.8%	0.717	0.7 <mark>4</mark> 5	0.7 <mark>4</mark> 4	6.4	
$g_{ m Hgg}$	1.1%	0.80%	(0.98%)	4.4%	0.802	0.8 <mark>4</mark> 0	0.8 <mark>38</mark>	6.1	
$g_{\mathrm{H} au au}$	0.94%	0.54%	(0.66%)	2.9%	0.546	0.5 <mark>8</mark> 0	0.5 <mark>78</mark>	5.2	
$g_{\mathrm{H}\mu\mu}$	6.4%	6.2%	(7.6%)	45%	6.202	6.206	6.206	-	
$g_{\mathrm{H}\gamma\gamma}$	1.7%	1.5%	(1.8%)	14.5%	1.49	1.504	1.485	18.8	
BR _{exo}	0.48%	0.45%	(0.55%)	2.9%	3.369	3.387	3.376	0.54	

https://arxiv.org/abs/1312.4974 table 5

not directly comparable: twice smaller lumi, 250 instead of 240 GeV BR inv < 1 % !