
https://root.cern

ROOT
Data Analysis Framework

C++ runtime modules

Raphael Isemann

1

https://root.cern


Overview C++ modules

▶ clang’s C++ Modules optimize header parsing
● C++ module = precompiled headers
● clang can load on-demand code from modules

▶ Developed by Google, Apple in clang
● They want a faster compiler
● Code is open source and they collaborate with us

Raphael Isemann, C++ runtime modules, 11. Dec. 2017 2



Overview C++ modules

▶ Work similar to precompiled headers (PCHs)
● We already use a PCH in ROOT
● But only one PCH is allowed at a time
● Multiple PCHs at a time ➔ C++ modules

▶ ROOT’s interpreter uses clang
● We can make use of C++ modules in ROOT
● Faster compilation times in clang ➔ faster ROOT 

runtime when interpreting
Raphael Isemann, C++ runtime modules, 11. Dec. 2017 3



Requirements for C++ modules

▶ clang’s C++ modules work with C++11/14/17
● No module specific C++ code necessary

▶ Few new requirements:
● Header need to be standalone

◼ Need to contain all required includes
◼ Shouldn’t rely on macros defined outside their visibility
◼ It’s easy to test for this, so please do!

● No cyclic dependencies between C++ modules

Raphael Isemann, C++ runtime modules, 11. Dec. 2017 4



C++ modules

▶ Module configuration happens via modulemaps
● Textual files containing mostly just a list of headers
● Need to be placed in the specific include directory

▶ If clang sees an include to a module header, it 
builds the module if necessary and attaches it.

▶ Module files are stored in a cache directory
● For ROOT that’s the lib/ directory for now.

Raphael Isemann, C++ runtime modules, 11. Dec. 2017 5



Moving CMS/ROOT to C++ modules

Workplan:
1. Compile ROOT with C++ modules
2. Generate C++ modules with rootcling
3. Use C++ modules during ROOT’s runtime
4. Compile CMS with C++ modules
5. Enable modules for CMS runtime

Raphael Isemann, C++ runtime modules, 11. Dec. 2017 6



1. Compile ROOT with C++ modules

▶ New ROOT build option -Dcxxmodules=On
▶ Compiles ROOT with clang’s C++ modules
▶ Allows fast compatibility testing with modules

● nightly builds of clang check for module regressions
▶ Status: Completed

Raphael Isemann, C++ runtime modules, 11. Dec. 2017 7



System modulemaps

▶ We need C++ modules for the system (STL, libc)
● More efficient than copying them into all modules
● Also fixes bugs because we avoid merging contents

▶ We ship system modulemap files
● Only Apple ships some (broken) modulemaps.

▶ System modulemap files are placed via VFS
● VFS = clang’s virtual file system overlay feature

▶ Will be important when we go out to users
Raphael Isemann, C++ runtime modules, 11. Dec. 2017 8



Possible future items

▶ Making build system more aware of module 
dependencies ➔ compilation speedup
● CMake doesn’t know about module header 

dependencies yet ➔ no good scheduling
● If multiple clang instances try to build same module, 

they all wait just wait on the first clang build

Raphael Isemann, C++ runtime modules, 11. Dec. 2017 9



2. Generate C++ modules with rootcling

▶ rootcling also generates C++ modules now
▶ Activated by setting env variable ROOT_MODULES=1
▶ rootcling now needs to respect dependencies

a. If dict A depends on B, then B needs to be generated 
before A.

▶ Status: Completed

Raphael Isemann, C++ runtime modules, 11. Dec. 2017 10



On demand building

▶ Clang can build modules on its own when it 
encounters them
a. Used for the system C++ modules

▶ Should NOT be used for dict C++ modules
a. Comments etc. will not be stored then
b. We will see the corresponding errors during runtime
c. At the moment NOT yet a rootcling error.

Raphael Isemann, C++ runtime modules, 11. Dec. 2017 11



System modules

▶ System modules like STL/libc/boost/Geant4 have 
no specific rootcling invocation
a. They currently get built as a side product by clang’s 

implicit build mechanism
b. Not as efficient as explicitly building them (nested 

module build take a lot of memory).
c. Requires that all dependencies are used from a 

rootcling header.
Raphael Isemann, C++ runtime modules, 11. Dec. 2017 12



Possible future work items

▶ Generating the module from the interpreter 
brings in a lot of clutter into the module file

▶ The dependency requirement isn’t very user 
friendly (but seems hard to avoid)

▶ See root evolution proposal about rootcling 
refactor [RE-0003]

Raphael Isemann, C++ runtime modules, 11. Dec. 2017 13



3. C++ modules during ROOT’s runtime

▶ ROOT runtime uses the generated modules
▶ Allows mixing non-module/module dicts

a. Only if a dict has a module we load it.
▶ Still using rootmaps for autoloading

a. But behind the scenes we use modules now
▶ Status: Completed (1610/1650 tests pass)

Raphael Isemann, C++ runtime modules, 11. Dec. 2017 14



Runtime performance

▶ ~25% speedup on startup in normal tutorials
▶ ~35% speedup on parsing-heavy tutorials

a. e.g. when using boost 
▶ Same speed for ROOT PCH modules

a. They already use the PCH which already is a module
▶ Runtime should be in general always equal or 

better than without modules.
▶ Tracking page: https://teemperor.de/root-bench/benchmarks.html

Raphael Isemann, C++ runtime modules, 11. Dec. 2017 15



Performance optimizations

▶ Lots of chances to optimize speed/memory.
▶ Most optimizations will also help PCH.
▶ No more iterating over the whole AST
▶ We should finish the template specialization 

patch.
a. Hurts PCH, really hurts the C++ modules.

▶ We should keep an eye on the benchmarks.

Raphael Isemann, C++ runtime modules, 11. Dec. 2017 16



Fixing autoloading

▶ Currently preloading modules/PCH is fixing 
some autoloading issues.
a. E.g. Decls in namespaces seem to be broken

▶ Maybe we should attempt to fix that
a. Reduced performance because we (correctly) load 

more things now that we didn’t do before.
b. Improves C++ modules memory a lot.
c. CMS seems to have already fixed this.

Raphael Isemann, C++ runtime modules, 11. Dec. 2017 17



C++ runtime modules

Thanks for your attention!
Also thanks a lot to:

Vassil for supervising, Guilherme, Enrico, Javier, 
Xavier, Axel, Martin(not here), Enric, Bertrand, Danilo, 
Kim, Oksana, Pere, Phillippe and many more...

Raphael Isemann, C++ runtime modules, 11. Dec. 2017 18



Runtime memory

▶ Modules call mmap on module files
a. RSS memory therefore depends a lot on the kernel 

and how much it loads the files into memory
▶ Measured changes to alloc. memory are +/-20%.
▶ Memory consumption depends on user code:

a. Many sparsely used includes ➔ Good improvements
b. Already parsing-optimized code (e.g. forward decls 

instead of includes) ➔ No improvements
Raphael Isemann, C++ runtime modules, 11. Dec. 2017 19


