James M. Ryan (UNH), Georgia de Nolfo (GSFC)

What Do the SEP events and the Associated High- Energy Flares of 2012 March 7 Tell Us About Long **Duration Gamma-Ray Flares?**

Long Duration Gamma-Ray Flares (LDGRF)

- Extremely long duration (hours), smooth exponential decay, often with minute(s) delay after impulsive phase.
- High energy π-decay produced
 (>1 GeV) photons.
- No primary electron component detected.

1991 June 11 LDGRF as measured with EGRET. Others detected before *Fermi* (Chupp and Ryan 2009)

Where do they originate and how?

- Delayed onset, relativistic ion energies, long duration similar to GLEs. Maybe the coronal shock that produces a GLE can feed particles back to the Sun to radiate. If not shocks, then where?
- Let's examine this? Are there counterexamples?
 - Find a shock/SEP event with no LDGRF—but maybe poor connection back to Sun, or
 - find a LDGRF with no corresponding shock/SEP event to provide particles.

2012 March 7 may be such an event

STEREO B

Summarizing results of Kouloumvakos et al. (2016)

- First X5 flare/CME responsible for SEP event at Earth and STA 2800 km-s⁻¹. Supported by Ding et al. (2016) and Richardson et al. (2014).
- Inferred shock (slower) from second X1 flare, just low corona phenomenon, but no IP particle production. Supported by above researchers.
- X5 active region had oor connection to Earth, producing diffusive-like SEP event. Only STB has good connection to WL or EUV signatures.
- Clear low-corona particle activity from both events (X/ γ and μ waves)

Two X-class flares one hour apart from AR 11429 N16°E29°, X 5.4,

Alternative Continuous Acceleration Process in Static Structure 2.0x10⁻³

- Leakage from ends of rarified large loop (10⁹ cm⁻³, >10⁵ km)
- Long lasting MHD turbulence resonant with ~100 MeV protons.
- Inject monoenergetic protons (20 MeV)
 - Diffusion in x and p. $\tau = L^2 / \pi^2 \kappa$
- Delay comes from transport and pion threshold.

$$\frac{\partial f}{\partial t} = p^{-2} \frac{\partial}{\partial p} \left\{ p^2 \left[D(p) \frac{\partial f}{\partial p} - f \ddot{p}(p) \right] \right\} + \frac{\partial}{\partial x} \left(\kappa \frac{\partial f}{\partial x} \right) - \frac{f}{T} + Q(x, p, t)$$

1.5

1.0

LUNG UUI all'UN MIE EMISSION

300 MeV protons

Time (decay times)

Possible Complications

- Energy loss from collisions with electrons. OK if density is low large loop.
- Curvature and gradient drifts. Could be an issue for the 20-h 2012 March 7 event. Could be path for getting particles into IP space.
- Maintenance of turbulence to both trap and accelerate the ions. Easy to initiate, and may have been detected (De Moortel et al., 2014). Turbulence itself could be trapped.
- We also take the spatial diffusion coefficient κ to be independent of energy and position, making the momentum diffusion $\propto p^2$.

Continuous Acceleration model for 1st Flare (X5)

Requires loop length > 1 R_{\odot}

CME at 0.5 AU at time of centroid displacement

Summary

- Two LDGRFs occurred on 2012 March 7, separated by about one hour.
- Both produced similar HXR/ γ and μ wave intensities but differing by 5× in SXR.
- Earlier flare produced LDGRF with a ~1 R_{\odot} loop.
- Having the second IP shock produce 20-h emission at the Sun is unattractive from other observations.
- Second flare produced the 20-h LDGRF with no contribution from IP space.
- Compatible with trapping and acceleration in a magnetic structure between AR11429 and AR11423, but needs further study.
- No particle in space registered > 1 GeV (PAMELA collab., priv. comm.)
- Particles in space >500 MeV roughly comparable to or less than those deduced from γ data (de Nolfo et al., 20 minutes ago)

Future Work for Loop

- Investiga space, e fits.
- Must inv scales, a

particles into d how that affects

ace, e.g., length good fits.

Interpret fit parameters in the context of other data.

Study other LDGRFs to search for patterns and similarities.

ARGOMoon Italy's Eye on the Moon

https://www.google.com/url? sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiPpeHE8tHaAhXCMd8KHZTtBJYQ3ywIKTAA&url=https%3A%2F <u>%2Fwww.youtube.com%2Fwatch%3Fv%3DJsfHuSqLIEw&usg=AOvVaw1cPRNsqAfWty5Po2uNhKIO</u>

