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DAMAGE

radiation

Space agencies such as ESA,
NASA, the Chinese space agency
and even private companies are
launching new human deep space
exploration programs to the
Moon and Mars.

Radiation is one of the most
important long-term risks to
such missions.

In preparation, this requires a
very timely and thorough study
to better understand the space
weather conditions and their
effects as a baseline for the
development of mitigation
strategies against radiation risks.
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The Radiation Assessment
Detector (RAD)

RAD (Hassler et al 2012) is an energetic particle
detector measuring galactic cosmic rays, solar
energetic particles, and their secondary particles
generated in the Martian atmosphere.

»RAD contains 6 detectors, A, B, and C are
silicon diodes (each 300 um thick) arranged as a
telescope.

The other three (D, E, and F) are scintillators.
-D: 2.8 cm thick CSI
-E: 1.8 cm thick hydrogen-rich plastic,
-Both D and E are efficient for neutral
particles
-F: 1.2 cm thick plastic; anti-coincidence

Dose rates (deposited energy by particles) are
measured in both silicon and plastic detectors.

A selfi of the curiosity rover on
Mars.



Radiation inside a spacecraft in deep
space measured during the cruise phase
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GCR-induced dose rate: ~0.481 uGy/
day SEP events.

Time period Integrated dose
(2012) equivalent (mSv)
23 to 29 January 4.0
7 to 15 March 19.5
17 to 18 May 1.2

Cruise SEP Total 24.7
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Emplrlcal Predictions of GCR radiation
during Cruise Phase under Different
Solar Modulation Conditions
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On the Surface of Mars, GCR radiation is
also modulated by solar act|V|ty and has
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=, Empirical predictions of GCR radiation
on the Surface of Mars under Different
Solar Modulation Conditions
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Model-derived GCR radiation levels
for a typical Mission to Mars

Solar minimum: cruise (224+237)*3 + Mars (458%0.8) ~ 1.75 Sv
Solar maximum: cruise(224+237)*1.2 + Mars (458*0.5) ~ 0.78 Sv

Depart Earth
01/17/2014

Depart Mars
11/30/2015

Arrive Earth
07/24/2016

Arrive Mars
08/23/2014

Mission Times

Outbound 224 Days
Stay 458 Days
Return 237 Days

Total:
919 Days



E]§ "N We also need to consider SEP induced
@ radiation! SEPs seen on the surface of Mars
by MSL/RAD (2012-2016)
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RAD observed several solar particle events
(SPEs) during the cruise phase and on the
surface of Mars. Their onset times and
spectra are different from those observed
at near Earth due to:

» different magnetic connection to the
particle acceleration sites (at the flares,
and/or CMEs and shocks)

» Cross-field transportation effects on
particles as they propagate through
the heliosphere

Solar

Flare
e,

Coronal
Mass Ejection

Magnetic
Field Lines
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stopped in RAD:
p>175 MeV

penetrated RAD:

p>288 MeV
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y 10 Sept. 2017 SEP Event arriving
at Earth, Mars & STEREO-A

Earth
* The onset of protons > 100 MeV seen by GOES at Earth
is at about 16:15 on 2017-09-10.
» SEPs were also registered as a ground level
enhancement (GLE) seen by multiple neutron monitors
with cutoff rigidities up to about 3 GV (~2 GeV protons)

Mars
Mars magnetic foot point is ~150 degrees from the flare.
The earliest onset at Mars is about 19:50 and this has been
the biggest GLE at Mars seen by the Radiation Assessment
Detector (RAD) since the landing of the Curiosity rover.
Considering protons needs ~175 MeV to penetrate through the
Martian atmosphere and an extra 113 MeV to penetrate
through the RAD instrument, particles with >300 MeV arrived
Mars. We are working on retrieving the SEP spectra at Mars
on top of the atmosphere from surface measurement.

STEREO-A
STAfoot point is >~200 degrees away from flare and still
detected particles ~ 100 MeV.
The SEPs arriving at STA are likely transported there across
Interplanetary Magnetic Field (IMF) lines via diffusion and
scattering as STAwas at the back side of the flare and CME
shock.

Guo et al. 2018 GRL, submitted.



The acceleration of energetic particles (protons
> 2 GeV) are likely related to the Current

by the extremely fast CME (>~2600 km/s)

(a) Flare, current sheet and the MFR ~10/09 15:53 CME1 2017-09-09
SuVI 131 A AIA 131A 15:63 UT

~109 minutes after first COR1 appearance

15:58:24 16:03:34

... Shock
"",

c

EUV wave
Propagation > 1000 km/s

Seaton and Darnel , 2018; Warren = | e
et al., 2017; Li et al., 2018; Guo et SOHO Coronagraph observations show the
al 2018 GRL, launch of 2 other CMEs V% day before this event
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of 3 CMEs

low) (d) CME2 ~09/09 23:24 coronagraph (up) & GCS (low)
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Kinematic Reconstruction

The initial 3D geometry and
kinematics of the CMEs have been
constructed using graduated
cylindrical shell (GCS) model
[Thernisien et al., 2009; Thernisien,
2011] based on both STA and
SOHO coronagraph observations.

V _CMES3 > 2600 km/s at the apex.

Given V_cme3d >>V_cme2 >
V_cme1, the later CMEs were likely
catching up and interacting with the
earlier ones.

CME3-driven shock is wider.
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The remote sensing observations, combined with
in-situ data at Earth, Mars and STEREO-A have
! ® been used to Interpret the CME’s launch,

propagation, interaction and transport of particles

Earth Shock i Mars Shock + ICME
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Guo et al 2018, GRL, submitted




CME & Shock Arrival at Mars
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Modeling results of the propagation and interaction of the 3
CMEs using the drag-based model (DBM)
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* During the collision, CME mass merged as an entity and the
two colliding bodies continued their propagation further with
v width e the momentum conserved [Temmer et al., 2012]
3 D _ » The drag force decreases for 3 subsequent CMEs.
: S ' * As the change of CME kinematics due to collisions is much
stronger, solar wind speed is kept the same before and after

Upon the SEP onset at Mars, the the CME interaction.
modeled shock front is close to the °* Merging may be contributing to the second peak (~21:20) of”

Parker sbiral connectina to Mars. partiCIG injeCtion as observed insitu.
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= Helping better Understand & Forecast
Extreme Space Weather at Mars

The combined Analysis of the Measurements & Modeling of the Sept. 2017
Event is helping us better understand and therefore better forecast
Extreme Space Weather Conditions at Mars!

To forecast SEP events, it is important and necessary to consider:
*The acceleration and injection of the particles at the Sun and the
continuous acceleration by the ICME driven shock in the interplanetary
(IP) space.

*The heliospheric position of the spacecraft and its connection to the
Injection site.

*Possible cross-field transport of particles in the IP space.

*The shielding configuration of the local environment, e.g., the
sSpacecraft material or the planet atmosphere shielding.




Thank you!
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