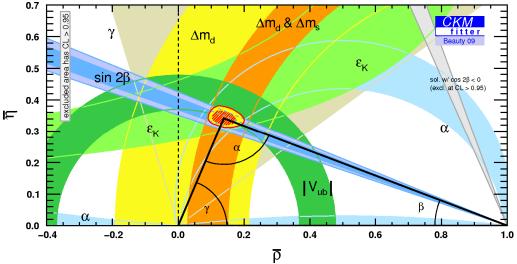
Interplay between Collider and Flavour Physics 14-16 December 2009, CERN

Exploring CP violation @LHC (mostly LHCb)

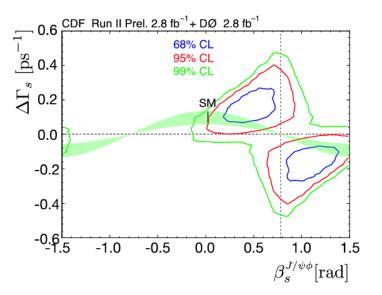
Yuehong Xie University of Edinburgh


The synergy (or competition?)

- Collider: direct search for new particles
- Flavour physics: indirect search for new couplings beyond the usual Yukawa matrix
 - "unexpected" phenomena in loop processes
 - measurements of decay rates, rate asymmetries, angular distributions, Lorentz structures, ...
 - new CP-violating phases beyond CKM
 - precision measurements of CP asymmetries, unitarity angles, CKM elements

Status of CKM unitarity test

Measurements of $\varepsilon_{\rm K}$, UT sides and angles are in astonishing agreement in constraining apex of the "db" UT!


- Stringent constraint on new physics contribution in B_d mixing
- Not everything well measured
- Size of new physics contribution in B_s mixing and b→s penguin decays still unconstrained
- Some hints of discrepancies with the SM await verification with higher precision at LHC.

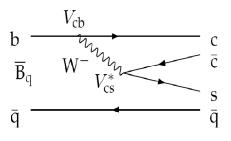
angle	Direct measurement	Fit (excl. dir. meas.)		
		, ,		
α	89.0 [+4.4, -4.2]	92.2 [+6.4, -6.3]		
β	21.15 [+0.90, - 0.88]	26.5 [+1.3, -1.7]		
γ	75 [+19, -25]	67.7 [+4.5, -3.7]		

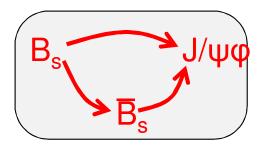
"Anomalies" in b→s transitions

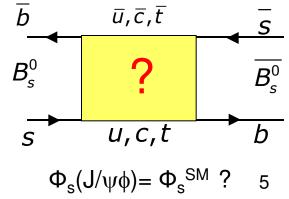
- SM prediction (CKM fitter): $\Phi_s = -0.036 \pm 0.002$ - CDF+D0 (2.8fb⁻¹ each): $\Phi_s \equiv -2\beta_s \in [0.54, 1.18] \cup [1.94, 2.60]$ at 68% CL P-value of SM is 3.4% or 2.12 σ (CDF public note 9798)

Some puzzles require more understanding of hadronic amplitudes as well as better measurement precision

- $sin(2\beta^{eff}) \approx or \neq sin(2\beta)$ in b \rightarrow s penguin modes?
- $A_{dir}(B^+ \rightarrow \pi^0 K^+) \neq A_{dir}(B^0 \rightarrow \pi^- K^+)$ at 5 σ

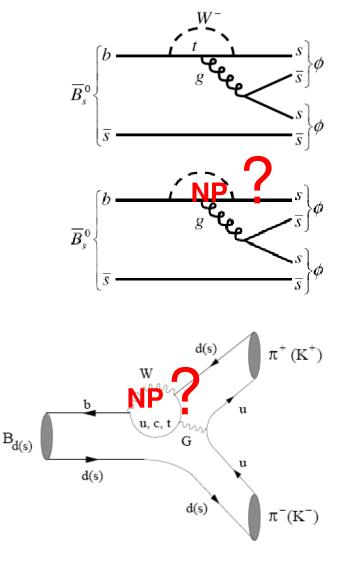

Path1: Search for NP in B_s mixing


 $B_s \rightarrow J/\psi \phi$ is dominated by a tree diagram, which is free of new physics contribution.


CP violation arising from interference between decay with and without mixing is proportional to the B_s mixing phase Φ_s

SM value of Φ_s is precisely predicted to be $\Phi_s^{SM} = -0.036 \pm 0.002$

 Φ_{s} is sensitive to CP-violating new physics in $\Delta B{=}2$ and $\Delta S{=}2$ operators

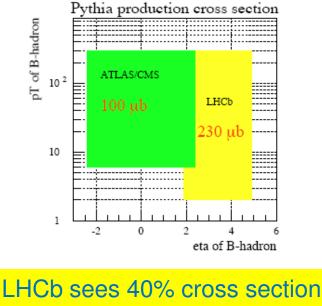

Path 2: Search for NP in b→s penguin

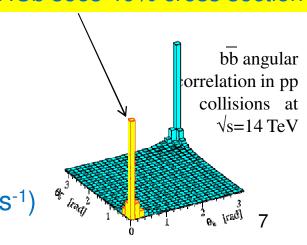
 CP violating new phases in b →s penguin decay B_s→φφ can make Φ_s(φφ) ≠ 0

SM expectation of $\Phi_s(\phi\phi)$ vanishes due to phase cancellation between decay and mixing

 Similarly, CP violating new phases in b →s penguin diagram for B_s→KK will make γ(loop-induced) ≠ γ(tree-level) Loop-induced: B→hh

Tree level: $B \rightarrow DK$, $B_s \rightarrow D_s K$



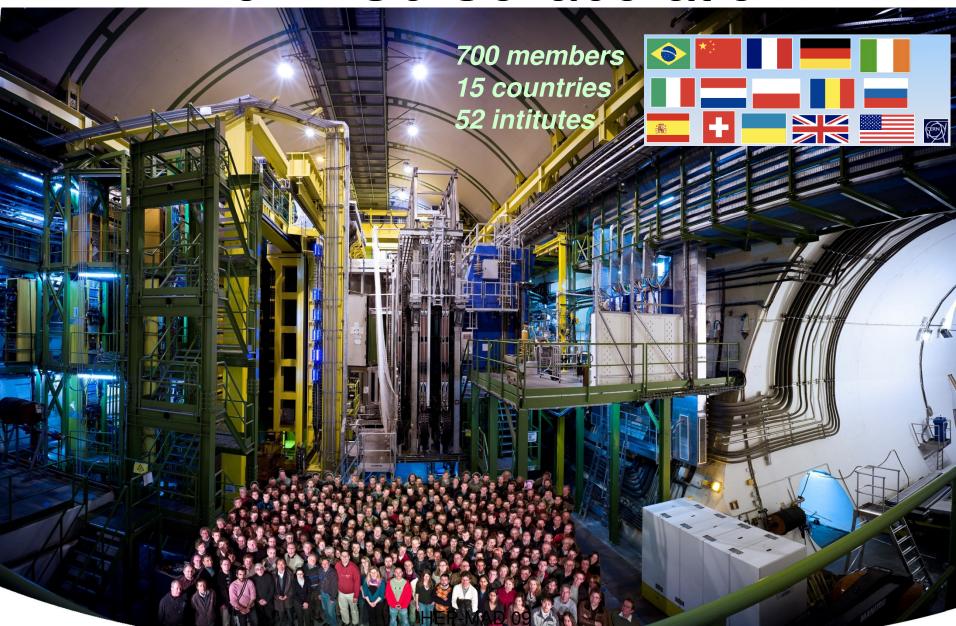

LHC is full of beauty

- ATLAS/CMS:
 - central detectors, $|\eta|$ <2.5
 - B physics using high-p_T muon triggers, mostly with modes involving dimuon
- LHCb:
 - designed to maximize B acceptance (within cost and space constraints)
 - forward spectrometer, $1.9 < \eta < 4.9$
 - relying on much softer, lower p_T triggers
 - efficient also for purely hadronic B decays

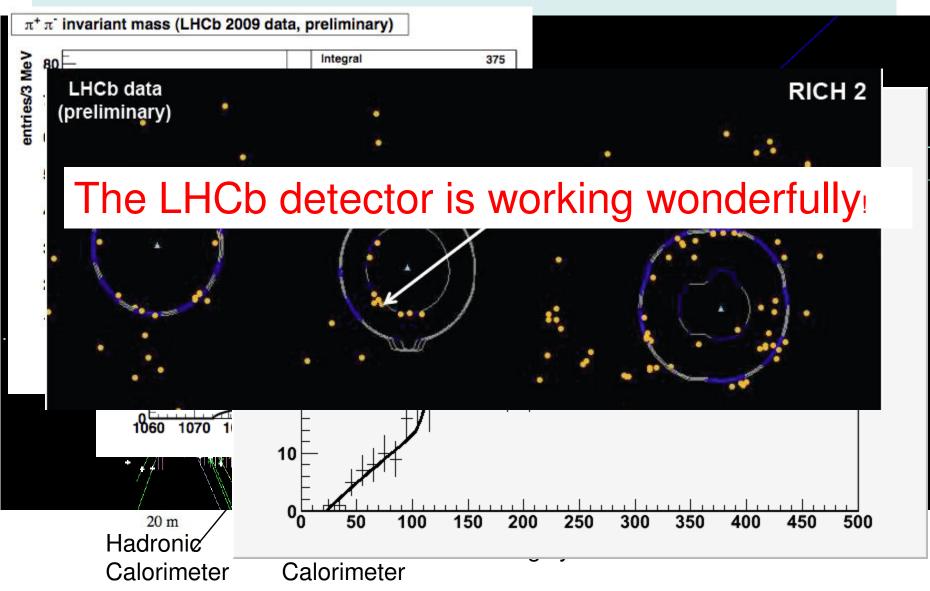
 σ_{bb} = 500 µb at 14 TeV \rightarrow 10¹² bb events in

 $L_{int} = 2fb^{-1} (1 \text{ nominal year } 10^7 \text{ s} \text{ at } 2x10^{32} \text{ cm}^{-2}\text{s}^{-1})$

... and beauty pursuers

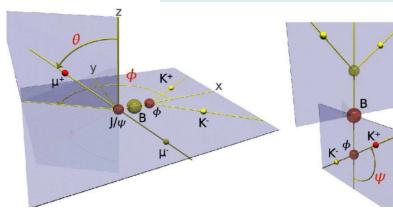


A wide range of precision measurements in B (or charm) decays. Key CP measurements include


B_s mixing phase Φ_s from tree-level decay
 B_s mixing phase Φ_s from penguin decay
 UT angle γ from tree level decay
 UT angle γ from loop-induced decay
 CPV in charm decays

LHCb will measure 1, 2, 3, 4, 5 ATLAS, CMS have sensitivity to 1

The LHCb Collaboration


LHCb detector

Φ_{s} from $B_{s} \rightarrow J/\psi(\mu\mu)\phi(KK)$

- Analysis method and sensitivity
- Systematics
- Theoretical uncertainties

Differential rates

P→VV decay : mixture of CP-even (ℓ =0,2) and CP odd (ℓ =1) final states. An angular analysis allows to separate statistically the decay amplitudes.

3 angles $\Omega = (\theta, \phi, \psi)$ to describe the final decay products directions.

Differential decay rate:	$\frac{1}{1} \frac{1}{1} \frac{1}$					
accay rate.	\overline{B}_{s}					
	k	$h_k(t)$	$h_k(t)$	$f_k(heta,\psi,arphi)$		
$A_0(0) \rightarrow CP$ even	1	$ A_0(t) ^2$	$ \bar{A}_0(t) ^2$	$2\cos^2\psi(1-\sin^2\theta\cos^2\varphi)$		
$A_{ }(0) \rightarrow CP$ even	2	$ A_{ }(t) ^2$	$ ar{A}_{ }(t) ^2$	$\sin^2\psi(1-\sin^2\theta\sin^2\varphi)$		
$A_{\perp}(0) \rightarrow CP \text{ odd}$	3	$ A_{\perp}(t) ^2$	$ \bar{A}_{\perp}(t) ^2$	$\sin^2\psi\sin^2 heta$		
	4	$\Im\{A^*_{ }(t)A_{\perp}(t)\}$	$\Im\{\bar{A}_{ }^*(t)\bar{A}_{\perp}(t)\}$	$-\sin^2\psi\sin 2 heta\sin \varphi$		
	5	$\Re\{A_0^*(t)A_{ }(t)\}$	$\Re\{\bar{A}_0^*(t)\bar{A}_{ }(t)\}$	$\frac{1}{\sqrt{2}}\sin 2\psi \sin^2\theta \sin 2\varphi$		
	6	$\Im\{A_0^*(t)A_{\perp}(t)\}$	$\Im\{\bar{A}_0^*(t)\bar{A}_\perp(t)\}$	$\frac{1}{\sqrt{2}}\sin 2\psi \sin 2\theta \cos \varphi$		

Time dependences

$$\begin{split} |A_{0}(t)|^{2} &= |A_{0}(0)|^{2} e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \cos \Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \sin \Phi \sin(\Delta m_{s}t) \right] \\ |A_{\parallel}(t)|^{2} &= |A_{\parallel}(0)|^{2} e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \cos \Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \sin \Phi \sin(\Delta m_{s}t) \right] \\ |A_{\perp}(t)|^{2} &= |A_{\perp}(0)|^{2} e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \cos \Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \sin \Phi \sin(\Delta m_{s}t) \right] \\ \Im \{A_{\parallel}^{*}(t)A_{\perp}(t)\} &= |A_{\parallel}(0)||A_{\perp}(0)|e^{-\Gamma_{s}t} \left[-\cos(\delta_{\perp} - \delta_{\parallel}) \sin \Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_{s}t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos \Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_{s}t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos \Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \\ \Im \{A_{\parallel}^{*}(t)A_{\parallel}(t)\} &= |A_{0}(0)||A_{\parallel}(0)|e^{-\Gamma_{s}t} \cos \delta_{\parallel} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \cos \Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin \delta_{\perp} \cos(\Delta m_{s}t) \right] \\ \Im \{A_{0}^{*}(t)A_{\perp}(t)\} &= |A_{0}(0)||A_{\perp}(0)|e^{-\Gamma_{s}t} \left[-\cos \delta_{\perp} \sin \Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin \delta_{\perp} \cos(\Delta m_{s}t) - \cos \delta \cos \Phi \sinh\left(\Delta m_{s}t\right) \right] \\ \end{split}$$

Depend on 8 physics
parameters:
$$\Phi$$
, Γ_s , $\Delta\Gamma_s$,
 Δm_s , R_{\perp} , R_{\parallel} , δ_{\perp} , δ_{\parallel}

$$\Phi = \Phi^{\rm SM} + \phi_{\rm s}^{\Delta} \qquad R_{\perp} = \frac{|A_{\perp}(0)|^2}{|A_{\perp}(0)|^2 + |A_{\parallel}(0)|^2 + |A_0(0)|^2}$$

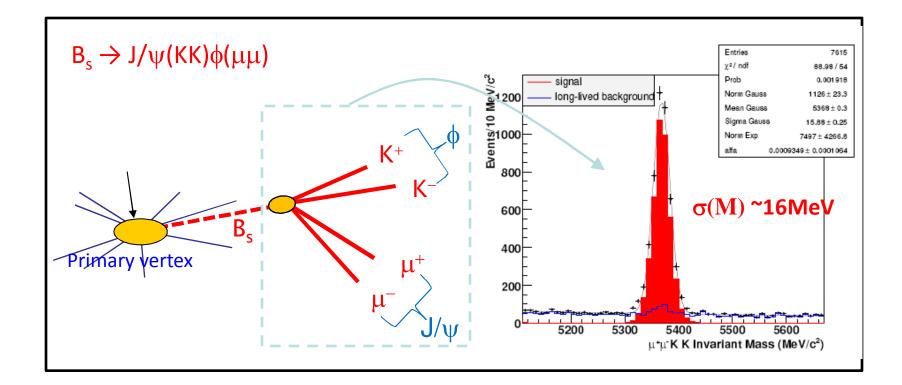
$$\Gamma_{\rm s} = \frac{\Gamma_{\rm L} + \Gamma_{\rm H}}{2} \qquad R_{\parallel} = \frac{|A_{\parallel}(0)|^2}{|A_{\perp}(0)|^2 + |A_{\parallel}(0)|^2 + |A_0(0)|^2}$$

$$\Delta\Gamma = \Gamma_{\rm L} - \Gamma_{\rm H} \qquad \delta_{\perp} = \arg(A_{\perp}(0)A_0^*(0))$$

$$\Delta m_{\rm s} = M_{\rm H} - M_{\rm L} \qquad \delta_{\parallel} = \arg(A_{\parallel}(0)A_0^*(0))$$
13

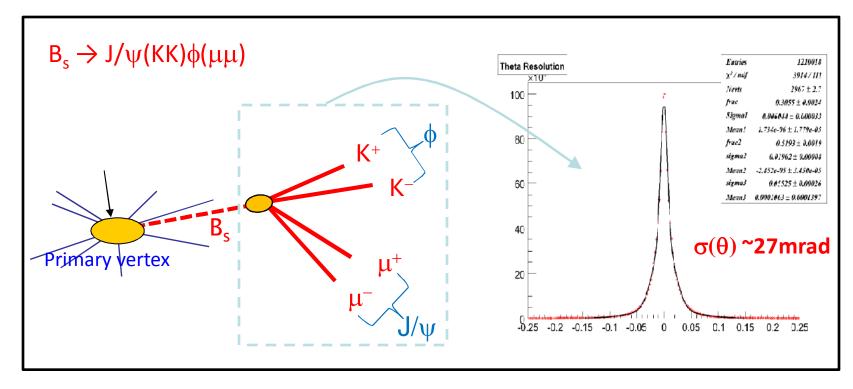
Parameter extraction method

- Unbinned maximum likelihood fit
- Input
 - B_s invariant mass: to separate signal and background
 - angles $\Omega = (\theta, \phi, \psi)$: to separate different CP eigenstates
 - B flavour tag: pin down initial state of the decay
 - proper decay time: to extract $\Phi_{\rm s}$ from its distribution
- Output
 - physics parameters $\Phi, \Gamma_s, \Delta\Gamma_s, \Delta m_s, R_{\perp}, R_{\parallel}, \delta_{\perp}, \delta_{\parallel}$
 - various detector parameters
- Sensitivity depends on
 - signal yield and background level
 - reconstruction quality of the input variables, particularly proper time and flavour tag


Event reconstruction

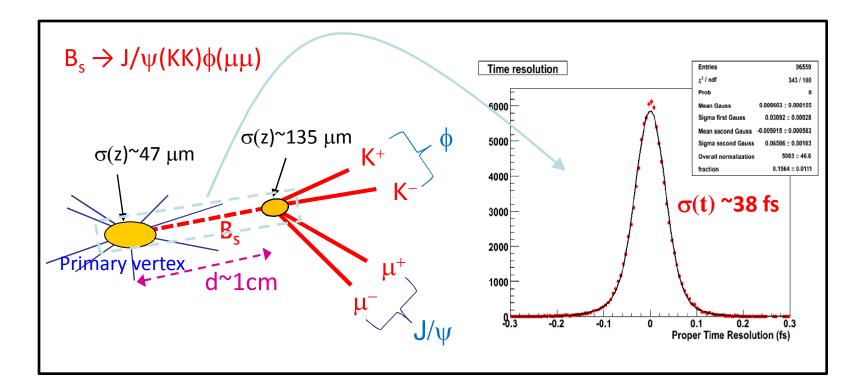
- Trigger on dimuon ϵ ~70%
- Baseline event selection maximally preserves proper time and angular distributions
- Unified selection to also select
 - $B_d \rightarrow J/\psi K^*$ to check angular acceptance
 - $B^+ \rightarrow J/\psi K^+$ to calibrate opposite side tagging
- Copious signal yields with relatively low background

	Yield (2fb ⁻¹)	B(bb)/S	B(prompt J/ ψ)/S
$B_s \rightarrow J/\psi \phi$	117k	0.5	1.6
$B_d \rightarrow J/\psi K^*$	489k	1.5	5.2
$B^+ \rightarrow J/\psi K^+$	942k	0.3	1.6


B mass resolution

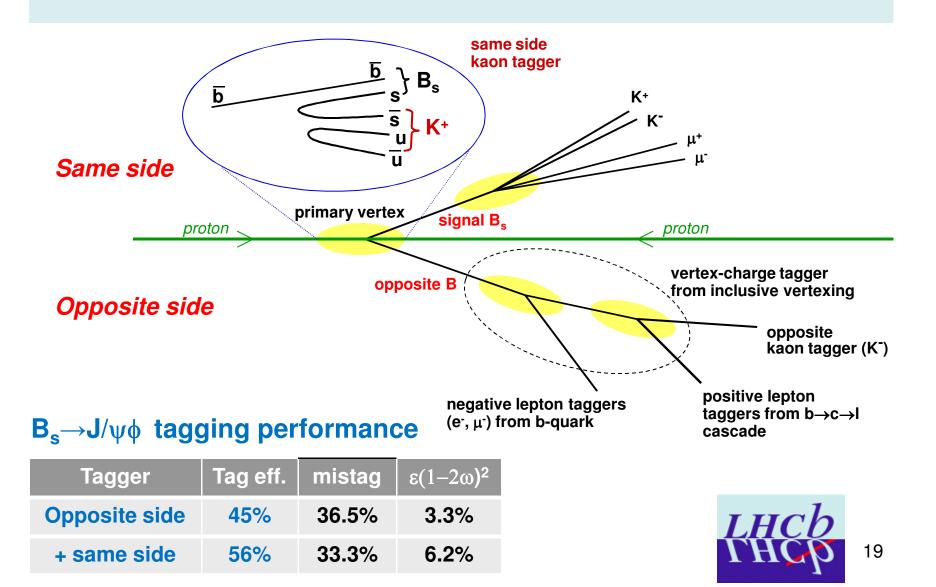
Average $\sigma(M) \approx 16 \text{MeV}$, good for separating signal from background

Angular resolution



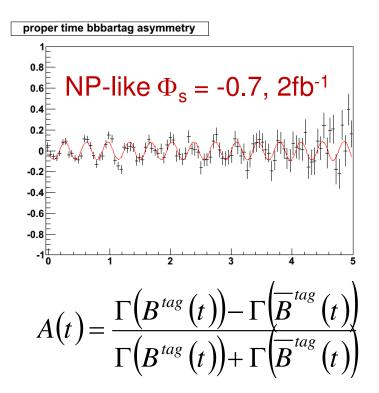
	Ψ	φ	θ
Resolution (mrad)	20	27	27

Angular resolution effect negligible


Proper time resolution

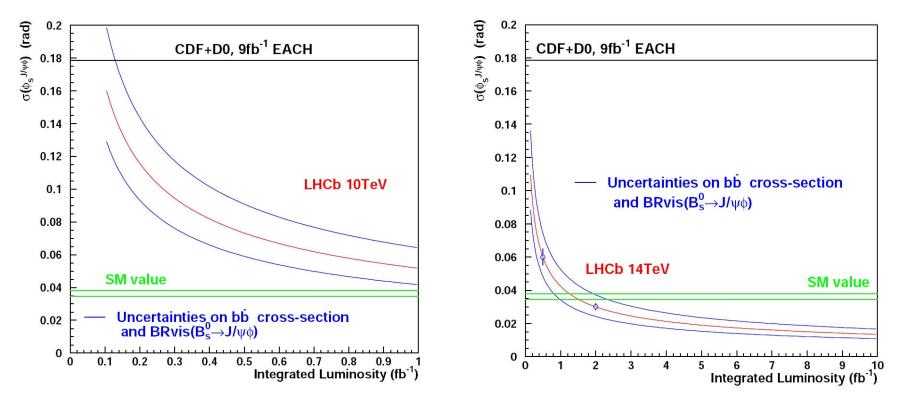
Average $\sigma(t) \approx 38$ fs, compared with oscillation period T = $2\pi/\Delta m_s \approx 314$ fs for $\Delta m_s = 20$ ps⁻¹

Flavour tagging performance



Sensitivity with 2fb⁻¹

 Estimate sensitivity from fits of toy data samples based on detector performance from full simulation



• SM case sensitivity with $2fb^{-1} \sigma(\Phi_s) \approx 0.03$

Parameter	Result	Units
$m_{ m B_s}$	5368.01 ± 0.05	MeV/c^2
$f_{m,1}^{s}$	0.47 ± 0.13	
$\sigma_{m,1}^{\mathrm{s}}$	12.0 ± 0.7	MeV/c^2
$\sigma_{m,2}^{s}$	19.0 ± 1.3	MeV/c^2
$ A_0(0) ^2$	0.599 ± 0.002	
$ A_{\perp}(0) ^2$	0.162 ± 0.004	
δ_{\parallel}	2.49 ± 0.02	rad
δ_{\perp}	-0.28 ± 0.10	rad
$-2\beta_{ m s}$	-0.0399 ± 0.0272	rad
Γ_{s}	0.686 ± 0.004	$\rm ps^{-1}$
$\Delta\Gamma_{\rm s}$	0.061 ± 0.010	ps^{-1}
$f_{t,1}^{\mathrm{s}}$	0.96 ± 0.01	
$\sigma_{t,1}^{\mathrm{s}}$	0.032 ± 0.001	\mathbf{ps}
$\sigma_{t,2}^{ m s}$	0.12 ± 0.01	\mathbf{ps}
$\Delta m_{ m s}$	19.96 ± 0.04	\mathbf{ps}

Sensitivity versus integrated luminosity

- 0.2fb⁻¹:
 - LHCb overtakes Tevatron projection
 - Can observe NP if true value of Φ_s is close to the Tevatron central value (~ -0.8) 21

ATLAS/CMS performance

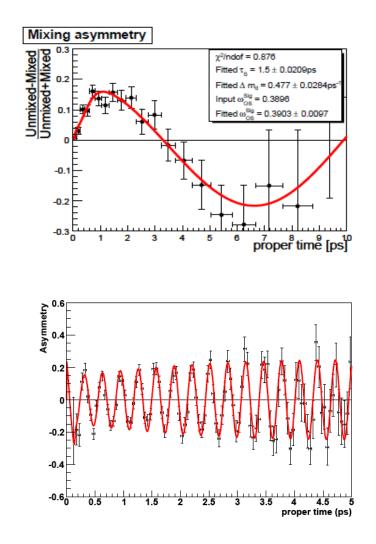
	LHCb	LHCb $(\sqrt{s} = 7 \text{ TeV})$	ATLAS	CMS
Integrated luminosity	2 fb ⁻¹	0.3 fb ⁻¹	0.15 fb⁻¹ a	10 fb ⁻¹
$B_s \rightarrow J/\psi \phi$ signal events	117k	8k	1.14k a	110k
bb background/signal ratio	0.5		~ 5.5 ^a	0.33
B _s mass resolution	16 MeV/c ²		61 MeV/c ²	14 MeV/c ² _b
Proper-time resolution	38 fs		152 fs ^a	78 fs ^c
Flavour tagging εD^2	6.2%		4.6% ^c	-
$\sigma_{stat}(\Phi_s)$	0.030	0.12		
ALTAS: CERN-OPEN-2008-	^a Early data analysis performance ^b J/ψ mass constrained			

```
ALTAS: CERN-OPEN-2008-020
CMS: PHYSICS TDR 2006
LHCb: CERN-LHCb-2009-025
CERN-LHCb-2009-021, CERN-LHCb-
```

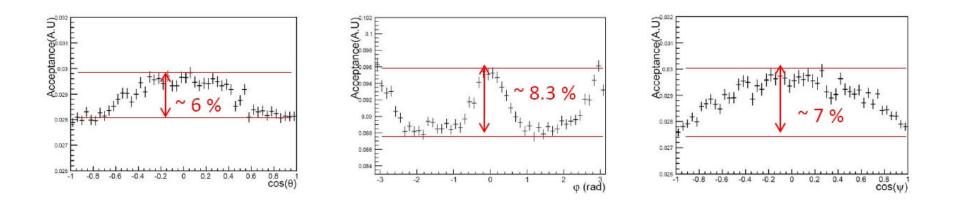
22

^c A. Dewhurst, talk at Beauty 2009

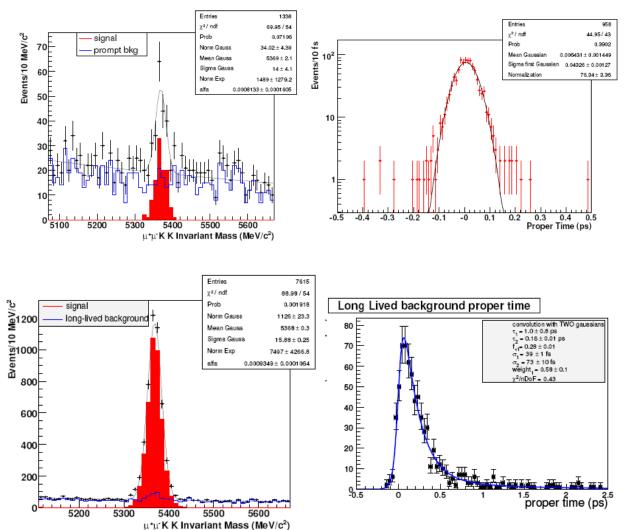
Systematics under control


Flavour tagging

- Will be measured in control channels
- If mistag ~ 0.34±0.01 $\rightarrow \Delta \Phi_s / \Phi_s = 7\%$
- Can float mistag in fit to avoid systematics
- Angular acceptance
 - Check correction method in control channel
 - If distortion ~ 5% $\rightarrow \Delta \Phi_s / \Phi_s = 7\%$
- Proper time resolution
 - Obtain proper time error scale factor to from prompt J/ $\!\psi$ events
 - If 10% error on scale factor $\rightarrow \Delta \Phi_s/\Phi_s$ = 5%
 - Bias in $\Delta \Phi_{\rm s} / \Phi_{\rm s}$ can be absorbed when $\,$ mistag is floated
- Background
 - Use sidebands to learn or subtract background


Flavour tagging calibration

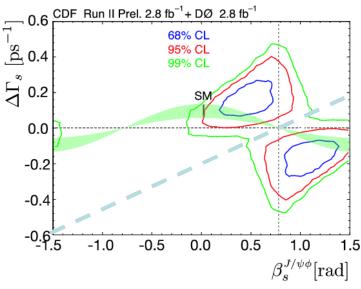
- Calibrate opposite side tagger mistag rate
 - − B_d→J/ψK* oscillations
 - $-B^{+}\rightarrow J/\psi K^{+}$
- Calibrate same side tagger mistag rate
 − B_s→D_sπ oscillations


Angular acceptance

- Angular distortion <10% according to full simulation
- Can be corrected taking into account
 - Detector geometrical acceptance
 - P and P_T cuts on final state particles
 - Final state particle reconstruction efficiencies
- Correction method will be validated in $B_d \rightarrow J/\psi K^*$

Background

Methods to controol:


1) learn background time-angular distributions from mass sidebands;

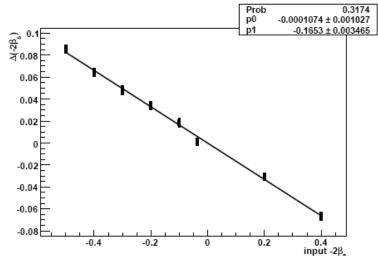
2) background subtraction

Theory issues

- Possible K⁺K⁻ S-wave pollution
- Removing ambiguity in Φ_s

Choosing one side reduces half of the allowed parameter space!

• DCS loop contributions in $b \rightarrow c\bar{c}s$ decays


S-wave

[Y. Xie, P. Clarke, G. Cowan, F. Muheim, JHEP 0909:074,2009]

- Sizeable K⁺K⁻ S-wave (f₀ or non-resonant) is possible
- Neglecting a 5-10% S-wave contribution introduces a ~10% bias in $\Phi_{\rm s}$
- Including the S-wave slightly increases the statistical error but removes bias

Bias in Φ_s from neglecting a 10% KK S-wave contribution versus Φ_s . A linear dependence Is observed.

Promising prospect to measure Φ_s in $B_s \rightarrow J/\psi f_0(\pi \pi)$. [S. Stone and L. Zhang PRD 79 (2009) 074024]


Remove ambiguity in Φ_s

[Same paper by Y. Xie et al.]

two-fold ambiguity in Φ_s

$$\begin{pmatrix} \delta_{\prime\prime} - \delta_0, \delta_\perp - \delta_0, \delta_s - \delta_0, \Phi_s, \Delta\Gamma_s \end{pmatrix} \Leftrightarrow \\ \begin{pmatrix} \delta_0 - \delta_{\prime\prime}, \pi + \delta_0 - \delta_\perp, \delta_0 - \delta_s, \pi - \Phi_s, -\Delta\Gamma_s \end{pmatrix}$$

Two branches when plotting δ_{s} - δ_{0} versus m(KK)

Blue: simulated dependence Red: physical solution Black: mirror solution The branch falling rapidly across the $\phi(1020)$ resonance mass region provides the physical solution

~0.5fb⁻¹ at LHCb, 10% S-wave, true Φ_s = -0.0368

 $\sin \Phi_{\rm s} = -0.043 \pm 0.05$ $\cos \Phi_{\rm s} = +1.05 \pm 0.08$

Loop contributions

- Are doubly Cabibbo-suppressed loop contributions in b→ccs decays negligible?
 - Yes. Effect of SM DCS contributions on mixing induced CP asymmetry is only at 10⁻³ level

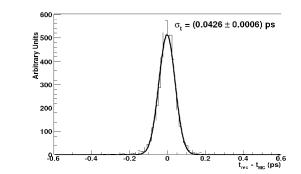
[M. Gronau, J. L. Rosner, PLB 672 (2009) 349 and references therein]

- No. SM long distance hadronic penguin contributions can cause O(-10%) effect on mixing induced CP asymmetry

[S. Faller, R. fleischer, T. Mannle, PRD 79 (2009) 014005]

- You need to consider loop contributions any way as new physics can enter both B_s mixing and b $\rightarrow c\overline{c}s$ decay amplitudes
- [A. datta, S. Khali, PRD 80 (2009) 075006]

[C. Chiang et al., arXiv:0910.2929]


Questions to theorists

- If a small but significant deviation from the usual SM prediction of $\Phi_s = -0.0368$ is measured, how can we tell if it is due to new physics or SM loop contributions?
- If a large deviation from the SM prediction is measured, how can we distinguish if it is due to new physics in B_s mixing or in decay? Do we need to?
- Will it be necessary for experiments to measure direct and mixing-induced CP asymmetries for each polarisation? Or measuring a single Φ_s is sufficient?
- What other measurements are needed to resolve these issues?

Φ_{s} From $B_{s} \rightarrow \phi(KK)\phi(KK)$

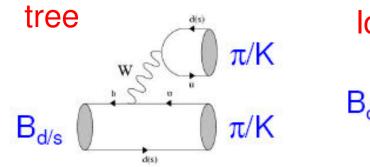
$B_s \rightarrow \phi \phi$ selection

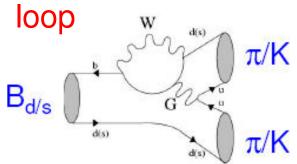
- BR[B_s→φφ]=[24±2.1(stat)±2.7(syst)±8.2(BR)]x10⁻⁶ from CDF, EPS'2009
- Hadronic trigger (E_T and IP cuts), less efficient than lepton trigger: ε ≈ 22%
- Use PID and kinematic offline cuts
 - Signal yield 4.6k per 2fb⁻¹
 - B_{bb}/S<2.4 at 95%
 in 50MeV B mass window
- Proper time resolution 43fs
- Tagging efficiency ~60%, mistag~30%

$B_s \rightarrow \phi \phi$ sensitivity

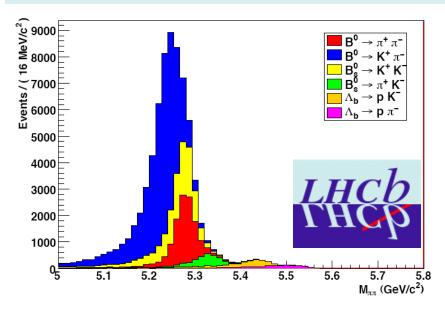
- Analysis strategy: null test of SM
 - assume no NP, and extract an effective $\Phi_s(\phi\phi)$
 - compare with SM expectation $\Phi_s(\phi\phi) = 0$
- Sensitivity $\sigma(\Phi_s(\phi\phi)) \sim 0.06$ with $10 \text{fb}^{-1} \text{ cern-lhcb-pub-2009-02}$

- Current combined BaBar/Belle uncertainties: $\sigma(S(\phi K_S))=0.17, \sigma(S(\eta' K_S))\sim 0.07$

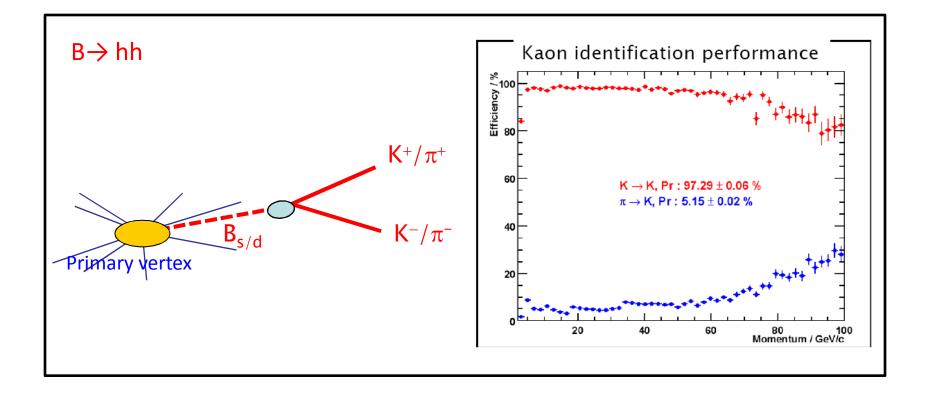

• Measurements with 0.2-0.5 fb⁻¹


- Relative branching ratio and polarization

- Similar channel $B_s \rightarrow K^{*0}(K\pi)\overline{K^{*0}}(K\pi)$ under investigation
 - 7.6k per 2fb⁻¹ with B/S = 1 (trigger not included)



γ from loops


B→hh selection

- Reconstruct all B \rightarrow hh modes under the $\pi\pi$ hypothesis
- Use their different distributions of ππ mass and PID variables in fit to statistically separate them for extraction of physics parameters

Decay mode	f_{hadr} [%]	${{\cal BR}\over imes 10^6}$	ϵ_{sel} [%]	$\epsilon_{trig/sel}$	ϵ_{tot} [%]	Annual yield	
$B^0 \to \pi^+ \pi^-$	40.3 ± 0.9	5.16 ± 0.22	3.95 ± 0.05	35.8 ± 0.6	1.41 ± 0.03	58.8k	Ī
$B^0 \to K^+ \pi^-$	40.3 ± 0.9	19.4 ± 0.06	3.84 ± 0.04	36.1 ± 0.3	1.39 ± 0.02	216.6k	Ī
$B_s^0 \to \pi^+ K^-$	10.1 ± 0.9	5.27 ± 1.17	3.83 ± 0.07	37.0 ± 1.0	1.42 ± 0.04	15.1k	Ī
$B_s^0 \to K^+ K^-$	10.1 ± 0.9	25.8 ± 4.2	3.69 ± 0.05	37.4 ± 0.5	1.38 ± 0.02	71.9k	ĺ
$\Lambda_b \to p\pi^-$	9.2 ± 1.5	3.1 ± 0.9	3.36 ± 0.06	36.8 ± 1.1	1.24 ± 0.04	7.0k	
$\Lambda_b \to p K^-$	9.2 ± 1.5	5.0 ± 1.2	3.32 ± 0.05	35.7 ± 0.7	1.18 ± 0.03	10.9 k	

Particle identification

Good PID performance is essential for this analysis

Extraction of γ

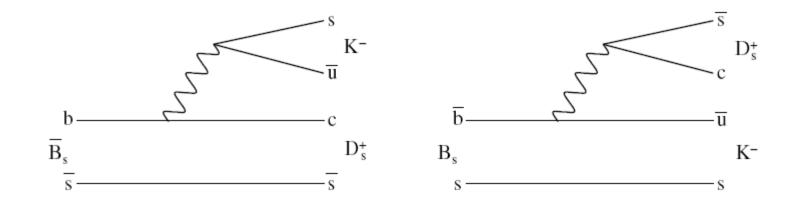
Simplified description of method

• Measure time dependant asymmetries for $B_d \rightarrow \pi\pi$ and $B_s \rightarrow KK$ to determine A_{dir} and A_{mix}

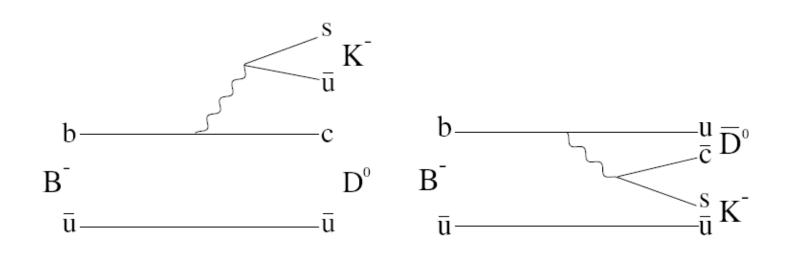
 $A_{\rm CP}(t) = A_{\rm dir} \cos(\Delta m t) + A_{\rm mix} \sin(\Delta m t)$

• \mathbf{A}_{dir} and \mathbf{A}_{mix} depend on

- γ


- Mixing phases ϕ_d or ϕ_s
- Penguin/Tree=de^{iθ}
- Use ϕ_d and ϕ_s from J/ $\psi\phi$ and J/ ψ Ks
- U-spin symmetry: $d_{\pi\pi} = d_{KK}$, $\theta_{\pi\pi} = \theta_{KK}$
- 4 observables, 3 unknowns: solve for γ

The actual analysis uses more modes and have more observables, allowing to take into account U-spin symmetry breaking effect.


 $\sigma(\gamma) = 7^{\circ}$ with 2 fb⁻¹

CERN-LHCb-PUB-2009-029

γ from tree

γ from tree sensitivity

- Many modes in two categories
 - Time-dependent analysis: $B_s \rightarrow D_s K$, $B \rightarrow D^* \pi$
 - Time-integrated analysis (Dalitz, ADS): $B \rightarrow DK^{(*)}$

Combined $\sigma(\gamma) = 4-5^{\circ}$ with 2 fb⁻¹ CERN-LHCb-PUB-2009-029

 Measurement not affected by NP and can be used to test NP by comparing with

- indirect measurement with current error

$$\sigma(\gamma) < 5^{\circ}$$

снср

- measurement of γ from loops with expected error $\sigma(\gamma) = 7^{\circ}$

CP violation in charm decays

- Observation of CP violation in charm system is a clear signature of new physics
- Very high statistics at LHCb
 D* tagged trigger provides 42k D⁰→KK events per pb⁻¹
- Unprecedented sensitivity even with first data
 - D⁰ mixing and CP violation in mixing
 - Two body lifetime ratio measurement $\sigma(y_{CP}) \sim 1.1 \times 10^{-3} @100 pb^{-1} [SM < 10^{-3}]$
- $y_{CP} = \frac{\tau(D^0 \to K^- \pi^+)}{\tau(D^0 \to K^- K^-, \pi^+ \pi^-)} 1$
- Direct CP violation in singly Cabibbo-suppressed charm decays (D⁰ \rightarrow KK , D⁺ -> KK π)

Advertisement

Most numbers for LHCb in this talk are taken from CERN-LHCb-PUB-2009-029, which will be made public and submitted to arXiv soon.

"Road map for selected key measurements from LHCb"

- (The LHCb Collaboration)
- Chapter 1: Introduction
- Chapter 2: The Tree-level determination of gamma
- Chapter 3: Charmless charged two-body B decays
- <u>Chapter 4</u>: Measurement of mixing-induced CP violation in $B_s \rightarrow J/psiphi$
- <u>Chapter 5</u>: Analysis of the decay $B_s \rightarrow mu mu$
- <u>Chapter 6</u>: Analysis of the decay $B0 \rightarrow K^*$ mu mu
- <u>Chapter 7</u>: Analysis of $B_s \rightarrow phi$ gamma and other radiative B decays

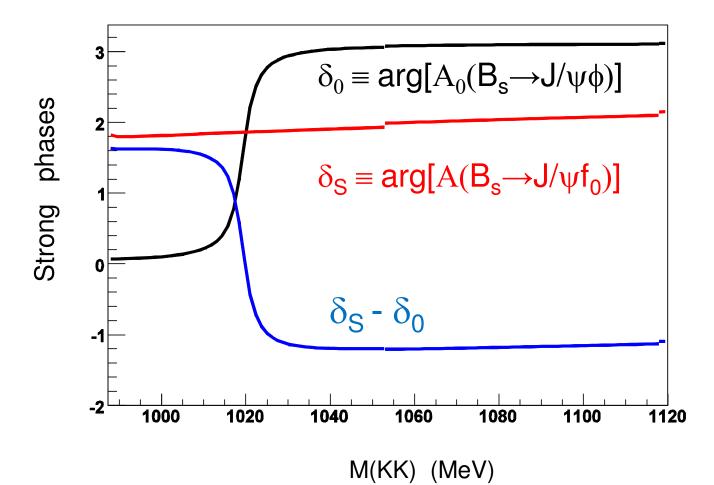
Summary

- Great prospects to find CP violating new physics at the LHC in
 - measurement s of $\Phi_{\rm s}$ in tree-level and loop decays
 - measurements of γ in tree-level and loop decays
 - measurement of CP violation in charm decays
- Experiments very well prepared in all aspects
 - detectors, event reconstruction and final physic analysis
- Theory experiment interplay crucial for good understanding of related theoretical issues
 - The LHC is running and exciting time is coming, possibly as early as 2010, with new physics discovered at LHCb in $B_s \rightarrow J/\psi \phi$ using 0.2fb⁻¹

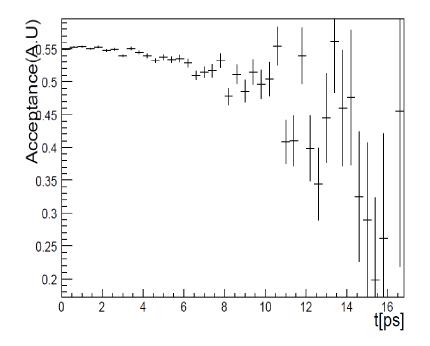
Backup slides

Decay amplitudes

 B_s→J/ψφ described by Breit-Wigner
 amplitudes
 Blatt-Weisskopf form factors ≈ constant

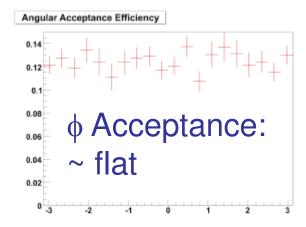

$$A_{\lambda}(B_{s} \rightarrow J / \Psi \phi) = r_{\lambda} e^{id_{\lambda}} \frac{1}{M_{\phi}^{2} - M_{KK}^{2} - iM_{\phi}\Gamma_{\phi}} F_{B}F_{\phi}$$

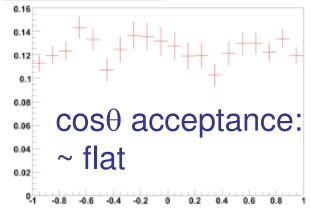
 B_s→J/ψf₀ described by a coupled-channel Breit-Wigner amplitude
 Blatt-Weisskopf form factors ≈ constant

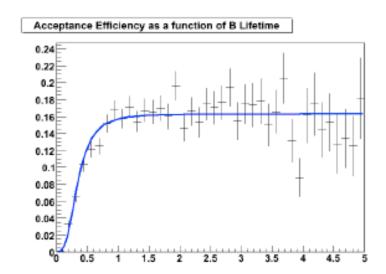

$$A(B_{s} \rightarrow J / \Psi f_{0}) = r_{s} e^{id_{s}} \frac{1}{M_{f_{0}}^{2} - M_{KK}^{2} - i(g_{1}\rho_{\pi\pi} + g_{2}\rho_{KK})} F_{B}F_{f_{0}}$$

$$\rho_{\pi\pi/KK} = \sqrt{1 - 4M_{\pi/K}^2} / M_{KK}^2$$

Dependences of strong phases on KK mass


Proper time acceptance


 $B_s \rightarrow J/\psi \phi$ reconstruction efficiency slightly decreases with proper time. Can be learned from $B_d \rightarrow J/\psi K^*$



$B_s \rightarrow \phi \phi$ acceptances

Angular Acceptance Efficiency

Time acceptance needs correction. $\Phi_{s}(\phi\phi)$ not sensitive to time acceptance

