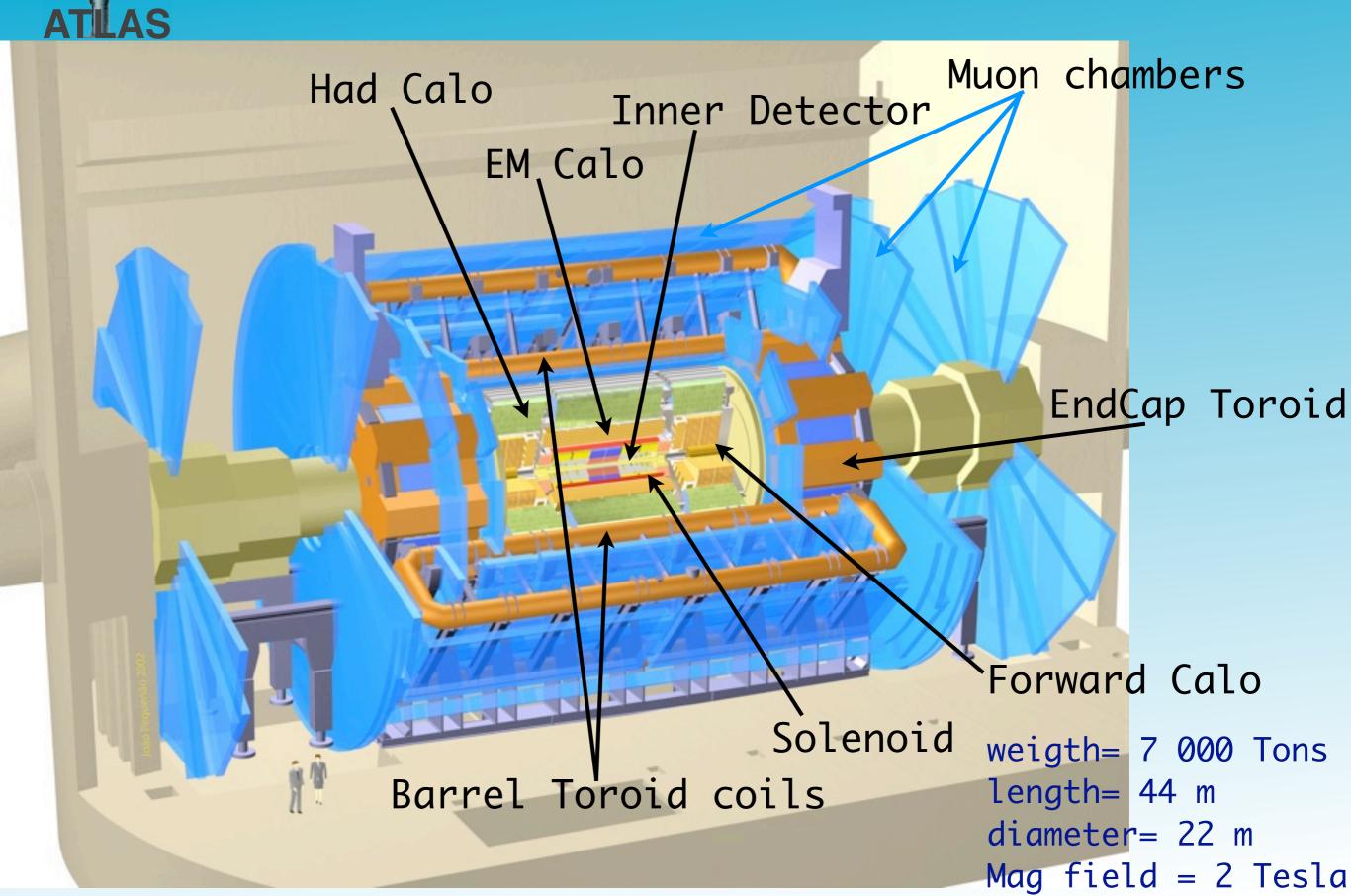


Testing lepton flavour and lepton number violation at ATLAS

N. Gökhan Ünel - UCI on behalf of ATLAS Collaboration

> FLAVLHC-09, CERN December 14th-16th, 2009



Outline

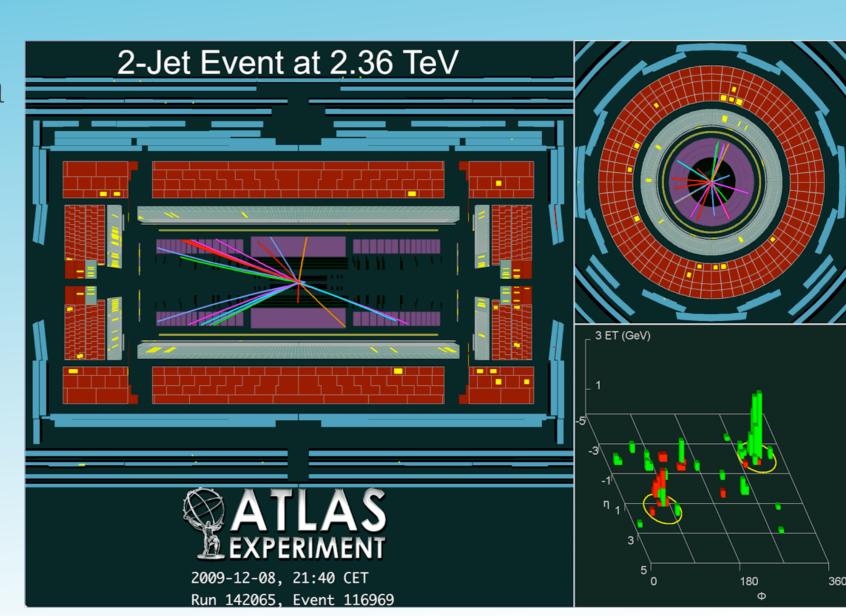
- ATLAS generalities
- LHC time table what we expect
- Motivations for LFV / LNF
- Possible channels & previous studies
 - $\circ \tau \rightarrow \mu \gamma$
 - SuSY & Sugra models
 - 2HDM model
 - Double Charged Higgs
 - LR symmetric models

Outlook

Detector Overview

Experiment status

 In most of 2009, ATLAS recorded cosmic rays which were used for calibration & alignment.


ATLAS has started taking beam data

 all sub-detectors are active, providing data

collisions √s=2.36TeV are recorded.

 Display of a 2-jet candidate with uncalibrated ET of 23GeV & 16GeV and η of -2.1 & 1.4, respectively.

collisions with stable
 √s=900GeV are being
 recorded.

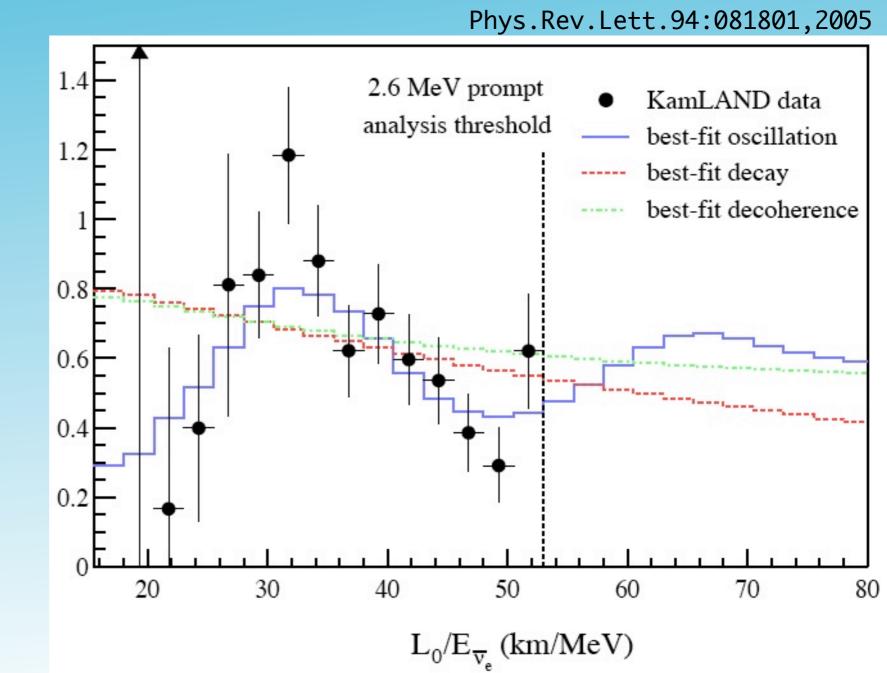
ATLAS

LHC Schedule

• initial period:

- late 2009: first collisions @ $\sqrt{s} = 0.9$ TeV
- 2010 collisions @ $\sqrt{s} = 7$ TeV, later $\sqrt{s} = 10$ TeV
- 2011 collisions @ $\sqrt{s} = 14 \text{ TeV}$
- $\mathcal{L}=1.2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$, expect 10 fb⁻¹/year, =<u>low luminosity</u>

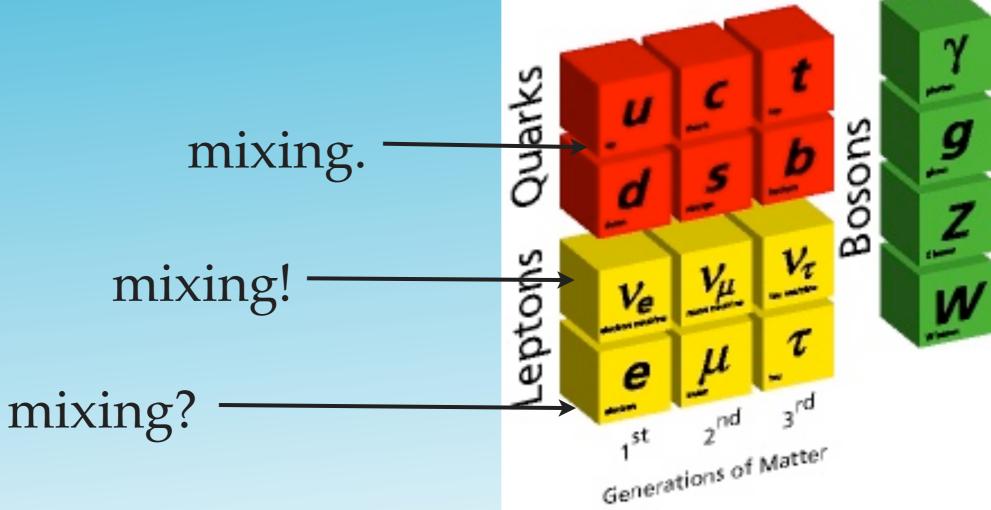
• nominal runs (after 2011):


- $\mathcal{L} = 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, expect 100 fb⁻¹ / year, =<u>nominal luminosity</u>
- Ultimately, $\mathcal{L} = 2.3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (cryo limited)

•SLHC (after 2020?):

 \bullet $L = 10^{35} \ cm^{-2} s^{-1}$, expect 1000 fb^{-1} / year

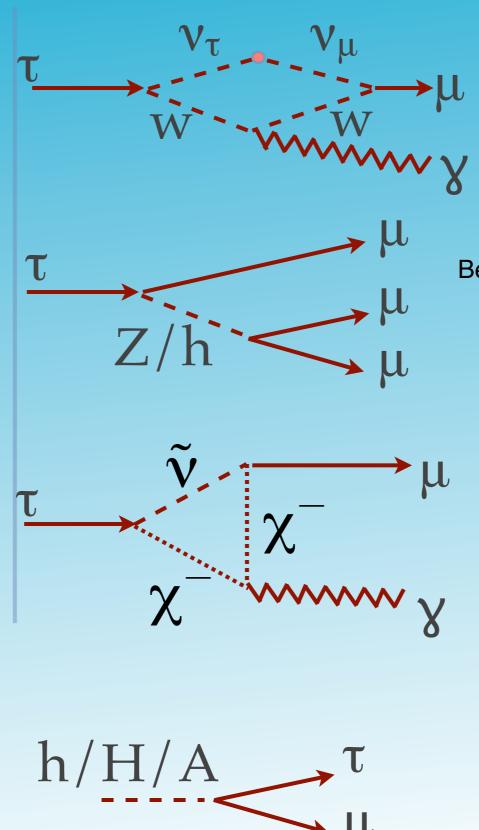
LFV Motivations Atmospheric/Solar/Accelerator/Reactor experiments all favor Neutrino Oscillations


K2K, accelerator: $u_{\mu} \rightarrow v_{ au}$ Kamland, Reactor: $v_e \rightarrow v_x$ SK2, Atmospheric: $u_{\mu} \rightarrow v_{\tau}$ SNO, Solar: $\nu_{
ho} \rightarrow \nu_{r}$



more motivations

Lepton Flavor Conservation is not a truerequirement of the SM !Elementary Particles


The same for Lepton Number Conservation if charge conservation can be satisfied or for Majorana fermions.

EW theory from $\tau_{\underline{\tau}}$

if LFV exists, SM:

if LFV and beyond SM exist:

LFV diagrams

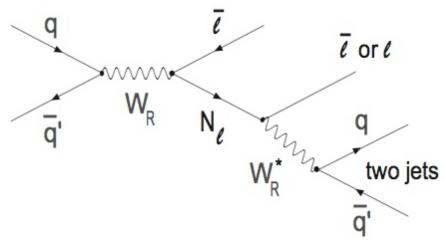
BABAR collaboration

Phys. Rev. Lett. 95 (2005) 041802 BR $(\tau \pm \rightarrow \mu \pm \gamma) < 6.8 \times 10^{-8}$ @ 90% CL arXiv:0908.2381 (2009) BR $(\tau \pm \rightarrow \mu \pm \gamma) < 4.4 \times 10^{-8}$ @ 90% CL

Belle Collaboration arXiv:0708.3272, proceedings of leptonphoton 2007 & EPS 2007 BR($\tau^{\pm} \rightarrow \mu^{\mp} \mu^{\pm} \mu^{\pm}$) < 3.2x10⁻⁸ @ 90% CL

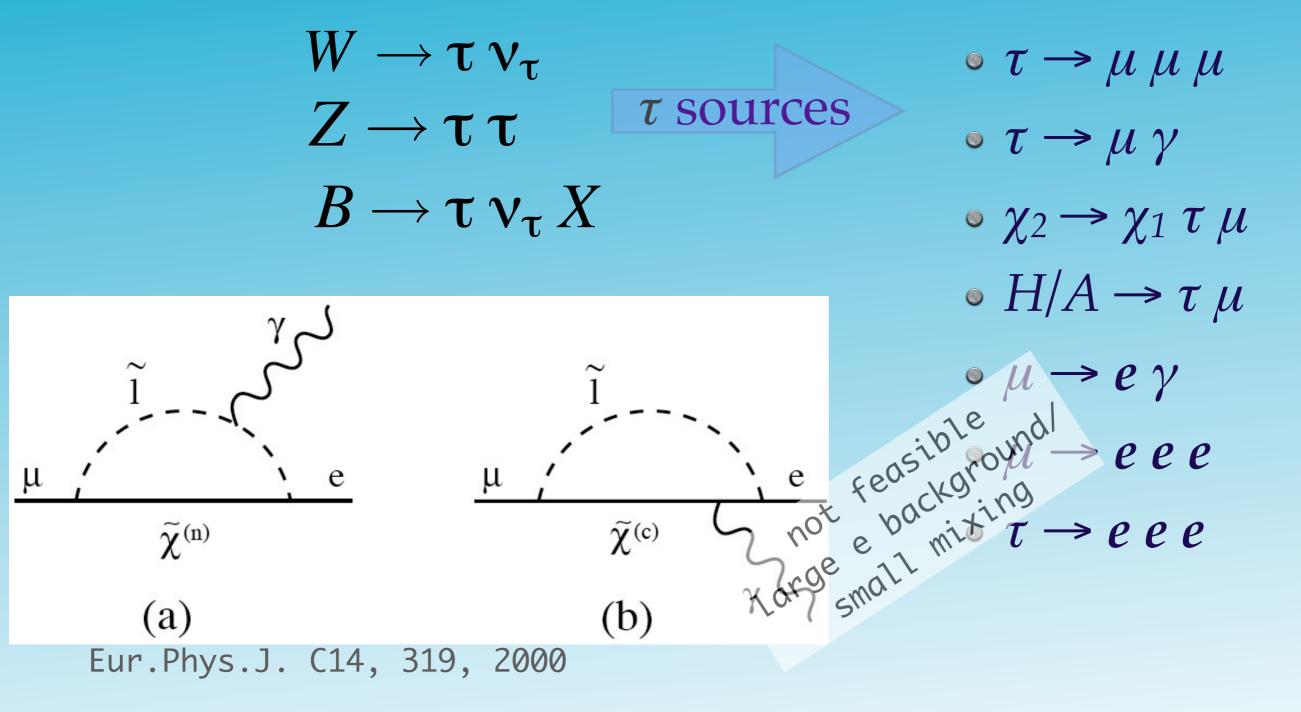
PDG-04

$$\begin{split} \tau &\rightarrow \mu \gamma < 1.1 \times 10^{-6} \\ \tau &\rightarrow e \gamma < 2.7 \times 10^{-6} \\ \tau &\rightarrow \mu \mu \mu < 1.9 \times 10^{-6} \\ Z &\rightarrow e \mu < 1.7 \times 10^{-6} \\ Z &\rightarrow \mu \tau < 1.2 \times 10^{-5} \\ Z &\rightarrow e \tau < 9.8 \times 10^{-6} \end{split}$$



LNV diagrams

new particles could give rise to LNV


 e.g. doubly charged Higgs, Δ⁺⁺ decaying leptonically

Majorana Neutrino (N) is its own anti-particle N decay gives LNV 50% of the time

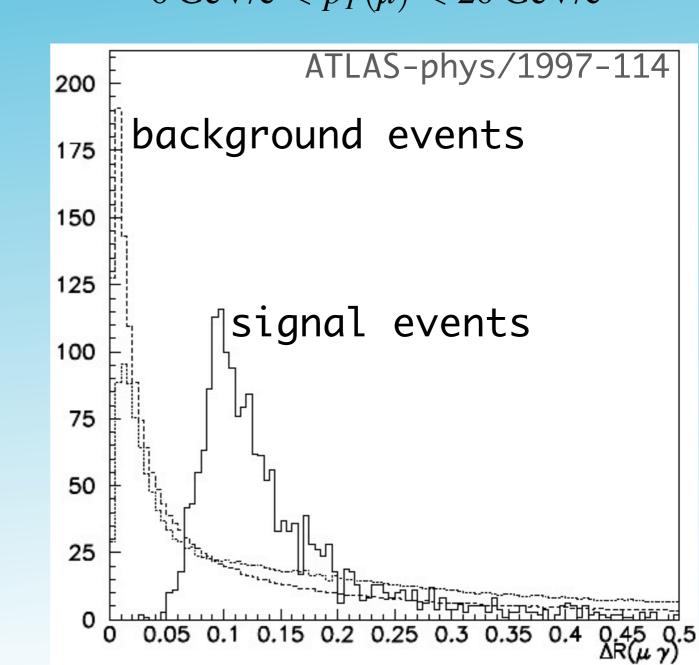
⊾ /+

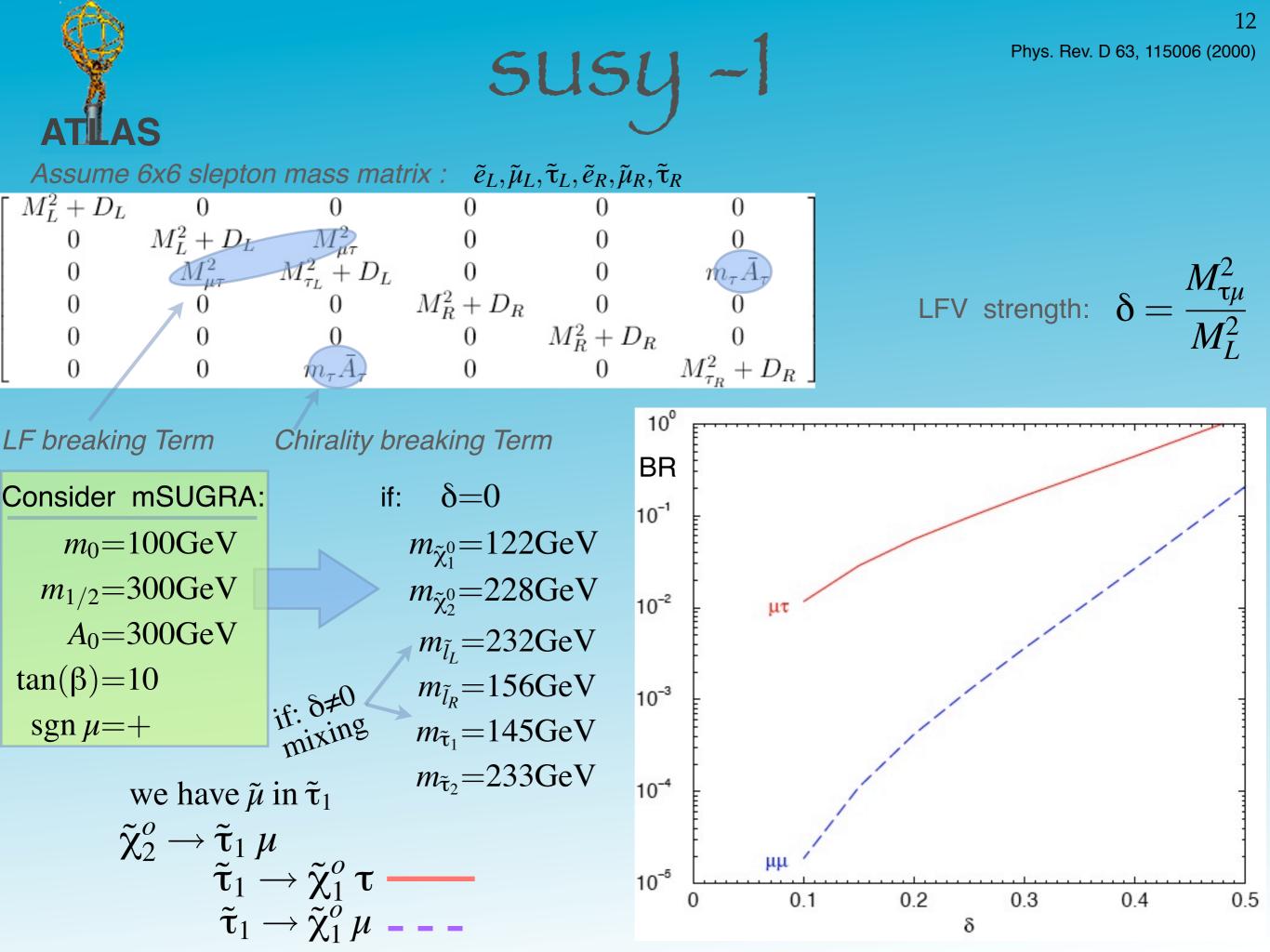
some signal channels

S

$\tau \rightarrow \mu \gamma$

Source: $q \overline{q} \to W \to \tau \nu_{\tau}$ $BR(\tau \to \mu\gamma) < 10^{-6}$


Background from FSR & Radiative production:


 $W \longrightarrow \mu \nu_{\mu} + \gamma \\ W \longrightarrow \tau \nu_{\tau} \longrightarrow \mu \nu_{\mu} \nu_{\tau} + \gamma$

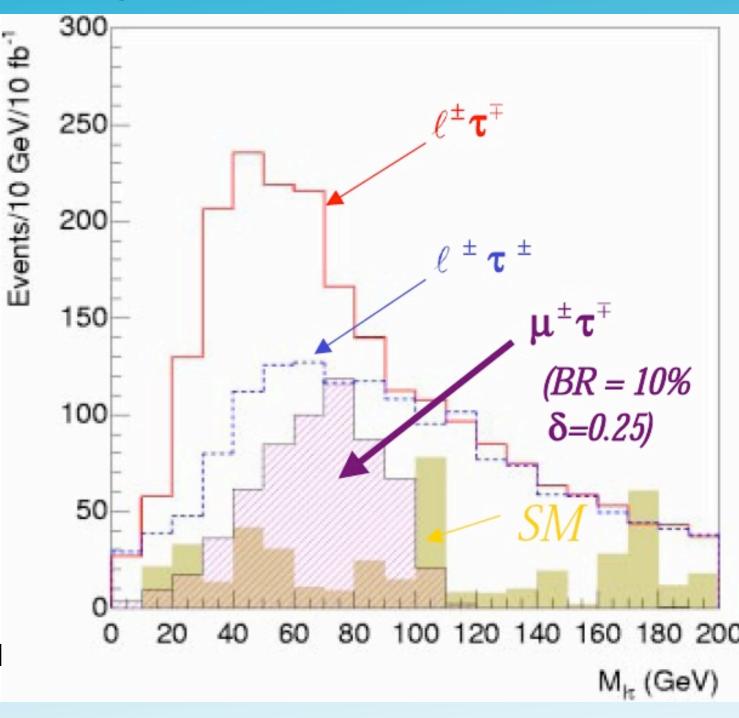

Pythia + *Photos* + *Fast smearing was used.*

low luminos 17 bg events/year for m_r <8 signal events/year

generator cuts: $|\eta|_{(\gamma\&\mu)} < 2.5$ $6 \text{ GeV/c} < p_T(\mu)$ $20 \text{ GeV/c} < E_T(\gamma)$ analysis cuts: $0.08 < \Delta R$ $6 \text{ GeV/c} < p_T(\mu) < 20 \text{ GeV/c}$

Signal: E_{miss} μ T_{had} j $pp \rightarrow \tilde{q}\tilde{q} \rightarrow q\tilde{\chi}_{2}^{0}q\tilde{\chi}_{2}^{0}$ $\rightarrow qq\mu\tau\tilde{\chi}_{1}^{0}\mu\tau\tilde{\chi}_{1}^{0}$

Selection cuts:


 $N_{j} \ge 4 \quad 1P_{T} > 100 \text{GeV} \quad 3P_{T} > 50 \text{GeV}$ $M_{eff} \equiv E_{T} \text{miss} + \Sigma P_{T} > 800 \text{GeV}$ $E_{T} \text{miss} > 0.2M_{eff}$ $|\eta| < 2.5$ R > 0.4

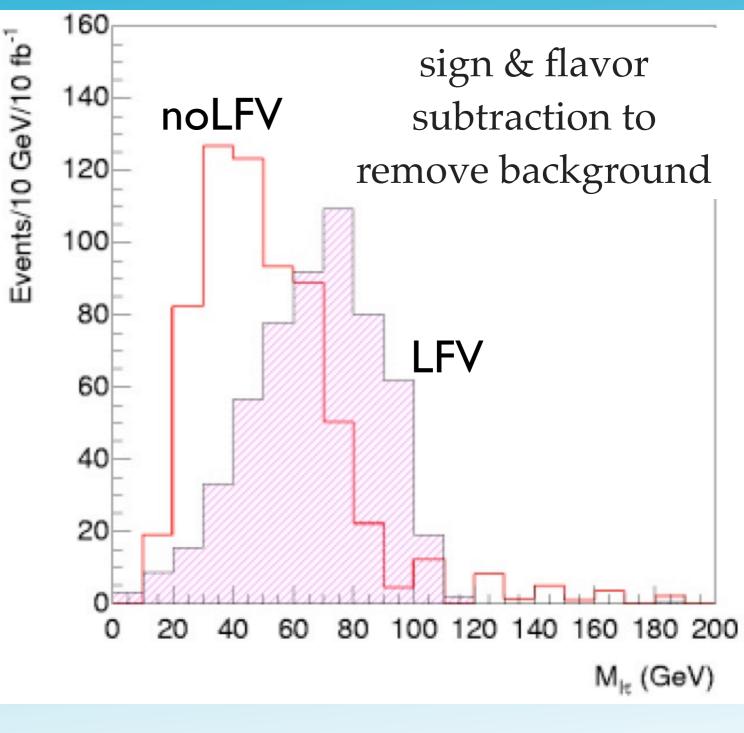
Backgrounds:

- SM background is very small
- Normal SuSY signal becomes background

to LFV in SuSY $\tilde{\chi}_{2}^{o} \rightarrow \tau \tau \tilde{\chi}_{1}^{o} \rightarrow \mu \tau \nu_{\mu} \nu_{\tau} \tilde{\chi}_{1}^{o}$

• How can we extract the LFV events?

isajet +ATLAS fast simulation + realistic smearing + full tau simulation @ low luminosity


susy-3

LFV gives harder mass distribution and more muons compared to nonLFV decay:

$$\tilde{\chi}_{2}^{o} \to \tau \ \tau \ \tilde{\chi}_{1}^{o} \to \mu \ \tau \ \nu_{\mu} \ \nu_{\tau} \ \tilde{\chi}_{1}^{o} \\
\tilde{\chi}_{2}^{o} \to \tau \ \tau \ \tilde{\chi}_{1}^{o} \to e \ \tau \ \nu_{e} \ \nu_{\tau} \ \tilde{\chi}_{1}^{o}$$

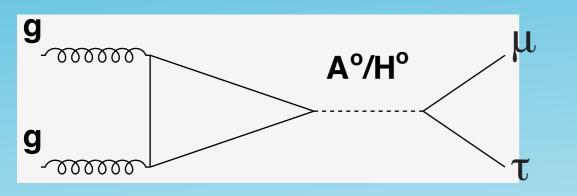
$$E \equiv N(\mu^{\pm} \tau^{\mp}) - N(e^{\pm} \tau^{\mp})$$

in case of nonLFV, expect E = 0. We can do a counting experiment.

For 10fb⁻¹ & BR=0.1 \rightarrow *E* = 476 ± 39.

or if 5 σ signal is observed @10fb⁻¹ \rightarrow BR=0.023 or $\delta \sim 0.1$

or $\delta < 0.1 \rightarrow BR < 10^{-9}$


2HDM -1

15 Phys. Rev. D 67, 035001 (2003)

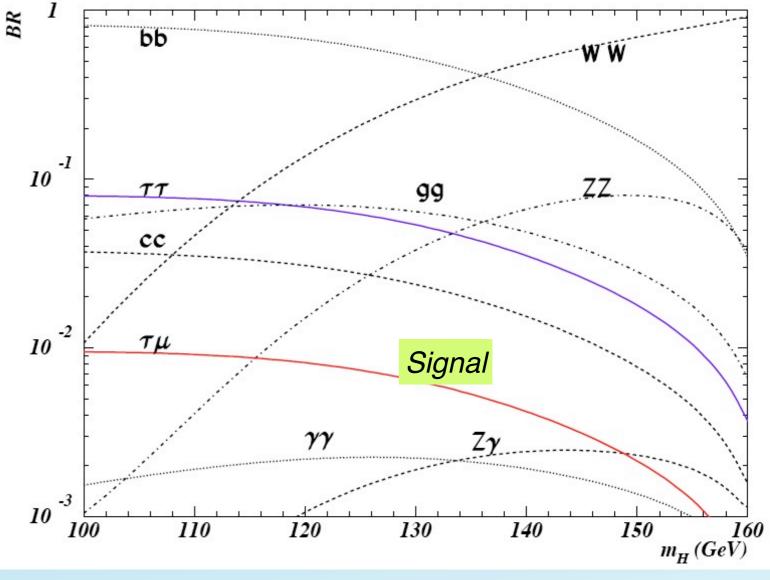
Type III 2HDM: LFV exists @ tree level

$$BR(A^o/H^o \to \tau \mu) = \kappa_{\tau,\mu}^2(\frac{2m_\mu}{m_\tau})BR_{SM}(H^o \to \tau \tau)$$

 $\kappa_{\mu\,\tau} \approx 1$ compatible w/ μ g-2 results

Considered Backgrounds:

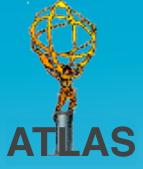
$$W^{\pm}Z \rightarrow \mu^{\pm}\nu_{\mu}\tau^{+}\tau^{-}$$


$$W^{+}W^{-} \rightarrow \mu^{+}\nu_{\mu}\tau^{-}\overline{\nu}_{\tau}$$

$$t\overline{t} \rightarrow \mu^{\pm}\nu_{\mu}\tau^{\pm}\nu_{\tau}b\overline{b}$$

$$Z(\gamma^{*}) \rightarrow \tau^{+}\tau^{-} \rightarrow \mu\nu_{\mu}\nu_{\tau}\tau$$

$$W^{\pm} + \text{jets} \rightarrow \mu^{\pm}\nu_{\mu} + \text{jets}$$

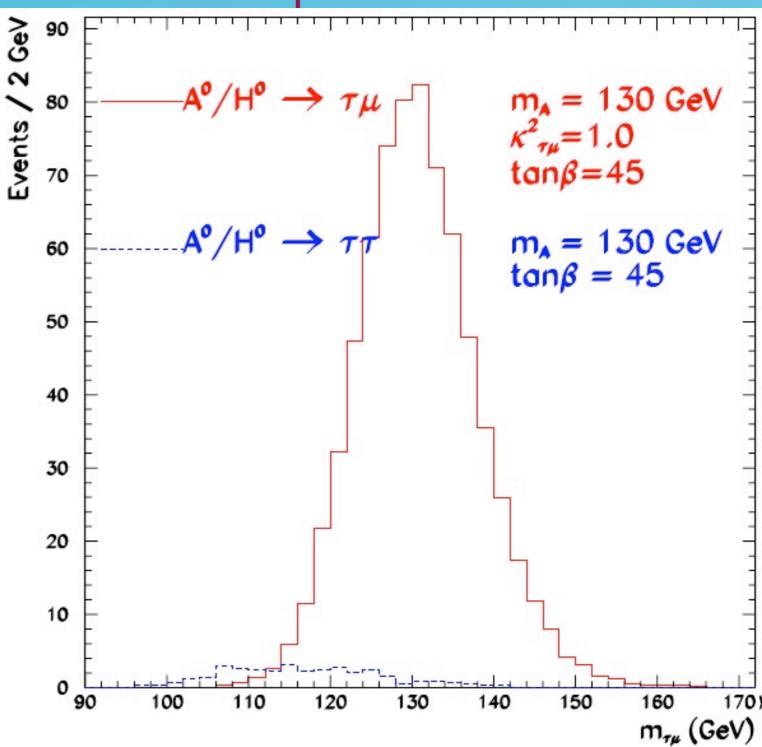

$$A^{o}/H^{o} \rightarrow \tau^{+}\tau^{-} \rightarrow \mu\nu_{\mu}\nu_{\tau}\tau$$

Signal Final states:

- Hadronic final state:
 - τ jet, isolated μ & missing E_T
- Leptonic (e) final state:

hadron activity, isolated e, μ & missing E_T

2HDM -2

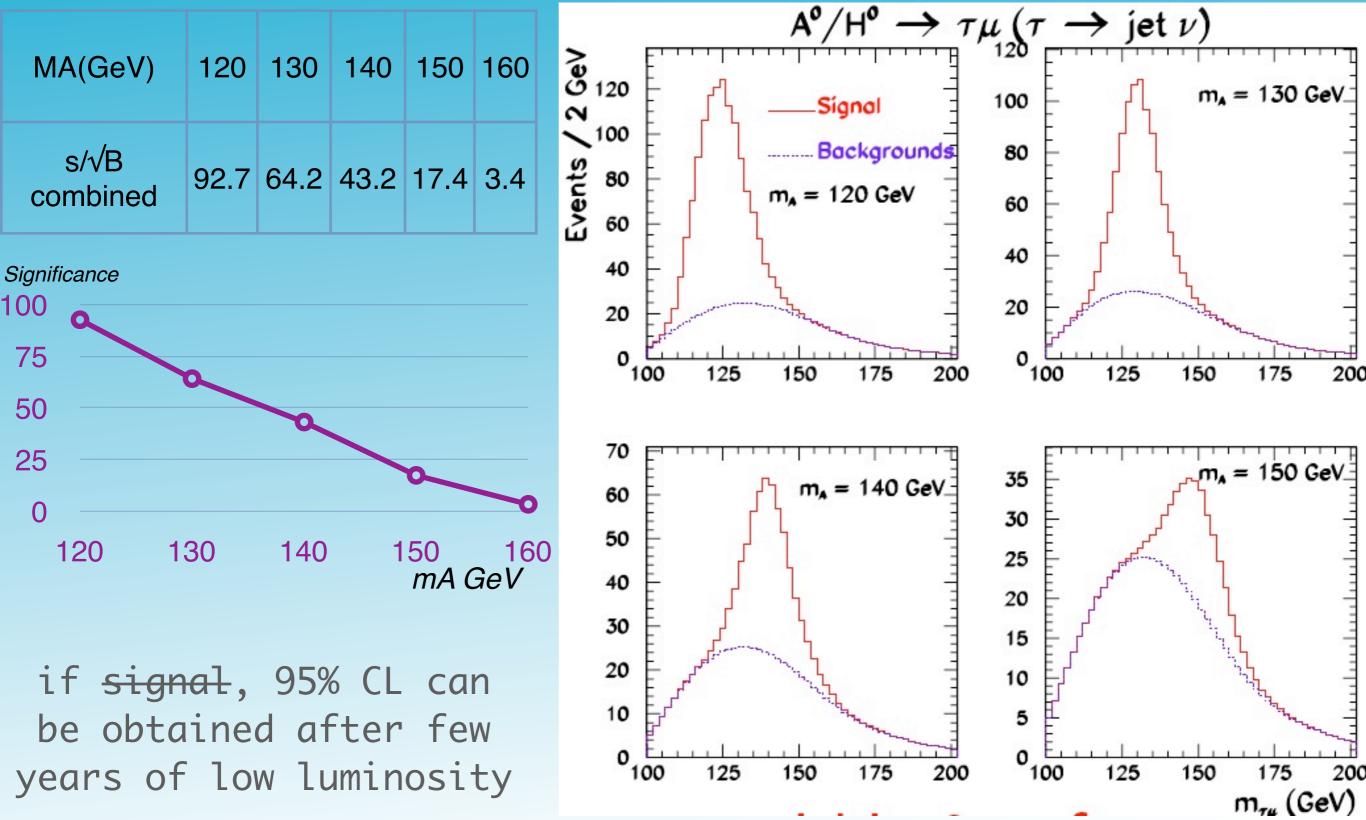

σ bg is 10⁴ σ signal Cuts:

- + 1 isolated $\mu :\; p_T^{\mu} > 20~{\rm GeV},\; |\eta^{\mu}| < 2.5$
- 1 hadronic $\tau\text{-jet:}~p_T^\tau>20$ GeV, $|\eta^\tau|<2.5$
- b-jet veto and jet veto: 60% b-tagging, 1% mis-tagging efficiency.
- au-jet ID efficiency of 30% assumed
- $\bullet\,$ Signal efficiency: $\sim\,15\%$
- W[±]+jet background efficiency: 0.4%
- $Z^0 \rightarrow \tau \tau$: ~ 3%

 $\begin{array}{lll} \displaystyle \frac{p_T^{\tau-{\rm jet}}}{p_T^{\tau}} & > & 0.6, \\ \\ \displaystyle \Delta R(p_T^{\tau-{\rm jet}},p_T^{\tau}) & < & 0.2\,{\rm rad}. \end{array}$

 $\begin{array}{l} \mbox{Single charged track within } \Delta R < 0.3 \mbox{ of } \tau \mbox{ jet} \\ \mbox{Selection of 1-prong hadronic } \tau \mbox{ decays} \\ \end{tabular} \\ \delta \phi \left(p_T^{\mu}, p_T^{\tau - {\rm jet}} \right) &> 2.75 \mbox{ rad}, \\ \delta \phi \left(p_T^{{\rm miss}}, p_T^{\tau - {\rm jet}} \right) &< 0.6 \mbox{ rad}. \\ \end{tabular} \\ \Delta p_T = p_T^{\mu} - p_T^{\tau - {\rm jet}} > 0 \quad p_T^{\tau} > 50 \mbox{ GeV} \end{array}$

Pythia + ATLAS fast simulation, 30 fb⁻¹ Selection optimized for LFV mode:



2HDM --3

Phys. Rev. D 67, 035001 (2003)

17

signal is well in the reach of LHC/ATLAS:

|NV-1|

18

$M(W_R^+)$	${ m M}(\Delta_R^{++})$				
	300	500	800	1000	1500
650	7.9	4.6	2.2	1.4	0.45
750	4.7	2.8	1.4	0.87	0.31
850	2.9	1.8	0.90	0.58	0.21
950	1.9	1.2	0.61	0.40	0.15
1000	1.6	0.98	0.50	0.33	0.12
1050	1.3	0.81	0.42	0.28	0.11
1500	0.30	0.20	0.11	0.074	0.029

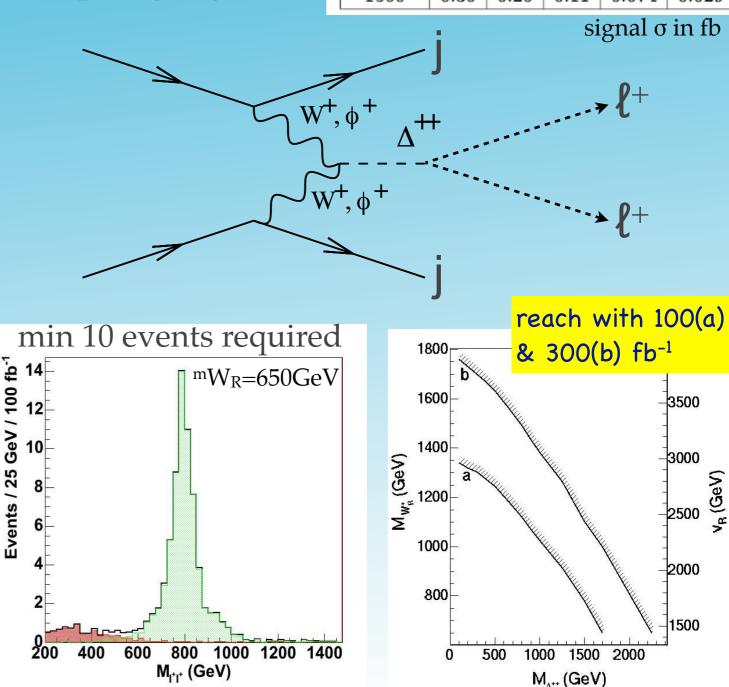
signal σ in fb

Selection

• e/μ in $|\eta| < 2.5 \& \epsilon_{reco} = 90\%$ • $p_T^2 > 50 \& p_T^{j_1} > 200 \& p_T^{j_2} > 200$ • $|\eta^{j_1} - \eta^{j_2}| > 2$

• fast MC used @ $\mathcal{L}=100 \text{fb}^{-1}/\text{yr}$

Doubly charged Higgs, single production


• in Left Right symmetric models m_{WR}>640GeV

• assuming equal left/right gauge couplings: g=0.64

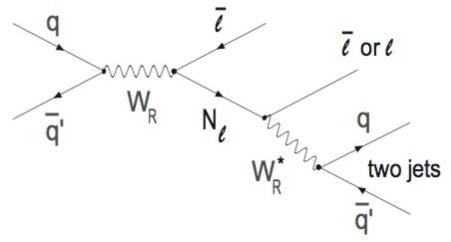
Events / 25

SM Background

Number of Events	$\sigma \times BR$ (fb)
200 000	23
100 000	37
27 000	28.6
8 000 000	90 800
2 000 000	14 100
	200 000 100 000 27 000 8 000 000

NV - 2

arXiv:0901.0512v4, ("CSC book") CERN OPEN-2008-020


• LR symmetric model w / W_R & N_{majorana}

- Full MC used (14TeV)
- LO $\sigma(pp \rightarrow W_R X)$; $W_R \rightarrow \ell N_\ell \rightarrow \ell \ell jj$
 - 24.8pb (W_R=1800,Ne=Nµ=300GeV) (a)
 - 47.0pb (W_R=1500,Ne=Nµ=500GeV) (b)
- Baseline Selection
 - $pT \ge 20 \text{ GeV}, |\eta^{\ell}| < 2.5, |\eta^{j}| < 4.5,$

• SM Background

• t<u>t</u>, Z/γ^* & vector boson pair production + multijets for $\ell=e$

Physics	Before	Baseline	m _{ejj}	m _{eejj}	mee	S _T
sample	selection	selection	$\geq 100 \text{ GeV}$	$\geq 1000 \text{ GeV}$	$\geq 300~GeV$	\geq 700 GeV
(a)	0.248	0.0882	0.0882	0.0861	0.0828	0.0786
(b)	0.470	0.220	0.220	0.215	0.196	0.184
$Z/\gamma^*, m \ge 60 \text{ GeV}$	1808.	49.77	43.36	0.801	0.0132	0.0064
tī	450.	3.23	3.13	0.215	0.0422	0.0165
VB pairs	60.9	0.610	0.522	0.0160	0.0016	0.0002
Multijet	10 ⁸	20.51	19.67	0.0490	0.0444	0.0444

Lepton sign investigated
after this publication.

discovery limits a:150pb⁻¹ & b:40pb⁻¹

Summary & Outlook

ATLAS is currently running to record collision data

• LFV is studied within SM and via BSM

- Yearly yields to discover LFV
 - susy: $exp 476 \pm 39$ vs bg 0
 - 2HDM: $3.4 < S/\sqrt{B} < 93$
 - SM-like: exp 46 ± 2 vs bg 1
- or push BR($\tau \rightarrow \mu \gamma$) limit to lower values

LNV studied in BSM models

- Δ^{++} mass up to 1.8TeV depending on W⁺ mass
- Early discovery possible in LR models, but SS vs OS lepton comparisons not public.

• Some of these analyses shown can be also done with 200 pb^{-1} at $\sqrt{s}=10$ TeV (the results are not yet public)

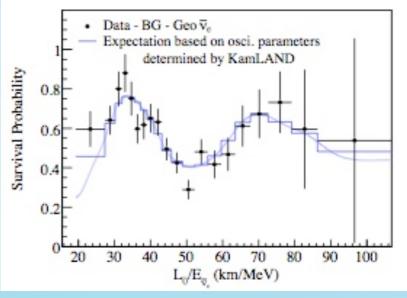
As Thank you for listening

Further references

Neutrino oscillation papers

- K2K: hep-ex/0411038, Phys.Rev.Lett.94:081802,2005
- Kamland: hep-ex/0406035, Phys.Rev.Lett.94:081801,2005 arXiv:0801.4589 Phys.Rev.Lett.100:221803,2008

• Current LFV limits (thanks to S. Banerjee)


- BaBar: arXiv:0908.2381 (2009), BR ($\tau \pm \rightarrow \mu \pm \gamma$) < 4.4x10⁻⁸ @ 90% CL
- Belle: arXiv:0708.3272 (2007), BR($\tau^{\pm} \rightarrow \mu^{\mp} \mu^{\pm} \mu^{\pm}$) < 3.2x10⁻⁸ @ 90% CL

• J.Ellis et.al. Eur. Phys. J. C14, 319, (2000).

• ATLAS public web pages :

- http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html
- http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/EXOTICS

Phys.Rev.Lett.100:221803,2008

Backup slides

Source: $Z \rightarrow \tau \tau$

1 tau for tagging, other for signal

 $\cos \theta_{\parallel} < 0.5 (Mz)$

 P_T miss < 60GeV

 $N_{\text{iet}} < 2$

generator cuts:

analysis cuts:

Compared to W channel, 10x less signal

 $0.5 < m(\tau \gamma) < 3.0 \text{GeV}$

 $p_T^{\mu} > 6 \,\mathrm{GeV}$

selection efficiency ~14%

 $E_T^{\mu}(e,\gamma) > 15 \,\mathrm{GeV}$

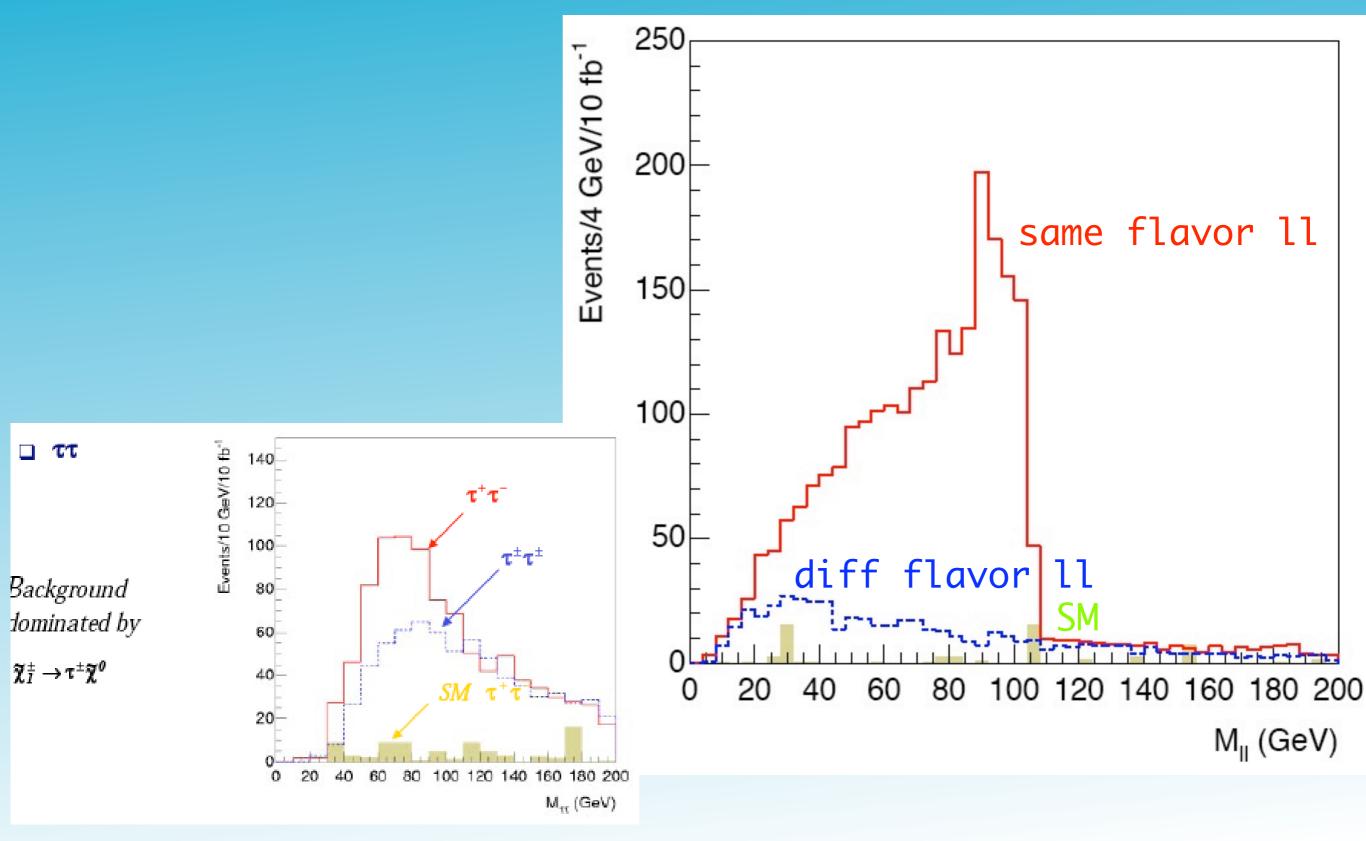
 $\tau \rightarrow \mu \gamma$

E. Barberio unpublished

Pythia + *Photos* + *Atlas Fast simulation was used.*

Studied Backgrounds: $W \rightarrow \mu \nu \gamma$ $W \rightarrow \tau \nu \gamma$ $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$ $Z \rightarrow \mu^+ \mu^- \gamma$ $Z \rightarrow \tau^+ \tau^- \gamma$ $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$ $t\bar{t}\gamma$ $b\overline{b}\gamma$

low ^{luminosity} 1.6 < M < 2.0 GeV ~12 bg events/year for m_r ~10 signal events/year



ATLAS & CMS detectors

	ATLAS	CMS
length x diameter (m)	44 x 22	22 x 15
Magnetic Field (Tesla)	2	4
Weight (Tons)	7 000	12 500
eta coverage	2.7>muons, 2.5>tracking 4.9>calo	2.4>muons, 2.5>tracking 5.0>calo
Inner detector	Silicon pixels, Silicon strips, Transition Radiation Tracker.	Silicon pixels, Silicon strips.
Electromagnetic Calo	Lead plates as absorbers with liquid argon as the active medium	Lead tungstate (PbWO4) crystals both absorb and respond by scintillation
Hadronic Calo	Iron absorber with plastic scintillating tiles as detectors in central region, copper and tungsten absorber with liquid argon in forward regions.	Stainless steel and copper absorber with plastic scintillating tiles as detectors
Muon System	Large air-core toroid magnets with muon chamber form outer part of the whole ATLAS	Muons measured already in the central field, further muon chambers inserted in the magnet return yoke

susy - details

 $\tau \rightarrow \mu \gamma details$ kinematic distributions

25