SuFla: A New SUSY Flavour Code

P. Paradisi

Interplay of Collider and Flavour Physics, 3rd general meeting CERN, Geneva
December 15, 2009

G. Isidori - NP benchmarks in flavour physics

Low-energy (LE) and Electroweak (EW) Constraints

Work started at the LHC Flavour workshop (collaboration from Experimentalist & Theorist)

S.Heinemeyer, G.I., P.Paradisi [TH], O. Buchmuller, R. Cavanaugh,... [EXP] work documented in the Yellow Report

A first start: Combine LE and EW calculations in one common code. New Physics Parameter Space: MSSM

"Master Layer"

steers communication between the individual calculations/codes

"FeynHiggs"

calculation of the masses and mixing angles of the Higgs sector of the (real or complex) MSSM

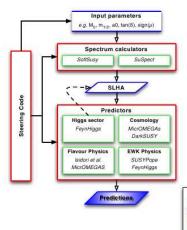
FW observables in MSSM

"Flavour Observables" Phys.Lett.8639:499-507,2006

leidori & Paradisi Calculation of B physics observables In MSSm (&MFV)

"other observables"

NOT yet included but on to-do-list


SuFla

- Main purpose of the code: evaluation of "selected" (clean & sensitive) flavour-changing observables in the MSSM, both within and beyond MFV.
- Languange: Fortran (F77)
- The program is NOT standalone, but is conceived to be linked to other programs (spectrum calculators, etc...) as in the famous "Mastercode".
- The SUSY inputs are generic soft mass terms at the TeV scale, with squark mass matrices in the super CKM basis according to SLHA
- For the SM inputs see later... & Altmannshofer et al. '09
- SUSY amplitudes taken into account: Higgs, gluino & chargino loops, including the leading BLO effect stemming from susy-QCD corrections & large $\tan \beta$ enhanced effects
- Main startegy: compute Γ_{SUSY+SM}/Γ_{SM} (whenever possible). This
 minimise non-perturbative uncertainites and dependence on SM
 inputs.

Mastercode

Combining today's constraints

Common framework for indirect constraints

- Consistency
 Relies on the SUSY Les Houches
 Accord (SLHA)
- Modularity
 Compare calculations
 Add/remove predictions
- State-of-the art calculations
 Direct use of code from experts

observable	experiment	SM prediction	exp./SM	
ΔM_K $ \epsilon_K $	$(5.292 \pm 0.009) \times 10^{-3} \text{ ps}^{-1} [81]$ $(2.229 \pm 0.010) \times 10^{-3} [81]$	$(1.91 \pm 0.30) \times 10^{-3}$	1.17 ± 0.18	
ΔM_d	$(0.507 \pm 0.005) \text{ ps}^{-1} [1]$	$(0.51 \pm 0.13) \text{ ps}^{-1}$	0.99 ± 0.25	
$S_{\psi K_S}$	0.672 ± 0.023 [1]	0.734 ± 0.038	0.92 ± 0.06	
ΔM_s	$(17.77 \pm 0.12) \text{ ps}^{-1} \text{ [82]}$	$(18.3 \pm 5.1) \text{ ps}^{-1}$	0.97 ± 0.27	
$\Delta M_d/\Delta M_s$	$(2.85 \pm 0.03) \times 10^{-2}$	$(2.85 \pm 0.38) \times 10^{-2}$	1.00 ± 0.13	

Table 1: Experimental values and SM predictions for $\Delta F=2$ observables. The SM predictions are obtained using CKM parameters from the NP UTfit [83]. The last column shows the ratio of the measured value and the SM prediction, signaling the room left for NP effects in the corresponding observable. We do not give a SM prediction for ΔM_K because of unknown long distance contributions.

Altmannshofer et al. '09

observable	SM prediction	exp. current	exp. future	
$S_{\psi\phi}$ $\simeq 0.036$ [81]		$0.81^{+0.12}_{-0.32}$ [1]	$\simeq 0.02 [191]$	
$S_{\phi K_S}$	$\sin 2\beta + 0.02 \pm 0.01$ [2]	0.44 ± 0.17 [1]	(2-3)% [192]	
$S_{\eta'K_S}$ $\sin 2\beta + 0.01 \pm 0.01$ [2]		0.59 ± 0.07 [1]	(1-2)% [192]	
$A_{CP}(b \rightarrow s\gamma)$ $\left(-0.44^{+0.14}_{-0.24}\right)\%$ [193]		$(-0.4 \pm 3.6) \% [1]$	(0.4 - 0.5)% [192]	
$\langle A_7 \rangle$	$(3.4^{+0.4}_{-0.5})10^{-3}$ [138]			
$\langle A_8 \rangle$	$(-2.6^{+0.4}_{-0.3})10^{-3}$ [138]			
$\langle A_9 \rangle$	$(0.1^{+0.1}_{-0.1})10^{-3}$ [138]			
$ d_e $ $(e \text{ cm})$	$\simeq 10^{-38} [194]$	$< 1.6 \times 10^{-27} \ [195]$	$\simeq 10^{-31} [194]$	
$ d_n $ $(e \text{ cm})$	$\simeq 10^{-32} \ [194]$	$< 2.9 \times 10^{-26} [196]$	$\simeq 10^{-28} [194]$	
${\rm BR}(B_s\to \mu^+\mu^-)$	$(3.60 \pm 0.37)10^{-9}$	$< 5.8 \times 10^{-8} [144]$	$\simeq 10^{-9} [197]$	
${\rm BR}(B_d\to \mu^+\mu^-)$	$(1.08 \pm 0.11)10^{-10}$	$< 1.8 \times 10^{-8} \ [144]$		
$BR(B \to X_s \gamma)$	$(3.15 \pm 0.23)10^{-4}$ [198]	$(3.52 \pm 0.25)10^{-4}$ [1]		
$BR(B \to X_s \ell^+ \ell^-)$	$(1.59 \pm 0.11)10^{-6}$ [199]	$(1.59 \pm 0.49)10^{-6}$ [200, 201]		
$BR(B \to \tau \nu)$	$(1.10 \pm 0.29)10^{-4}$	$(1.73 \pm 0.35)10^{-4}$ [112]		

Table 6: SM predictions and current/expected experimental sensitivities for the observables most relevant for our analysis. The branching ratio of $B \to X_s \ell^+ \ell^-$ refers to the low dilepton invariant mass region, $q_{s+f_s}^2 \in [1,6] \, \text{GeV}^2$. For the SM prediction of BR($B \to \tau \nu$), see also (3.54): BR($B \to \tau \nu$)

SM input parameters

parameter	value	parameter	value $(163.5 \pm 1.7) \text{ GeV } [98, 99]$		
\hat{B}_K	$0.724 \pm 0.008 \pm 0.028$ [89]	$m_t(m_t)$			
F_{Bs}	$(245 \pm 25) \mathrm{MeV} [100]$	$m_c(m_c)$	$(1.279 \pm 0.013) \text{ GeV } [101]$		
F_B	$(200 \pm 20) \mathrm{MeV} [100]$	η_{cc}	$1.44 \pm 0.35 \ [85, 102]$		
F_K	$(156.1 \pm 0.8) \mathrm{MeV} [103]$	η_{tt}	0.57 ± 0.01 [84]		
\hat{B}_{B_d}	1.22 ± 0.12 [100]	η_{ct}	$0.47 \pm 0.05 \ [86, 87, 102]$		
\hat{B}_{B_s}	1.22 ± 0.12 [100]	η_B	0.55 ± 0.01 [84, 104]		
$F_{Bs}\sqrt{\hat{B}_{Bs}}$	$(270 \pm 30) \mathrm{MeV} [100]$	λ	0.2258 ± 0.0014 [8]		
$F_B \sqrt{\hat{B}_{Bd}}$	$(225 \pm 25) \mathrm{MeV} [100]$	A	0.808 ± 0.014 [8]		
ξ	1.21 ± 0.04 [100]	$\bar{\varrho}$	0.177 ± 0.044 [8]		
V_{cb}	$(41.2 \pm 1.1) \times 10^{-3}$ [81]	$\bar{\eta}$	0.360 ± 0.031 [8]		

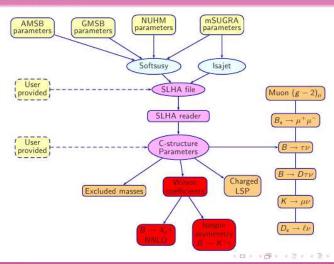
Table 3: Input parameters used in the numerical analysis.

SuperIso

Calculation of flavor physics observables

Nazila Mahmoudi

Laboratoire de Physique Corpusculaire Clermont-Ferrand, France


CERN, 17 March 2009

Nazila Mahmoudi

CERN, 17 March 2009

How does it work?

Nazila Mahmoudi CERN, 17 March 2009

き のりのひ

G. Isidori - Interplay of Collider and Flavour Physics

General considerations on the (quark) flavour observables

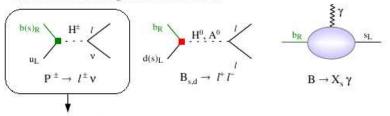
Small tanß

and small µ

Large tanß

[or moderate tanß + large µ]

- Most of the (present) flavour constraints naturally satisfied after imposing EWPO
- Only notable exception provided by B→X_s γ
- A few more <u>helicity</u> <u>suppressed observ</u>, play a key role: B→II, B(K)→Iv
- LR ΔF=2 ops. in B(K) mixing might also be relevant in specific corners of the param.
 space)


- Long list of useful observables (B and K physics: leptonic, radiative & nonleptonic channels)
- The absence of significant deviations from the SM in any of these, makes generic non-MFV scenarios highly contrived / fine-tuned
- In several realistic cases (MFV-GUT scenarios, new couplings only for the 3rd family, etc...) the most significant constraints are derived from Kaon physics (λ⁵ suppression in the SM, because of 1↔3↔2).

		FLAVOUR COUPLING					
		$b \rightarrow s \ [-\lambda^2 \text{ in SM}]$	$b \to d \left[-\lambda^3 \operatorname{in} SM \right]$	$s \to d \ [-\lambda^5 \ \text{in SM}]$			
	ΔF=2 box	$\begin{array}{c} \Delta M^{}_{Bs} \\ A^{}_{CP}(B^{}_s {\rightarrow} \psi \phi), \;\; \epsilon^{}_{Bs} \end{array}$	$\begin{array}{c} \Delta M_{Bd} \\ \\ A_{CP}(B_d{\rightarrow}\psi K), \ \ \epsilon_{Bd} \end{array}$	$\varepsilon_{_{\mathrm{K}}}$			
ELECTROWEAK STRUCTURE	ΔF=1 4-quark ops.	$A_{CP}(B_d \rightarrow \phi K)$	$A_{CP}(B_s \rightarrow \phi K)$				
	gluon penguin	$\begin{split} &A_{CP}(B_d {\rightarrow} \phi K) \\ &[\Gamma, \Delta \Gamma_{CP}](B {\rightarrow} X_s \gamma) \end{split}$	$[\Gamma, \Delta \Gamma_{CP}](B \to \! \rho/\pi \gamma)$	$\Gamma(K_L \to \pi^0 l^* l^*)$			
	γ penguin	$\begin{split} & [\Gamma, \Delta \Gamma_{\text{CP}}] (B \to & X_s \gamma) \\ & [\Gamma, \Delta \Gamma_{\text{CP}}] (B \to & X_s \Gamma \Gamma) \\ & A_{\text{FB}} (B \to & X_s \Gamma \Gamma) \end{split}$	$\begin{split} & [\Gamma, \Delta\Gamma_{CP}](B \to \!\! \rho/\pi \; \gamma) \\ & [\Gamma, \Delta\Gamma_{CP}](B \to \!\! \rho/\pi \; \Gamma\Gamma) \\ & A_{FB}(B \to \!\! \rho/\pi \; \Gamma\Gamma) \end{split}$	$\Gamma(\mathbf{K_L} \rightarrow \pi^0 I^* I^*)$			
	Z ⁰ penguin	$\begin{split} & [\Gamma, \Delta \Gamma_{\text{CP}}] (B \rightarrow & X_s I I) \\ & A_{\text{FB}} (B \rightarrow & X_s I I) \\ & \Gamma (B_s \rightarrow & \mu \mu) \end{split}$	$\begin{split} & [\Gamma, \Delta \Gamma_{CP}](B \rightarrow \! \rho/\pi f' \Gamma) \\ & A_{FB}(B \rightarrow \! \rho/\pi f' \Gamma) \\ & \Gamma(B_d \! \rightarrow \! \mu \mu) \end{split}$	$\Gamma(K^{*} \rightarrow \pi^{+} \nu \nu)$ $\Gamma(K_{L} \rightarrow \pi^{0} \nu \nu)$ $\Gamma(K_{L} \rightarrow \pi^{0} l^{*} l^{*})$			
	H ⁰ penguin	$\Gamma(B_s \rightarrow \mu\mu)$	$\Gamma(B_d{\to}\mu\mu)$				

G. Isidori - Interplay of Collider and Flavour Physics

*The flavour constraints at large tanβ

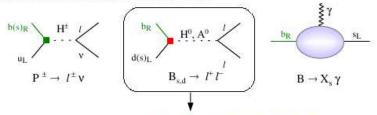
Three most interesting sets of observables:

Simplest M_H & tanβ dependence [mild dependence on other parameters]

$$\mathrm{BR} = \mathrm{BR}_{\mathrm{SM}} \times \left(1 - \frac{\mathrm{m_p}^2 \, \tan\!\beta^2}{\mathrm{M_H}^2 \, (1 + \epsilon_0 \, \tan\!\beta)}\,\right)^2$$

G. Hou, '93; Ackeroid, Recksiegel, '03

G.I. Paradisi '06


• O(100%)-O(10%) in B
$$^{\pm} \rightarrow l^{\pm} v$$

[most likely BR_{SUSY} < BR_{SM}]

• O(1%)–O(0.1%) in K
$$^{\pm} \rightarrow I^{\pm} \nu$$

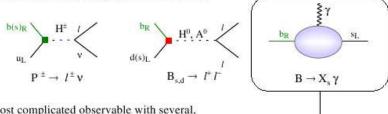
[necessarily BR_{SUSY} < BR_{SM}]

G. Isidori - Interplay of Collider and Flavour Physics

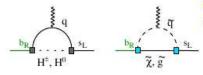
*The flavour constraints at large tanβ

Three most interesting sets of observables:

Crucial dependence on μ and A_U [in addition to M_H & tanβ]


$$A(B \rightarrow ll)_{H} \sim \frac{m_h m_l}{M_A^2} \frac{\mu A_U}{\widetilde{M}_q^2} \tan^3 \beta$$

Possible large enhancement over the SM but size (and magnitude) of the effect can change substantially in different SUSY-breaking scenarios


G. Isidori - Interplay of Collider and Flavour Physics

*The flavour constraints at large tanβ

Three most interesting sets of observables:

Most complicated observable with several, naturally competitive, contributions:

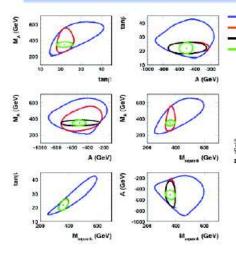
One of the most significant constraint of the MSSM (even at small tanß)

$$B(B \to X_s \gamma)^{exp} = (3.55 \pm 0.26) \ 10^{-4}$$

[HFAG '06]

· positive

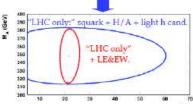
· sign ~ sgn(µ,A)


 $B(B \to X_s \gamma)^{SM} = (3.15 \pm 0.23) \ 10^{-4}$

- · decreasing with tanß
 - tanβ increasing with tanβ

[Misiak et al. '06]

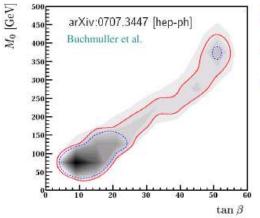
G. Isidori - NP benchmarks in flavour physics


Interpretation & Consistency

LE&EW: low-energy (LE) and EW constraints
 LE&EW + squark candidate

LE&EW + squark cand. + H/A cand.
 LE&EW + squark + H/A + light h cand.

Including LW&EW constraints facilitates the determination of fundamental MSSM parameters



Example: Almost no information on tanß
without external constraints. Note that a direct
measurement of tanß is very difficult at the LHC

Mastercode

G. Isidori - Interplay of Collider and Flavour Physics

- Multi-parameter χ^2 fit
- fitting for all CMSSM parameters: M₀, M_{1/2}, A₀, tan β;
- including relevant SM uncertainties (e.g. m_{top});

- overall preferred minimum at low tan β, low squark mass;
- less preferred region at high tan β, higher squark mass;
- · consistent with previous studies.

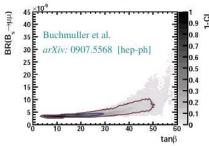
Key role played by

$$(g-2)_{\mu}$$
, Ω_{CDM} & $B \rightarrow X_s \gamma$

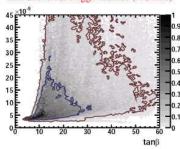
G. Isidori - MFV vs NMFV

III. Rare B decays

Present status:

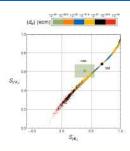

$$B(B_s \to \mu\mu) < 4.8 \times 10^{-8} (95\%CL)$$

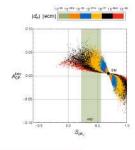
$$B(B_s \to \mu\mu) < 7.6 \times 10^{-9} (95\%CL)$$

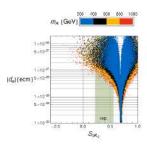

$B(B_s \to \mu \mu)_{SM} = 3.2(2) \times 10^{-9}$

$$B(B_d \to \mu\mu)_{SM} = 1.0(1) \times 10^{-10}$$

Constrained - MSSM


Constrained – MSSM with non-universal Higgs masses (NUHM)




Reaching the SM level would lead to a very significant constraint in the (C)MSSM

BR(B_s→µµ)

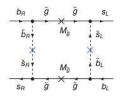
Flavor blind MSSM ≈ MFV + CPV

- ► CP violating △F = 0 and △F = 1 dipole amplitudes can be strongly modified
- S_{φKS} and S_{η'KS} can simultaneously be brought in agreement with the data
- sizeable and correlated effects in A^{bsn}_{CP} ≈ 1% − 6%
- ► lower bounds on the electron and neutron EDMs at the level of d_{e,n} ≥ 10⁻²⁶ ecm
- ► large and correlated effects in the CP asymmetries in B → K*µ⁺µ⁻ (WA, Ball, Bharucha, Buras, Straub, Wick)

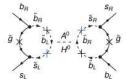
- the leading NP contributions to ΔF = 2 amplitudes are not sensitive to the new phases of the FBMSSM
- CP violation in meson mixing is SM like
- lackbox i.e. small effects in $S_{\psi\,\phi},\,S_{\psi\,\kappa_S}$ and $\epsilon_{\it K}$
 - in particular: $0.03 < \mathcal{S}_{\psi\,\phi} < 0.05$

A combined study of all these observables and their correlations constitutes a very powerful test of the FBMSSM

Beyond MFV


- Soft squark masses and trilinear couplings can contain additional flavor structures beyond the CKM matrix.
- Such structures lead to flavor off-diagonal entries in the squark masses.

Complex mass insertions lead to flavor and CP violating gluino-quark-squark interactions that will generate the dominant contributions to FCNCs


The largest gluino contributions to the mixing amplitudes are generated if both LL and RR mass insertions are present simultaneously Convenient parametrization through mass insertions

$$M_q^2 = \tilde{m}^2 \, 11 + \tilde{m}^2 \frac{\delta_q}{\delta_q}$$

$$\delta_q = \left(\begin{array}{cc} \delta_q^{LL} & \delta_q^{LR} \\ \delta_q^{RL} & \delta_q^{RR} \end{array} \right) \ , \quad q = u, d$$

$$\propto \frac{\alpha_s^2}{\tilde{m}^2} (\delta_d^{LL})_{32} (\delta_d^{RR})_{32}$$

$$\begin{split} &\propto \frac{\alpha_2}{4\pi} \frac{\alpha_s^2}{M_A^2} \frac{m_b^2}{M_W^2} \tan^4\beta \\ &\times (\delta_d^{LL})_{32} (\delta_d^{RR})_{32} \end{split}$$

Flavour Models

Example: Agashe, Carone '03 (AC)

- Abelian flavor model based on a U(1) horizontal symmetry
- "remarkable level of alignment"

$$\left(\delta_d^{LL}\right) \sim \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & \lambda^2 \\ 0 & \lambda^2 & 1 \end{array}\right)$$

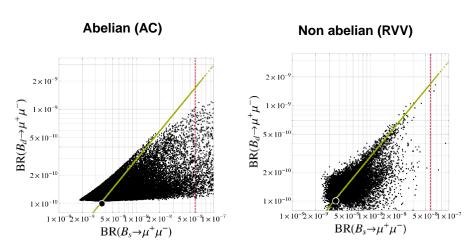
$$(\delta_d^{RR}) \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Expected phenomenology:

- Small effects in b → d and s → d transitions
- ► Large effects in D₀-D
 0 mixing (general feature of abelian models)
- ► Large effects in B_s - \bar{B}_s mixing (in particular in $S_{\psi,\phi}$ for complex δs)

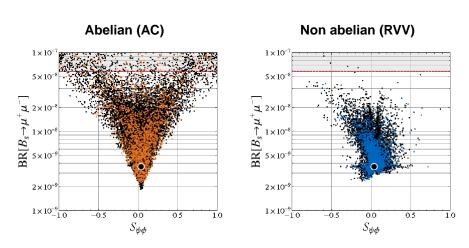
Example: Ross, Velasco-Sevilla, Vives '04 (RVV)

- Non abelian flavor model based on a SU(3) flavor symmetry
 - 1st and 2nd generation of squarks approximately degenerate


$$(\delta_{\sigma}^{LL}) \sim \begin{pmatrix} \lambda^4 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^4 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$$

$$(\delta_d^{RR}) \sim \begin{pmatrix} \lambda^3 & \lambda^4 & \lambda^3 \\ \lambda^4 & \lambda^3 & \lambda \\ \lambda^3 & \lambda & 1 \end{pmatrix}$$

Expected phenomenology:


- Moderate effects in b → d and s → d transitions (large effects in ε_K)
- Sizeable effects in B_s - \bar{B}_s mixing (in particular in $S_{\psi\phi}$ for complex δs)

Phenomenology of Flavour Models

Altmannshofer et al. '09

Phenomenology of Flavour Models

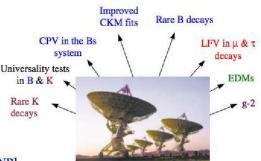
Altmannshofer et al. '09

"DNA-Flavour Test"

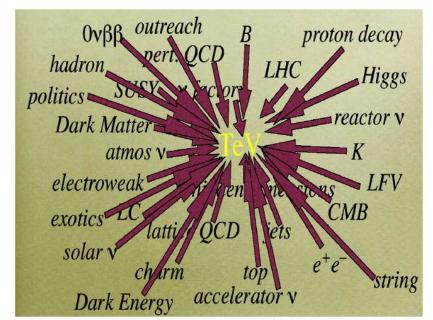
	GMSSM	AC	RVV2	AKM	δ LL	FBMSSM		
$S_{\phi K_S}$	***	***		В	***	***	400	
$A_{\sf CP}\left({\sf B} o {\sf X}_{\sf S}\gamma ight)$	***		10	10	***	***	Cunor	
$B ightarrow K^{(*)} u ar{ u}$	••	-	15	10	10		2nberg	
$ au ightarrow \mu \gamma$	***	***	***	ш	***	***		
$D^0 - \bar{D}^0$	***	***		10	10	11	0	
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	***			10	***	***	vs.	
$A_9(B \rightarrow K^* \mu^+ \mu^-)$	***	0		111	86		ruch	
$S_{\psi\phi}$	***	***	***	***	M		гнер	
$B_s \rightarrow \mu^+ \mu^-$	***	***	***	***	***	***		
ϵ_{K}	***	-	***	***	ш	III		
$K^+ o \pi^+ u ar{ u}$	***	10		10	86	16		
$K_L \rightarrow \pi^0 \nu \bar{\nu}$	***				100			
$\mu ightarrow oldsymbol{e} \gamma$	***	***	***	***	***	***		
$\mu + N \rightarrow e + N$	***	***	***	***	***	***		
dn	***	***	***	***		***		
d_{θ}	***	***	***		100	***		
$(g-2)_{\mu}$	***	***	***		***	***		

Altmannshofer et al. '09

Flavour physics in the LHC era


LHC [high p_T]

A unique effort toward the high-energy frontier


[to determine the energy scale of NP]

Flavour physics

A collective effort toward the high-intensity frontier [to determine the <u>flavour structure</u> of NP]

Murayama's view

Masiero's view

DM - FLAVOR for DISCOVERY

and/or FUND, TH.

RECONSTRUCTION

A MAJOR IS NEEDED

NEW PHYSICS AT THE ELW SCALE

LEAP AHEAD

DARK MATTER

 $m_{\gamma} n_{\gamma} \sigma_{\gamma} \dots$

LINKED TO COSMOLOGICAL EVOLUTION

Possible interplay with dynamical DE

"LOW ENERGY"

PRECISION PHYSICS

FCNC, CP \neq , (g-2), $(\beta\beta)_{0\nu\nu}$