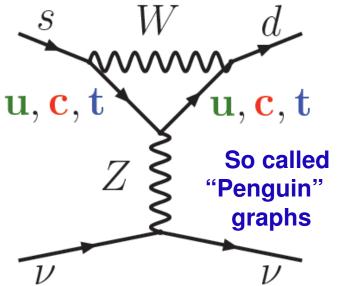
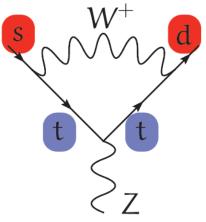
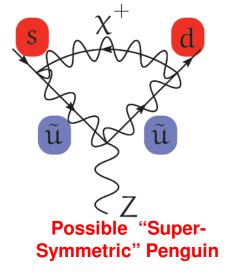

Present Status and Future Prospects in K Physics



Augusto Ceccucci/CERN

Ultra-rare K Decays





- The contribution to \mathcal{V} these processes due to the Standard Theory is strongly suppressed (<10⁻¹⁰) and calculable with excellent precision (~%)
- They are very sensitive to possible contributions from New Physics

"Standard"
Collider & Flavor Physipenguin

$K \rightarrow \pi \nu \overline{\nu}$: Current Status

Decay	Branching Ratio (×10 ¹⁰)
~	· · · · · · · · · · · · · · · · · · ·

$$K^+ \to \pi^+ \nu \overline{\nu} (\gamma)$$
 $0.85 \pm 0.07^{[1]}$ $1.73^{+1.15^{[2]}}_{-1.05}$

$$K_L^0 \to \pi^0 \nu \overline{\nu}$$
 $0.26 \pm 0.04^{[3]}$ $< 260 (90\% \text{ CL})^{[4]}$

- [1] J.Brod, M.Gorbahn, PRD78, arXiv:0805.4119
- [2] AGS-E787/E949 PRL101, arXiv:0808.2459
- [3] M. Gorbahn
- [4] KEK-E391a arXiv:0911.4789v1

Neutral Beams for $K_L^0 \rightarrow \pi^0 \ \nu \bar{\nu}$

"Pencil"

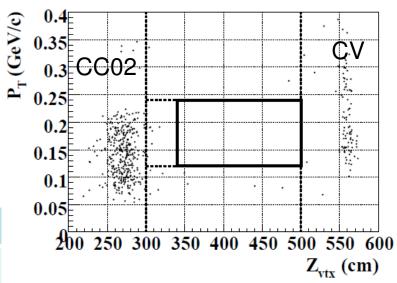
- $-\pi^0$ + "nothing"
- P_T cut for $\Lambda \rightarrow n\pi^0$ & $K^0_L \rightarrow 2\pi^0$ suppression
- hermetic calorimetry

"Microbunched"

- E_K from TOF
- Low(er) Kaon Energy
- KOPIO BNL Concept further elaborated for FNAL (Bryman@KAON09)

Ехр	Machine	UL 90% CL	Notes
KTeV	Tevatron	$< 5.7 \times 10^{-7} $ (π ⁰ →eeγ)	
E391a	KEK-PS	<2.6 x 10 ⁻⁸	
КОТО	J-PARC		Aim at 2.7 SM evts / 3 y
KOPIO			Opportunity at Project X (IC2) ?

E391a @ KEK PS



E391a Final Result

- arXiv:0911.4789v1
- Based all full statistics (2004-2005) including reanalysis of already published data
- At these sensitivities backgrounds from kaon decays are negligible w.r.t. neutron induced ones

Background		Estimated # evt
Beam Halo neutron	CC02-π ⁰ CV-π ⁰ CV-η	0.66 ± 0.39 <0.39 0.19 ± 0.13
$K^0{}_L ightarrow \pi^0 \pi^0$		$(2.4 \pm 1.8) \times 10^{-2}$
Other	Backward π^0	<0.05
Total		0.87 ± 0.41

Signal Acceptance ~1% Flux $8.7 \times 10^9 K_L^0$

$$B(K^0_L \rightarrow \pi^0 \ \nu \nu) < 2.6 \ \text{x } 10^{-8} \ 90\% \ \text{CL}$$

Factor of x3 improvement

KOTO (E14) @ JPARC

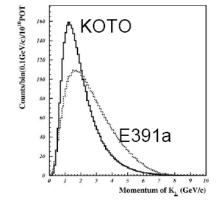
Aim for Flux x Run Time x Acceptance = 3000 x E391a

	кото	E391a (Run2)	
Proton energy	30 GeV	12 GeV	
Proton intensity	2e14	2.5e12	
Spill/cycle	0.7/3.3sec	2/4sec	
Extraction Angle	16 deg	4 deg	
Solid Angle	9µStr	12.6μStr	
KL yield/spill	7.8e6	3.3e5	x30 /sec
Run Time	3 Snowmass years =12 months.	1 month	x10
Decay Prob.	4%	2%	x 2
Acceptance	3.6%* ithout Back splash loss	0.67%	x5

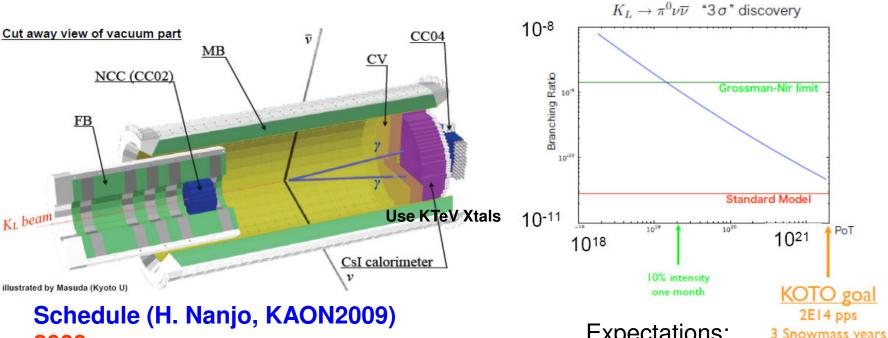
Main Ring Parameters:

L=1.6 Km

30 GeV


2 x 10¹⁴ ppp

0.3 MW


0.7 s spill / 3.3 s

CERN, December 14, 2009

Details in H. Nanjo KAON'09

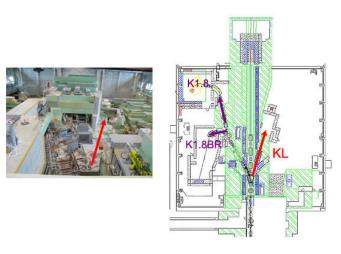
KOTO @ JPARC

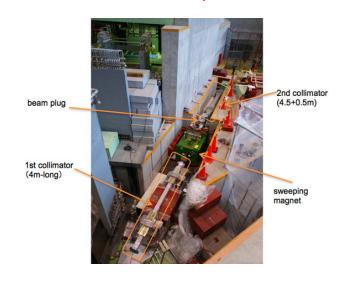
2009

- Beamline construction
- Beam Survey

2010

- Csl Calorimeter Construction
- Engineering run with Csl calorimeter

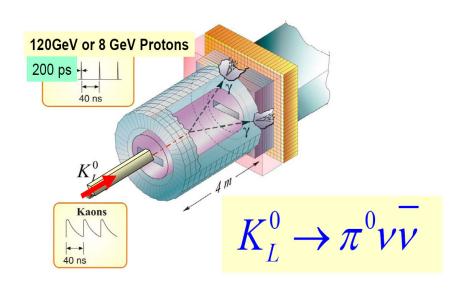

2011


Physics Run start CERN, December 14, 2009

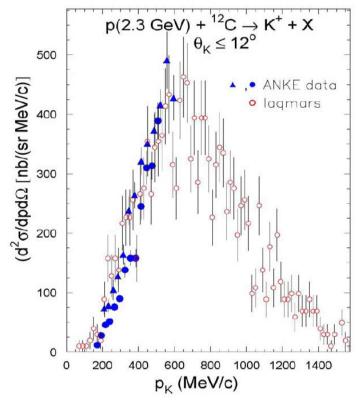
_/	epolations.	5 Shovimass /cars
Signal	$K^0L o \pi^0VV$	2.7
K ⁰ _L Background	$\pi^0\pi^0$	1.7
	$\pi^+\pi^-\pi^0$	0.08
	$e^+\pi^- v$	0.02
Halo Neutrons		0.38
		_

Collider & Flavour Physics

"Confirmation of neutral kaons in the KL beam line at Hadron Hall, J-PARC" Dec 7, 2009



Beam Survey



K⁰_L @ FNAL Project X ?

- •KOPIO-like: TOF to determine Kaon Energy
- •Knowledge of E_K allows rejection of two body decays
- Pointing Calorimeter
- •4 π veto for neutral and charged particles
- •Small Beam instead of flat beam

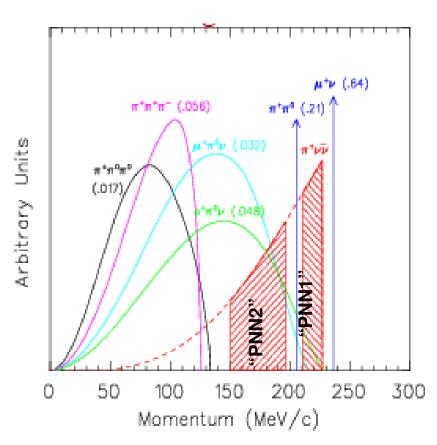
- Project X (IC2): CW p LINAC ≥2 GeV
- Excellent bunch timing
- •High flux of low energy K⁰_L

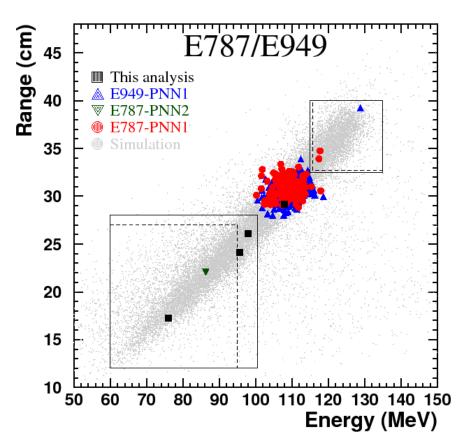
Techniques for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

"Stopped"

- Work in Kaon frame
- High Kaon purity (Electro-Magneto-static Separators)
- Compact Detectors

"In-Flight"


- Decays in vacuum (no scattering, no interactions)
- RF separated or Unseparated beams
- Extended decay regions


Ехр	Machine	Meas. or UL 90% CL	Notes
	Argonne	< 5.7 x 10 ⁻⁵	Stopped; HL Bubble Chamber
	Bevatron	< 5.6 x 10 ⁻⁷	Stopped; Spark Chambers
	KEK	<1.4 x 10 ⁻⁷	Stopped; $\pi^+ \rightarrow \mu^+ \rightarrow e^+$
E787	AGS	$(1.57^{+1.75}_{-0.82}) \times 10^{-10}$	Stopped
E949	AGS	$(1.73^{+1.15}_{-1.05}) \times 10^{-10}$	Stopped; PPN1+PPN2
NA62	SPS		In-Flight; Unseparated
P996	FNAL		Stopped; Tevatron as stretcher ring?

E787/E949: Final Result

arXiv:0903.0030v1

PRD79:092004,2009

$$B(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$$

Stopped Kaon Redux?

Can one improve significantly over the E949 PNN1 efficiency figures?

Selection	α	Notes
Κμ2	0.38	Beam,T, RS rec.
Κπ2	0.88	E, range, selection
Pscat	0.62	Rej. of beam scat.
$\pi \rightarrow \mu \rightarrow e$	0.35	Decay chain
Trig	0.18	Trigger eff.
PS	0.36	Phase Space
nucl.	0.50	Pion interaction
T2	0.94	topology
fs	0.77	Stopping Fraction
"Standard"	1.7 x10 ⁻³	Total efficiency

- •"Only" ~22% (.77 x .28) of kaons stopped in target
- •The product of the red factors (1.5×10^{-2}) Is a high price to pay: $1/(1.5 \times 10^{-2}) \sim 66 \times 10^{-2}$

Possible Improvements (Bryman@KAON09):

- 1. Lower Kaon Momentum to increase the stopped kaon fraction
- 2. Larger Beam acceptance
- **→ 4-5**x
- 3. Detector Improvement: finer RS segmentation; LXe γ veto
- \rightarrow > 5x

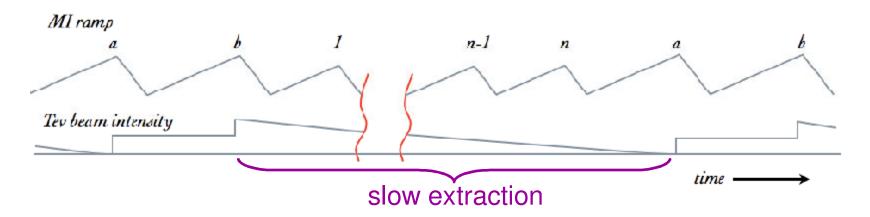
Stopped Kaon @ FNAL?

D. Bryman @ KAON09

$K^+ \to \pi^+ \nu \overline{\nu}$	FNAL "Booster" (20 kW)	FNAL Tevatron Stretcher 12%MI	FNAL Project- X
Events/yr*	40	200	325
Events/5yr Precision**	200 8	1000 3.6	1600 3

^{*}Estimates based on extrapolation of BNL E949.

^{**} Includes separate estimates of backgrounds in Regions I (10%) and 2 (75%).


Tevatron in Stretcher Mode

Jack Ritchie @ Fermilab PAC

Stretcher operating scenario

With NOvA, n pulses to NuMI beam (1.33 s ramp to 120 GeV)
 + 2 pulses to Tevatron (1.67 s ramp to 150 GeV); n ≈ 18

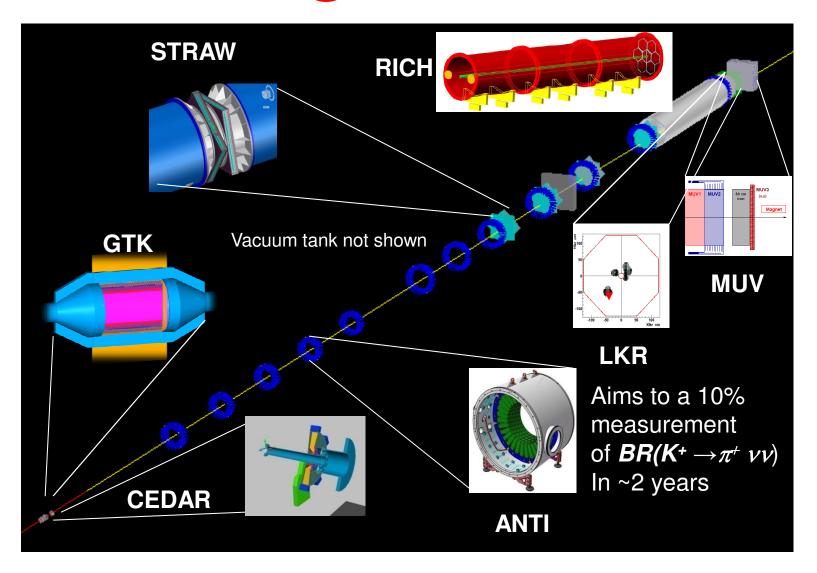
10% hit in protons to NOvA; no effect on μBooNE, mu2e, g-2, ...

- 96 Tp (1 TP = 10^{12} p) with 27.3 s cycle; duty factor = 94% (high duty factor is key to P996)
- Extraction hardware exists; 150 GeV is the normal Tevatron injection energy; 150 GeV extraction has been done before.
- If NOvA is off, higher intensity to P996 is possible.

Why here, why now?

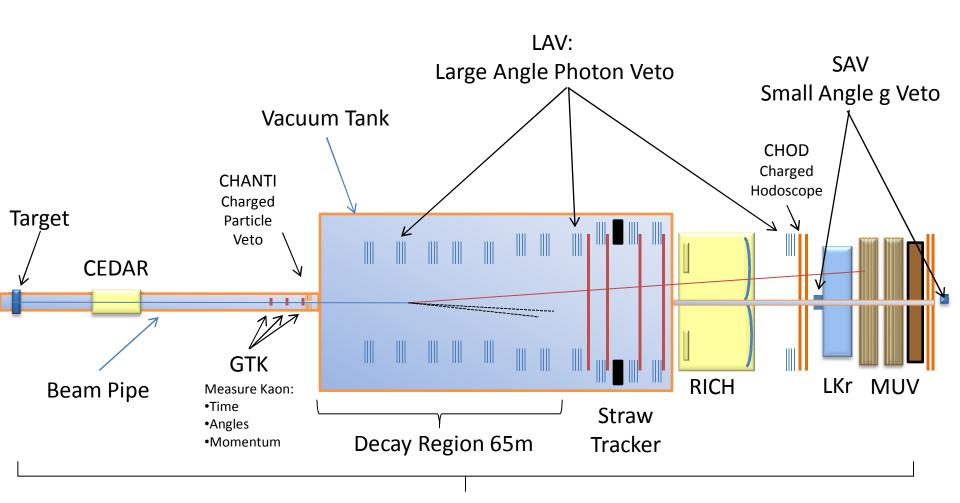
- Existing Fermilab facilities (MI and Tevatron) provide an opportunity to make a decisive measurement.
 - Either New Physics will manifest, or severe constraints result.
- To be timely, this should compete head-to-head with CERN's NA-62 experiment.
- Tevatron stretcher operation is only viable if done soon after collider running ends.
- This measurement can provide important input for planning the Project-X Intensity Frontier program.
- This experiment will be a nucleation site for rebuilding the U.S. kaon-physics community, which is needed for Project-X.

D. Jaffe @ Fermilab PAC


Projected Timescale

Milestone/Activity	Time Period
Stage One Approval	Fall 2009
DOE Approval of Mission Need (CD-0)	Spring 2010
Approve Alt. Selection/Cost Range (CD-1)	Fall 2010
Baseline Review (CD-2)	End of 2011
Start Construction (CD-3)	Spring 2012
Begin Installation	Mid-2013
First Beam/Beam Tests	End of 2013
Complete Installation	Mid-2014
First Data (CD-4)	End of 2014

Stage-1 approval is necessary to build a strong collaboration, make progress on the design, compete with NA62 (run start mid-2012) and use the Tevatron in stretcher mode.



NA62 @ CERN-SPS

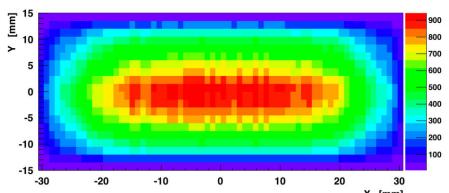
NA62 Detectors

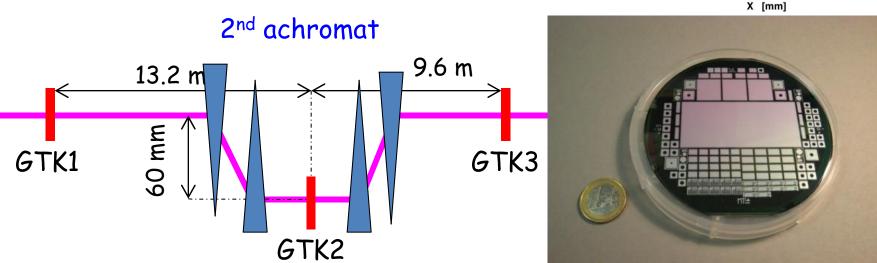
Drawing by Ferdinand Hahn

Total Length 270m

NA62 Sensitivity

Decay Mode	Events
Signal: $K^+ \rightarrow \pi^+ \nu \nu^-$ SM[flux = 4.8×10^{12} decay/year]	55 evt/year
$K^+ \rightarrow \pi^+ \pi^0 [\eta_{\pi 0} = 2 \times 10^{-8} \ (3.5 \times 10^{-8})]$	4.3% (7.5%)
$K^+ \rightarrow \mu^+ \nu$	2.2%
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3%
Other 3 – track decays	≤1.5%
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	~2%
$K^+ \rightarrow \mu^+ \nu \gamma$	~0.7%
$K^+ \rightarrow e^+(\mu^+) \pi^0 \nu$, others	negligible
Expected background	≤13.5% (≤17%)


Definition of "year" and running efficiencies based on NA48 experience: ~100 days/year; 60% overall efficiency



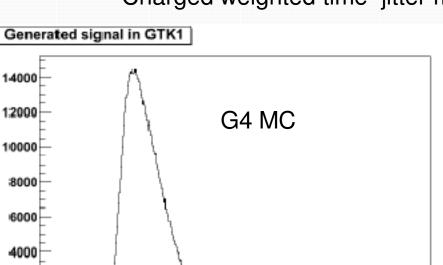
NA62 Beam & GTK

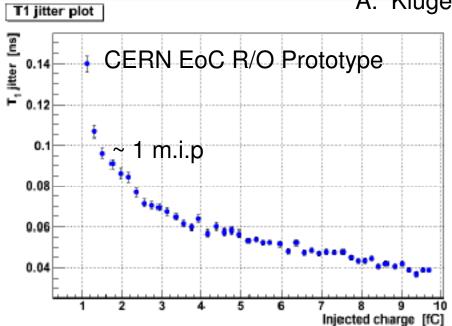
SPS primary p: 400 GeV/c Unsepared beam:

- 75 GeV/c
- 750 MHz
- π/K/p (~6% K+)

- •Sensitivity is **NOT** limited by protons flux but by beam (GigaTracKer (GTK))
- •Similar amount of protons on target as NA48 (~5 10¹² / pulse)

First Results from GTK Tests WA62



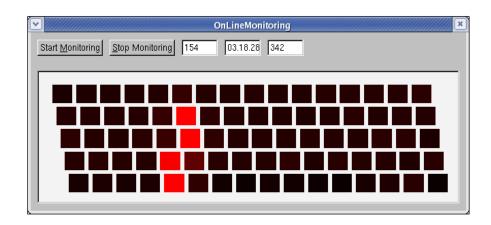


M. Fiorini

M. Noy

A. Kluge

taking into account the energy distribution of particle hits in the Gigatracker, one can extract a weighted average value for the jitter on T₁

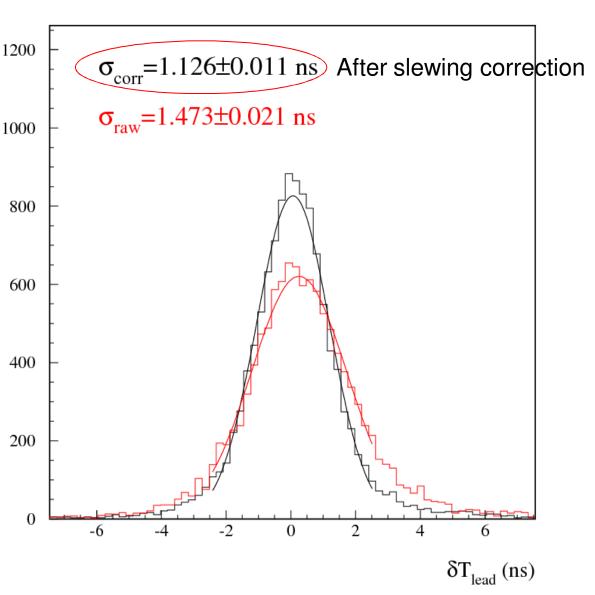

"We come from Research to a working Prototype"

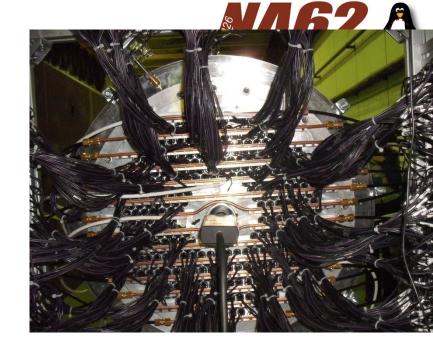
Charge [fC]

2000

LAV ANTI-A1

- In summer 2009 the first station A1 was built at LNF and shipped to CERN. It is now mounted on the blue tube
- A test beam run with the complete system including prototype front-end electronics (FEE) was performed at the end of October 2009



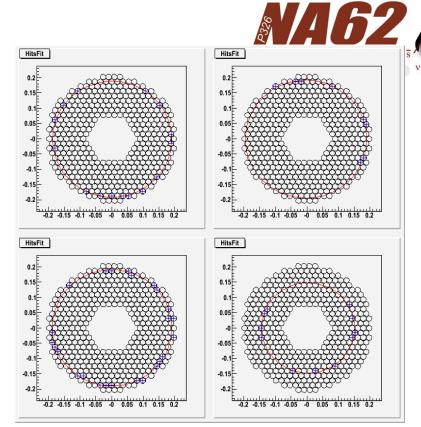

LAV Time resolution

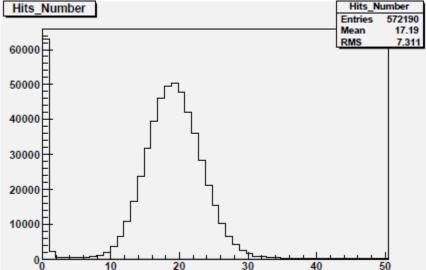
- 4 GeV electrons
- •Time differences between two subsequent blocks
- Slewing correction
- Q obtained from time over threshold

RICH 2009 prototype test beam

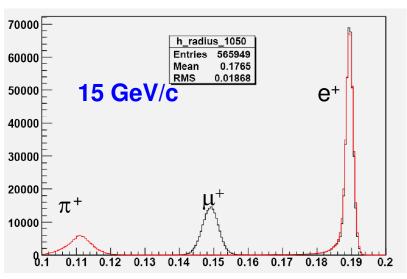
- 12.5.-27.6.2009: test beam
- 1 mirror with f=17m, 50 cm wide
- 414 PMT + full electronics chain

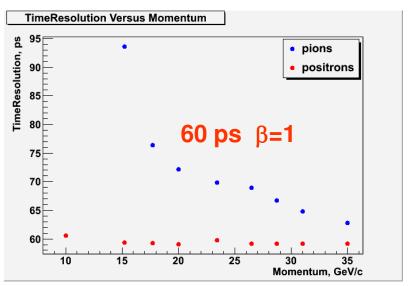


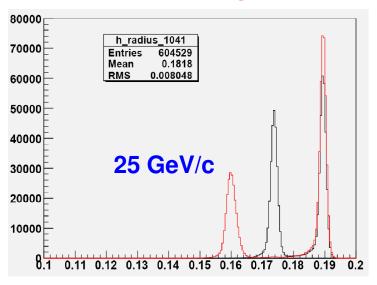



2009 test beam

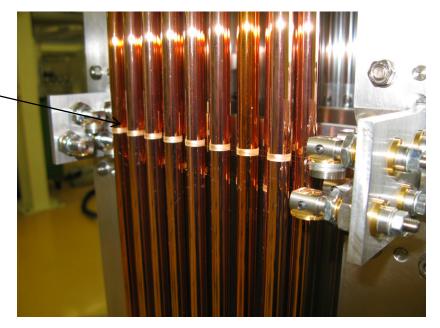
20 GeV/c: 3 positrons and 1 pion events

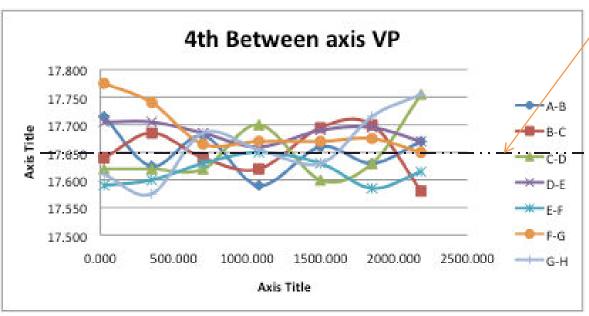


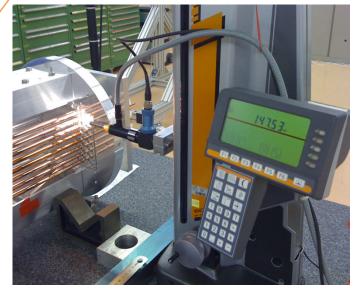


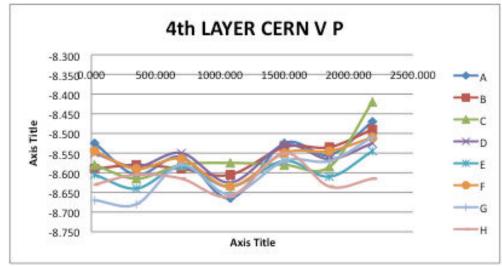

N. of hits per event at 35 GeV/c

RICH Test, June 2009, Preliminary

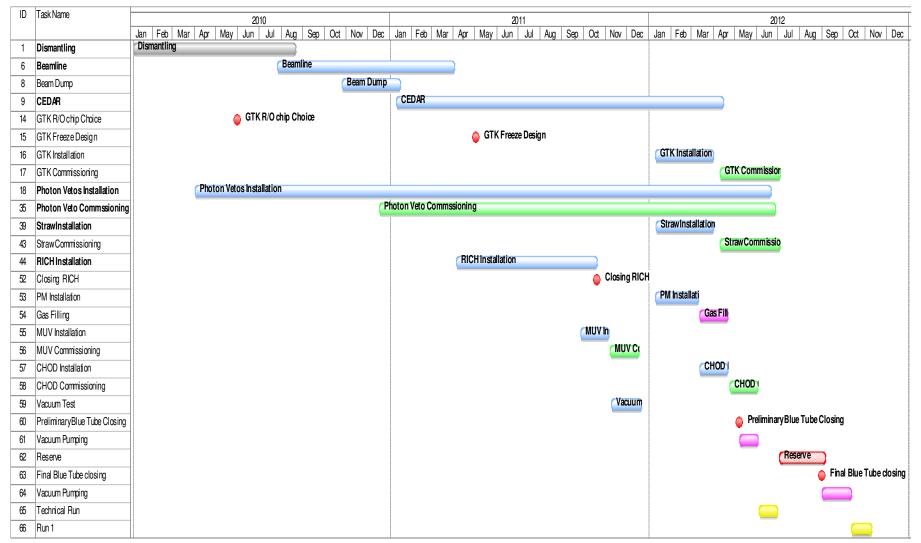



64 Straw technology Prototype



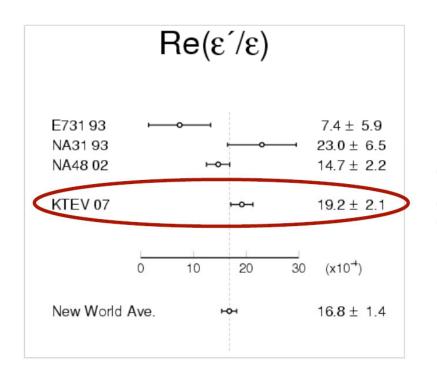

- •The straws are installed in vertical position
- Pretension is 1.5 kg
- •Spacer validated over 2.1 m.

Straw straightness MA62



ECN3 Installation Planning

Preliminary (by Ferdinand Hahn)



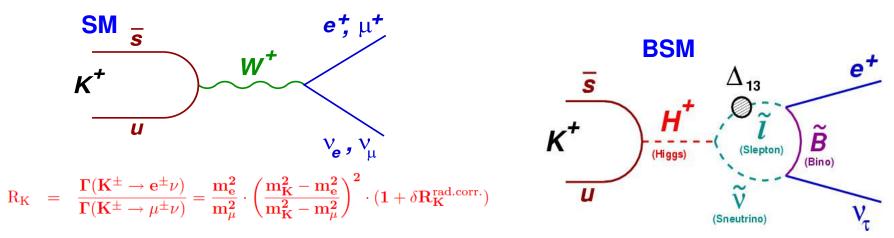
Some 2009 Experimental "Highlights" in Kaon Physics

- ε'/ε (KTeV, full sample) measurement
- Tests of Lepton Universality in leptonic decays
- Precise results of $\pi\pi$ S-wave Scattering Lengths from 3π and Ke4 decays (NA48/2)
- Updated determination of V_{us} from semi-leptonic decays

KTeV Result:
$$Re(\varepsilon'/\varepsilon) = [19.2 \pm 1.1(stat) \pm 1.8(syst)] \times 10^{-4}$$

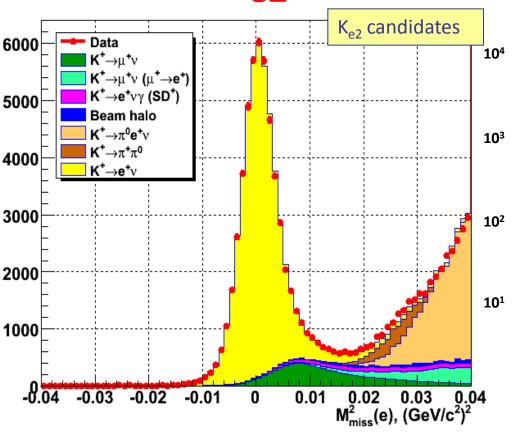
= $(19.2 \pm 2.1) \times 10^{-4}$

World average:


Re(
$$\varepsilon'/\varepsilon$$
) = (16.8 ± 1.4) × 10⁻⁴ (confidence level = 13%)

(KTeV 2003: $Re(\varepsilon'/\varepsilon) = [20.7 \pm 1.5(stat) \pm 2.4 (syst)] \times 10^{-4}$)

R_K : Lepton Universality Test with $K^+ \rightarrow I^+ \nu$ Decays at CERN NA62 First NA62 Result*

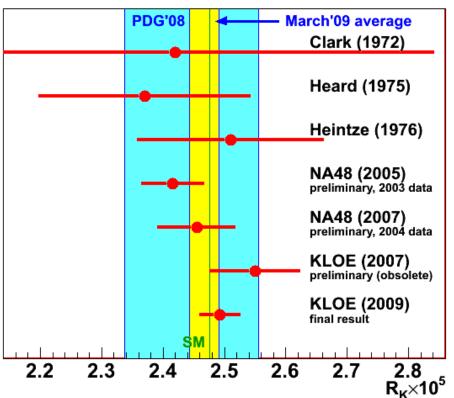

New Result presented by Evgueni Goudzovski @ KAON09

* New Collaboration practicing with single-track final states with old setup

K_{e2}: 40% of data set

51,089 K⁺ \rightarrow e⁺ \vee candidates, 99.2% electron ID efficiency,

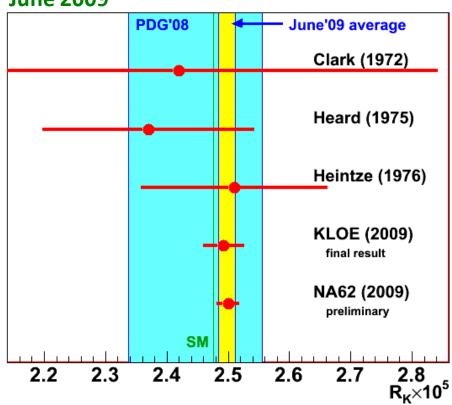
Backgrounds:


Source	B/(S+B)
$K_{\mu 2}$	(6.28±0.17)%
$K_{\mu 2} (\mu \rightarrow e)$	(0.23±0.01)%
$K_{e2\gamma}$ (SD+)	(1.02±0.15)%
Beam halo	(0.45±0.04)%
K _{e3}	0.03%
$K_{2\pi}$	0.03%
Total	(8.03±0.23)%

$$R_K = (2.500 \pm 0.012_{stat} \pm 0.011_{syst}) \times 10^{-5}$$

 $R_K = (2.500 \pm 0.016) \times 10^{-5}$

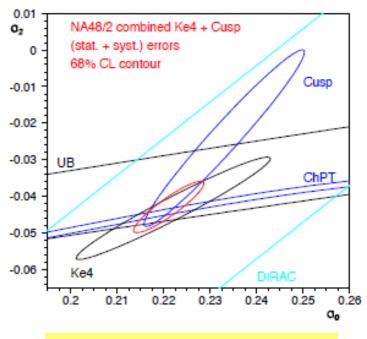
Comparison to world data MA62



March 2009

World average	$\delta R_{K} \times 10^{5}$	Precision
March 2009	2.467±0.024	0.97%
June 2009	2.498±0.014	0.56%

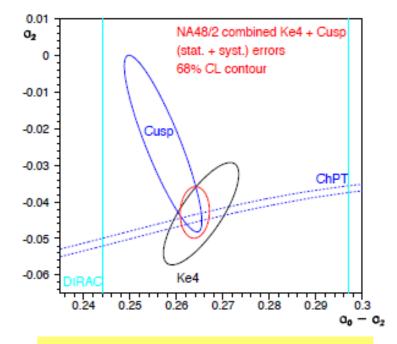
June 2009


With the full NA62 data sample of 2007/08, the precision is expected to be improved to better than $\delta K_R/R_K=0.5\%$.

Full Sample NA48/2 Results on ππ scattering

- Completion of the cusp analyses:
 - arXiv 0912.2165 (DOI 10.1140/epjc/s10052-009-1171-3)
- Form factors and $\pi\pi$ scattering from Ke4 (KAON09)

ππ Scattering Lengths from Ke4 Decays


Combination of Ke4 and cusp measurements:

$$a_0 = 0.2210 (47) (15)$$
 $a_2 = -0.0429 (44) (16)$
stat. syst.

With ChPT constraint:

$$a_0 = 0.2196 (27) (21)$$

 $a_2 = -0.0444 (7) (5)$

$$a_0 - a_2 = 0.2639 (20) (4)$$
 $a_2 = -0.0429 (44) (16)$
stat. syst.

ChPT prediction:

$$a_0 = 0.220 \pm 0.005$$

$$a_2 = -0.0444 \pm 0.0010$$

$|V_{us}|f_{+}(0)$ from K_{l3} data

$ V_{us} f_{+}(0)$	M. Palutan @ KAON09		Approx. contrib. to % err from:					
	W. Falut	all @ KAON09	% err	BR	τ	Δ	Int	
0.214 0.216 0.218 0.22								
	$K_L e3$	0.21652(56)	0.25	0.11	0.20	0.11	0.10	
	<i>I</i> / 2	0.04740(00)	0.00	0.47	0.40	0.44	0.45	
	$K_L \mu 3$	0.21746(69)	0.32	0.17	0.19	0.11	0.15	
	V .2	0.24572/422\	0.61	0.60	0.02	0 11	0.10	
	n _s es	0.21572(132)	1 0.0	0.60	0.03	0.11	0.10	
	K±e3	0.21624(113)	0.52	0.31	0.06	0.41	0.09	
	N-e3	0.21024(113)	0.52	0.51	0.00	0.41	0.03	
	<i>K</i> ±μ3	0.21676(141)	0.65	0.48	0.06	0 41	0.15	
	πμο	0.210/0(141)	0.00	0.40	0.00	0.41	0.10	
0.214 0.216 0.218 0.22								

Average: $|V_{us}| f_{+}(0) = 0.21660(47)$ $\chi^2/ndf = 3.03/4 (55\%)$

KLOE-2 at upgraded DAФNE

Upgrade of DA Φ NE in luminosity:

Crabbed waist scheme at DA Φ NE (proposal by P. Raimondi)

- increase L by a factor O(5)

- Successful experimental test at DAΦNE

- requires minor modifications
- relatively low cost

For the phase 0: KLOE restart taking data end 2009 with a minimal upgrade (L~5 fb⁻¹)
 Phase 1: full KLOE upgrade (KLOE-2) > 2011 (L>20 fb⁻¹)

Physics issues:

- Neutral kaon interferometry, CPT symmetry & QM tests
- Kaon physics, CKM, LFV, rare K_s decays
- Dark matter
- η,η' physics
- Light scalars, γγ physics
- Hadron cross section at low energy, muon anomaly

Detector upgrade issues:

- Inner tracker R&D
- γγ tagging system
- FEE maintenance and upgrade
- Computing and networking update
- etc.. (Trigger, software, ...)

Branchini @ KAON09

$|V_{us}|f_{+}(0)$: KLOE+Step0+WA

$$\Gamma(K_{l3(\gamma)}) = \frac{C_{K}^{2} G_{F}^{2} M_{K}^{5}}{192\pi^{3}} S_{EW} |V_{uS}|^{2} |f_{+}^{K^{0}\pi^{-}}(0)|^{2} I_{K\ell}(\lambda_{+,0}) (1 + \delta_{SU(2)}^{K} + \delta_{em}^{K\ell})^{2}$$

Approx. contr. to % err from:

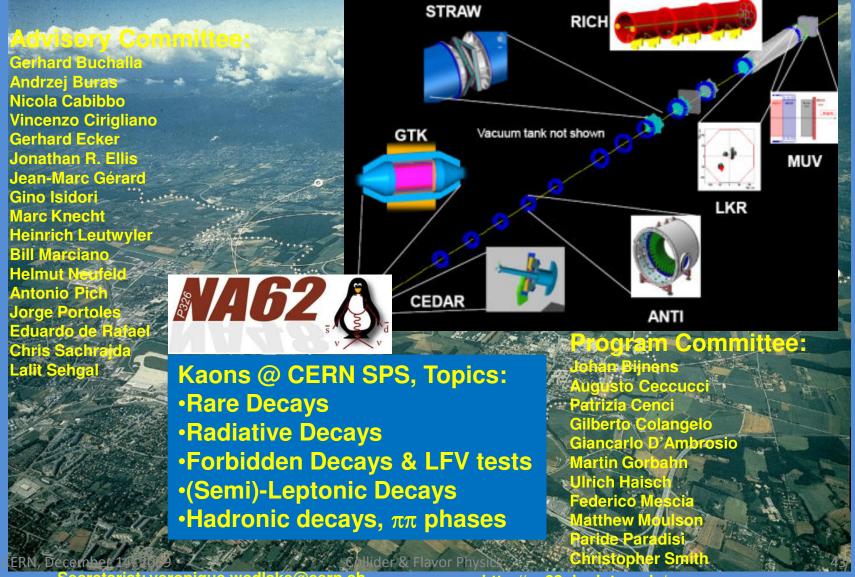
		% err			δ	
K _L e3	0.2155(4)	0.21	0.09	0.13	0.11	0.09
<i>K</i> _L μ3	0.2167(5)	0.25	0.10	0.13	0.11	0.15
K _S e3	0.2153(7)	0.33	0.30	0.03	0.11	0.09
K±e3	0.2152(8)	0.38	0.25	0.12	0.25	0.09
<i>Κ</i> ±μ3	0.2132(9)	0.42	0.27	0.12	0.25	0.15

Branchini @ KAON09

Fractional error on |Vus |f+(0) is 0.14%

World Average is 0.23%

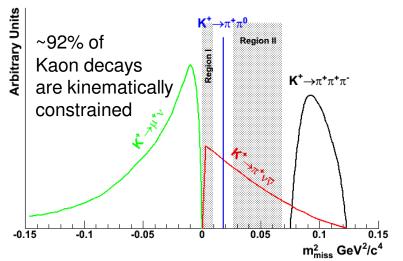
Summary

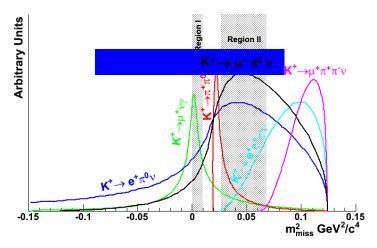

- A World-Wide endeavor to corner the Standard Model in ultra-rare decays (CERN, J-PARC, possibly FNAL) is in place
- The Theory-Experiment interplay is pushing precision tests (e.g. V_{us}, Ke2) towards the ~0.1 % precision
- There is a stream of results coming from last round of experiments....
-and new data are expected from OKA (Protvino) and KLOE (Frascati) very soon
- The interplay between Collider and Flavor Physics is alive and kicking

Spare Material

NA62 Physics Handbook

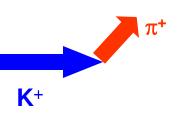
CERN, December 10-11, 2009

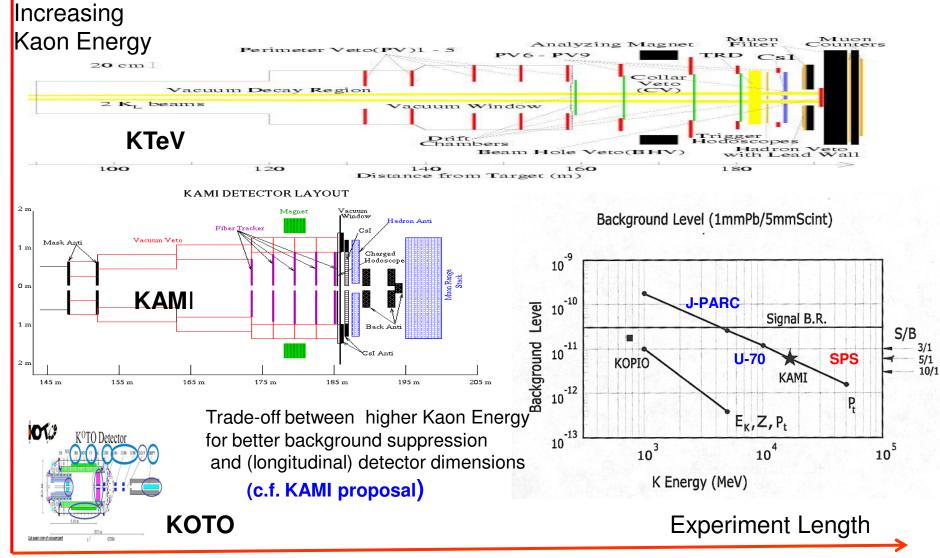




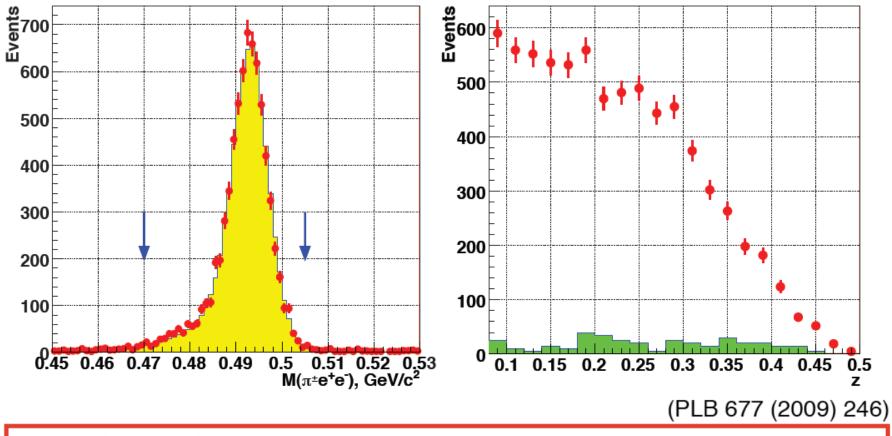
NA62 Experimental Method

$$m_{miss}^{2} \approx m_{K}^{2} \left(1 - \frac{|P_{\pi}|}{|P_{K}|}\right) + m_{\pi}^{2} \left(1 - \frac{|P_{K}|}{|P_{\pi}|}\right) - |P_{K}||P_{\pi}||\mathcal{G}_{\pi K}^{2}$$

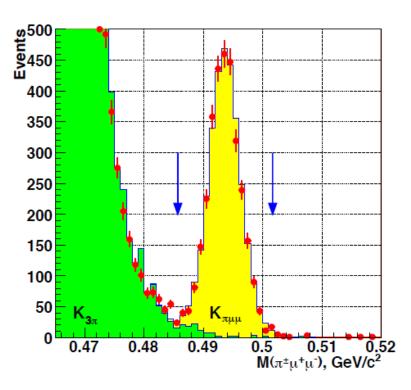

$$\mathbf{P}_{v}$$

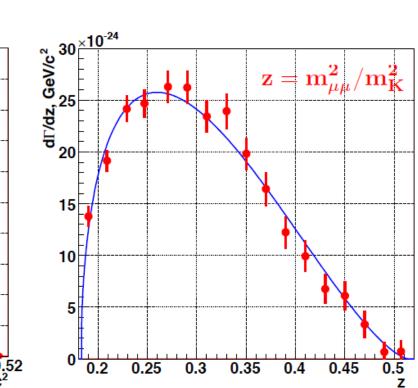


Signature:


- Incoming high momentum (75 GeV/c) K+
- •Outgoing low momentum (< 35 GeV/c) π^+
- •For $K_{\pi 2}$ P(π^0) > 40 GeV/c deposited in calorimeters
- •PID: CEDAR (π/K) , RICH (π/μ) , MUV (μ) , E/P (e/π)

K⁰_L Pencil: E_K vs Length


Precise Measurement of $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$

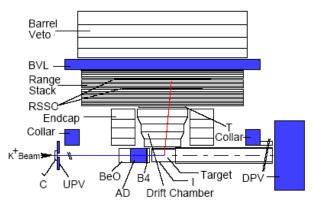


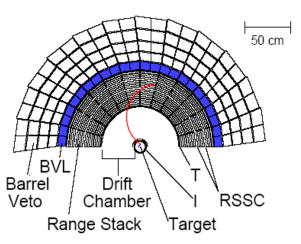
$${\sf Br}(K^\pm o \pi^\pm e^+ e^-) = 3.11 \, (4)_{\sf stat} \, (5)_{\sf syst} \, (8)_{\sf ext} \, (7)_{\sf model} imes 10^{-7}$$

Also limit on direct CP violation:
$$\frac{Br^+ - Br^-}{Br^+ + Br^-} = (-2.1 \pm 1.5 \pm 0.6)\%$$

Measurement of $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$

Whole NA48/2 data set:


3120 K[±]→π[±]μ⁺μ⁻ candidates


(World largest data sample)

Br($K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$) = (9.6 ± 0.2 ± 0.1) x 10⁻⁸

E787/E949: "Extreme Beam"

"The entire AGS beam of 65 x 10¹² (Tp/ spill) at a momentum of 21.5 GeV/c was delivered to the E949 K+ production target"

- •Duty Factor: 2.2 s / 5.4 s ~ 40%
- •1 int. length Pt target
- •Before separators: 500 π : 500 p : 1 K
- •After separators: Purity $K:\pi \sim 3-4:1$
- Incoming 710 MeV/c K+ identified by Č and slowed down by BeO and Active Degrader
- •~27% K+ stopped in the target (1.6 MHz)
- •1 T solenoid

K+: Č x B4 x Target

π⁺: Delayed Coincidence Range Energy Momentum π⁺→ μ⁺→e⁺