Patterns of Flavor and CP Violation in Supersymmetric Theories

Wolfgang Altmannshofer

Interplay of Collider and Flavour Physics 3rd general meeting

CERN, December 14 - 16, 2009

Outline

based on:

WA, A.J. Buras and P. Paradisi

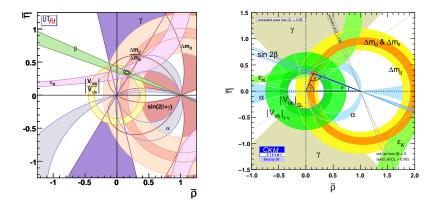
"Low Energy Probes of CP Violation in a Flavor Blind MSSM" Phys. Lett. B 669 (2008) 239

WA, A.J. Buras, S. Gori, P. Paradisi and D. Straub

"Anatomy and Phenomenology of FCNC and CPV effects in SUSY theories" arXiv:0909.1333 [hep-ph]

- 2 Phenomenology of CP Violation in a MFV MSSM
- 3 Predictions for $S_{\psi\phi}$ in SUSY Flavor Models
- Interplay between Flavor and Collider Physics
- 5 Summary

Flavor Violation in the SM



Impressive consistency of the SM CKM picture of flavor and CP violation

(apart from some small tensions...

Lunghi, Soni '08, '09; Buras, Guadagnoli 08', 09'; WA, Buras, Gori, Paradisi, Staub '09; Laiho, Lunghi, Van de Water 09')

The NP Flavor Problem

FCNC processes are strongly suppressed in the SM

- loop suppression
- GIM mechanism
- ▶ small CKM angles
- ⇒ highly sensitive probes of NP degrees of freedom

Consider a generic NP contribution to e.g. Kaon mixing

$$\frac{C}{\Lambda_{\rm NP}^2} \left(\bar{s}\gamma_\mu P_L d\right)^2$$

Measurements of ΔM_K and ϵ_K lead to strong constraints on C/Λ^2_{NP}

The NP Flavor Problem

FCNC processes are strongly suppressed in the SM

- loop suppression
- GIM mechanism
- ▶ small CKM angles
- ⇒ highly sensitive probes of NP degrees of freedom

Consider a generic NP contribution to e.g. Kaon mixing

$$\frac{C}{\Lambda_{\rm NP}^2} \left(\bar{s} \gamma_\mu P_L d\right)^2$$

Measurements of ΔM_K and ϵ_K lead to strong constraints on C/Λ_{NP}^2

ΔM_{κ}	€K		
$C \simeq 1 \Rightarrow \Lambda_{NP} \gtrsim 10^3 \text{TeV}$	$Im(C) \simeq 1 \Rightarrow \Lambda_{NP} \gtrsim 10^4 \text{TeV}$		
$\Lambda_{ m NP} \simeq 1 { m TeV} \ \Rightarrow \ C \lesssim 10^{-6}$	$\Lambda_{\rm NP} \simeq 1 { m TeV} \ \Rightarrow \ { m Im}(C) \lesssim 10^{-8}$		

- a generic flavor structure of NP requires a very high NP scale
- NP degrees of freedom at the TeV scale have to have a highly non-generic flavor structure

Wolfgang Altmannshofer (TUM)

The SUSY Flavor Problem

Misalignment between quark and squark masses parametrized by Mass Insertions δ

$$M_{ ilde q}^2 = ilde m^2 \left(extsf{1} + \delta_q
ight)$$

$$\delta_q = \begin{pmatrix} \delta_q^{LL} & \delta_q^{LR} \\ \delta_q^{RL} & \delta_q^{RR} \end{pmatrix}$$

Complex Mass Insertions lead to flavor and CP violating gluino-quark-squark interactions that will generate the dominant contributions to FCNCs

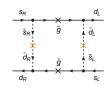
The SUSY Flavor Problem

Misalignment between quark and squark masses parametrized by Mass Insertions δ

$$M_{\tilde{q}}^{2} = \tilde{m}^{2} (11 + \delta_{q})$$
$$\delta_{q} = \begin{pmatrix} \delta_{q}^{LL} & \delta_{q}^{LR} \\ \delta_{q}^{RL} & \delta_{q}^{RR} \end{pmatrix}$$

Complex Mass Insertions lead to flavor and CP violating gluino-quark-squark interactions that will generate the dominant contributions to FCNCs

e.g. Kaon mixing in presence of δ_d^{LL} and δ_d^{RR}



 $\propto \frac{\alpha_s}{\tilde{m}^2} (\delta_d^{LL})_{21} (\delta_d^{RR})_{21} \ (\bar{s}P_L d) (\bar{s}P_R d)$

- ► operator matrix element is chirally enhanced by M²_K/m²_s
- Wilson coefficient is color and RGE enhanced

The SUSY Flavor Problem

Misalignment between quark and squark masses parametrized by Mass Insertions δ

$$M_{\tilde{q}}^{2} = \tilde{m}^{2} (11 + \delta_{q})$$
$$\delta_{q} = \begin{pmatrix} \delta_{q}^{LL} & \delta_{q}^{LR} \\ \delta_{q}^{RL} & \delta_{q}^{RR} \end{pmatrix}$$

 severe constraints on the SUSY scale and the Mass Insertions

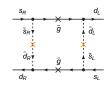
$$(\delta_d^{LL})_{21} \simeq (\delta_d^{RR})_{21} \simeq 1$$

 \Rightarrow $\tilde{m} \gtrsim 10^3 (10^4) \text{TeV}$

$$\begin{split} \tilde{m} &\simeq 1 \text{TeV} \\ \Rightarrow & (\delta_d^{LL})_{21}, (\delta_d^{RR})_{21} \lesssim 10^{-3} (10^{-4}) \end{split}$$

 SUSY at the TeV scale has to exhibit a highly non-generic flavor structure Complex Mass Insertions lead to flavor and CP violating gluino-quark-squark interactions that will generate the dominant contributions to FCNCs

e.g. Kaon mixing in presence of δ_d^{LL} and δ_d^{RR}

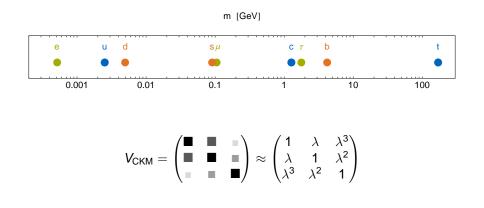


$$\propto \frac{\alpha_s}{\tilde{m}^2} (\delta_d^{LL})_{21} (\delta_d^{RR})_{21} \ (\bar{s}P_L d) (\bar{s}P_R d)$$

- ► operator matrix element is chirally enhanced by M²_K/m²_s
- Wilson coefficient is color and RGE enhanced

Wolfgang Altmannshofer (TUM)

The SM Flavor Problem



Also the SM flavor parameters are highly non generic. Both the fermion masses and mixing angles show a hierarchical structure.

Possible ways to address these problems

Minimal Flavor Violation

D'Ambrosio, Giudice, Isidori, Strumia '02

- the global U(3)⁵ flavor symmetry of the gauge sector is only broken by the SM Yukawa couplings
- CKM matrix is the only source of flavor violation
- FCNCs naturally suppressed
- visible effects possible in helicity suppressed processes as b → sγ, B_s → μ⁺μ⁻, B → τν
- additional sources of CP violation are in principle allowed!

But: only a solution to the NP/SUSY flavor problem, no explanation of the Yukawa hierarchies...

Possible ways to address these problems

Minimal Flavor Violation

D'Ambrosio, Giudice, Isidori, Strumia '02

- the global U(3)⁵ flavor symmetry of the gauge sector is only broken by the SM Yukawa couplings
- CKM matrix is the only source of flavor violation
- FCNCs naturally suppressed
- visible effects possible in helicity suppressed processes as b → sγ, B_s → μ⁺μ⁻, B → τν
- additional sources of CP violation are in principle allowed!

Alignment

Nir, Seiberg '93

- ► quark and squark masses are approximately aligned $\rightarrow \delta_{ij} \ll 1, i \neq j$
- naturally realized in abelian flavor models

Degeneracy

- ► squark masses are approximately universal $\rightarrow \delta_{ij} \ll 1$
- can e.g. be realized in frameworks with low scale gauge mediation or in non-abelian flavor models

But: only a solution to the NP/SUSY flavor problem, no explanation of the Yukawa hierarchies...

Ambitious approach of SUSY flavor models:

simultaneous explanation of the Yukawa hierarchies and a non-generic squark flavor structure

How to test such scenarios?

Look for characteristic NP effects in flavor observables that are not/only poorly measured.

the rare decay
$$B_S \rightarrow \mu^+ \mu^ BR(B_S \rightarrow \mu^+ \mu^-)_{SM} = (3.6 \pm 0.4) \times 10^{-9}$$

 $BR(B_S \rightarrow \mu^+ \mu^-)_{exp} < 5.8 \times 10^{-8}$ the B_s mixing
phase $S_{\psi\phi}^{SM} \simeq 0.036$
 $S_{\psi\phi}^{exp} = 0.81_{-0.32}^{+0.12}$ the direct CP
asymmetry in
 $b \rightarrow s\gamma$ $A_{CP}(b \rightarrow s\gamma)_{SM} = (-0.44_{-0.}^{+0.})\%$
 $A_{CP}(b \rightarrow s\gamma)_{exp} = (-0.4 \pm 3.6)\%$ the time
dependent CP
asymmetry in
 $B \rightarrow \phi K_S$ $S_{\phi K_S}^{SM} = 0.71 \pm 0.03$
 $S_{\phi K_S}^{exp} = 0.44 \pm 0.17$

+
$$D_0 - ar{D}_0$$
 mixing, $B o K^* \ell^+ \ell^-$, $B o K^* \gamma$, $B o K^{(*)}
u ar{
u}$, ...

How to test such scenarios?

Look for characteristic NP effects in flavor observables that are not/only poorly measured.

the rare decay
$$B_S \rightarrow \mu^+ \mu^ BR(B_S \rightarrow \mu^+ \mu^-)_{SM} = (3.6 \pm 0.4) \times 10^{-9}$$

 $BR(B_S \rightarrow \mu^+ \mu^-)_{exp} < 5.8 \times 10^{-8}$ the B_S mixing
phase $S_{\psi\phi}^{SM} \simeq 0.036$
 $S_{\psi\phi}^{exp} = 0.81^{+0.12}_{-0.32}$ the direct CP
asymmetry in
 $b \rightarrow s\gamma$ $A_{CP}(b \rightarrow s\gamma)_{SM} = (-0.44^{+0.}_{-0.32})\%$ the time
dependent CP
asymmetry in
 $B \rightarrow \phi K_S$ $S_{\phi K_S}^{SM} = 0.71 \pm 0.03$
 $S_{\phi K_S}^{exp} = 0.44 \pm 0.17$

+
$$D_0 - \overline{D}_0$$
 mixing, $B \to K^* \ell^+ \ell^-$, $B \to K^* \gamma$, $B \to K^{(*)} \nu \overline{\nu}$, ...

How to test such scenarios?

Look for characteristic NP effects in flavor observables that are not/only poorly measured.

the rare decay
$$B_S \rightarrow \mu^+ \mu^ BR(B_S \rightarrow \mu^+ \mu^-)_{SM} = (3.6 \pm 0.4) \times 10^{-9}$$

 $BR(B_S \rightarrow \mu^+ \mu^-)_{exp} < 5.8 \times 10^{-8}$ the B_S mixing
phase $S_{\psi\phi}^{SM} \simeq 0.036$
 $S_{\psi\phi}^{exp} = 0.81^{+0.12}_{-0.32}$ the direct CP
asymmetry in
 $b \rightarrow s\gamma$ $A_{CP}(b \rightarrow s\gamma)_{SM} = (-0.44^{+0}_{-0})\%$
 $A_{CP}(b \rightarrow s\gamma)_{exp} = (-0.4 \pm 3.6)\%$ the time
dependent CP
asymmetry in
 $B \rightarrow \phi K_S$ $S_{\phi K_S}^{SM} = 0.71 \pm 0.03$
 $S_{\phi K_S}^{exp} = 0.44 \pm 0.17$

+
$$D_0 - \bar{D}_0$$
 mixing, $B \to K^* \ell^+ \ell^-$, $B \to K^* \gamma$, $B \to K^{(*)} \nu \bar{\nu}$, ...

Minimal Flavor Violation

In a flavor blind MSSM (FBMSSM) there are no additional flavor structures apart from the CKM matrix. In particular, we assume

- universal squark masses
- hierarchical and flavor diagonal trilinear couplings
- flavor conserving but CP violating phases (in particular in the A-terms)

In a flavor blind MSSM (FBMSSM) there are no additional flavor structures apart from the CKM matrix. In particular, we assume

- universal squark masses
- hierarchical and flavor diagonal trilinear couplings
- flavor conserving but CP violating phases (in particular in the A-terms)

Within this setup large NP effects arise dominantly through the magnetic and chromomagnetic dipole operators

$$\mathcal{O}_7 = rac{\mathsf{e}}{16\pi^2} m_b ar{\mathsf{s}}_L \sigma^{\mu
u} F_{\mu
u} b_R \; ,$$

$$\mathcal{O}_8 = \frac{g_s}{16\pi^2} m_b \bar{s}_L \sigma^{\mu\nu} G_{\mu\nu} b_R$$

In a flavor blind MSSM (FBMSSM) there are no additional flavor structures apart from the CKM matrix. In particular, we assume

- universal squark masses
- hierarchical and flavor diagonal trilinear couplings
- flavor conserving but CP violating phases (in particular in the A-terms)

Within this setup large NP effects arise dominantly through the magnetic and chromomagnetic dipole operators

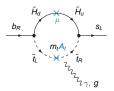
$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b \bar{s}_L \sigma^{\mu\nu} F_{\mu\nu} b_R \; ,$$

$$\mathcal{O}_8 = \frac{g_s}{16\pi^2} m_b \bar{s}_L \sigma^{\mu\nu} G_{\mu\nu} b_R$$

The corresponding Wilson coefficients recieve the dominant contributions from Higgsino-stop loops* and are therefore mainly sensitive to one complex parameter combination

 $C_{7,8} \propto \mu A_t$

* see Hofer, Nierste, Scherer '09 for additional 2loop gluino contributions



In a flavor blind MSSM (FBMSSM) there are no additional flavor structures apart from the CKM matrix. In particular, we assume

- universal squark masses
- hierarchical and flavor diagonal trilinear couplings
- flavor conserving but CP violating phases (in particular in the A-terms)

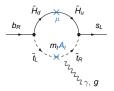
Within this setup large NP effects arise dominantly through the magnetic and chromomagnetic dipole operators

$$\mathcal{O}_7 = rac{e}{16\pi^2} m_b ar{s}_L \sigma^{\mu
u} F_{\mu
u} b_R \; ,$$

$$\mathcal{O}_8 = \frac{g_s}{16\pi^2} m_b \bar{s}_L \sigma^{\mu\nu} G_{\mu\nu} b_R$$

The corresponding Wilson coefficients recieve the dominant contributions from Higgsino-stop loops* and are therefore mainly sensitive to one complex parameter combination

 $C_{7,8} \propto \mu A_t$



* see Hofer, Nierste, Scherer '09 for additional 2loop gluino contributions

→ Interesting correlated effects in CP violating observables

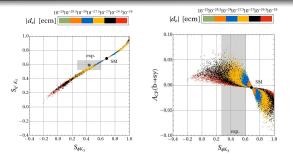
WA, Buras, Paradisi '08

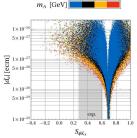
For analyses of similar frameworks see:

Baek, Ko '99; Bartl, Gajdosik, Lunghi, Masiero, Porod, Stremnitzer, Vives '01; Ellis, Lee, Pilaftsis '07; Mercolli, Smith '09; Paradisi, Straub '09

Wolfgang Altmannshofer (TUM)

Phenomenology of CP Violation in a FBMSSM

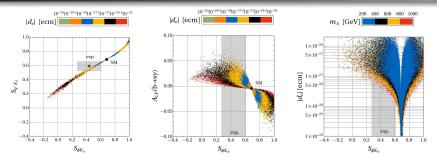




200 400 600 800 1000

- ► CP violating △F = 0 and △F = 1 dipole amplitudes can be strongly modified
- ► S_{φKS} and S_{η'KS} can simultaneously be brought in agreement with the data
- sizeable and correlated effects in $A_{CP}^{bs\gamma} \simeq 0\% 5\%$
- ► lower bounds on the electron and neutron EDMs at the level of $d_{e,n} \gtrsim 10^{-28}$ ecm
- ► large and correlated effects in the CP asymmetries in B → K*µ⁺µ⁻ (WA, Ball, Bharucha, Buras, Straub, Wick)

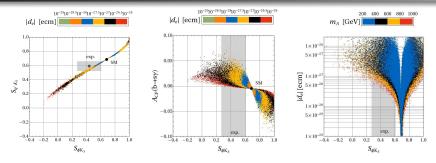
Phenomenology of CP Violation in a FBMSSM



- ► CP violating △F = 0 and △F = 1 dipole amplitudes can be strongly modified
- S_{φKS} and S_{η'KS} can simultaneously be brought in agreement with the data
- sizeable and correlated effects in $A_{CP}^{bs\gamma} \simeq 0\% 5\%$
- ► lower bounds on the electron and neutron EDMs at the level of $d_{e,n} \gtrsim 10^{-28}$ ecm
- ► large and correlated effects in the CP asymmetries in B → K*µ⁺µ⁻ (WA, Ball, Bharucha, Buras, Straub, Wick)

- ► the leading NP contributions to △F = 2 amplitudes are not sensitive to the new phases of the FBMSSM
- CP violation in meson mixing is SM like
- ▶ i.e. small effects in S_{ψφ}, S_{ψKS} and ε_K
- in particular: $0.03 < S_{\psi\phi} < 0.05$

Phenomenology of CP Violation in a FBMSSM



- ► CP violating △F = 0 and △F = 1 dipole amplitudes can be strongly modified
- S_{φKS} and S_{η'KS} can simultaneously be brought in agreement with the data
- sizeable and correlated effects in $A_{CP}^{bs\gamma} \simeq 0\% 5\%$
- ► lower bounds on the electron and neutron EDMs at the level of $d_{e,n} \gtrsim 10^{-28}$ ecm
- ► large and correlated effects in the CP asymmetries in B → K*µ⁺µ⁻ (WA, Ball, Bharucha, Buras, Straub, Wick)

- ► the leading NP contributions to △F = 2 amplitudes are not sensitive to the new phases of the FBMSSM
- CP violation in meson mixing is SM like
- ▶ i.e. small effects in S_{ψφ}, S_{ψKS} and ε_K
- in particular: $0.03 < S_{\psi\phi} < 0.05$

A combined study of all these observables and their correlations constitutes a very powerful test of the FBMSSM

Beyond MFV

only CKM like δ_d^{LL} mass insertions

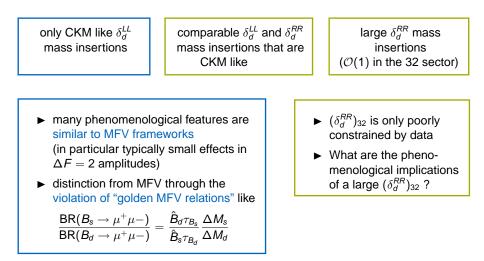
 $\begin{array}{l} \text{comparable } \delta_d^{LL} \text{ and } \delta_d^{RR} \\ \text{mass insertions that are} \\ \text{CKM like} \end{array}$

large δ_d^{RR} mass insertions ($\mathcal{O}(1)$ in the 32 sector) only CKM like δ_d^{LL} mass insertions

comparable δ_d^{LL} and δ_d^{RR} mass insertions that are CKM like large δ_d^{RR} mass insertions ($\mathcal{O}(1)$ in the 32 sector)

- many phenomenological features are similar to MFV frameworks (in particular typically small effects in ΔF = 2 amplitudes)
- distinction from MFV through the violation of "golden MFV relations" like

$$\frac{\mathsf{BR}(B_{\mathsf{s}} \to \mu^+ \mu^-)}{\mathsf{BR}(B_d \to \mu^+ \mu^-)} = \frac{\hat{B}_d \tau_{B_{\mathsf{s}}}}{\hat{B}_{\mathsf{s}} \tau_{B_d}} \frac{\Delta M_{\mathsf{s}}}{\Delta M_d}$$



Implications of a large $(\delta_d^{RR})_{32}$ on B_s mixing

Gluino boxes

 $\propto \frac{\alpha_s^2}{\tilde{m}^2} (\delta_d^{LL})_{32} (\delta_d^{RR})_{32} \quad (\bar{b}P_L s) (\bar{b}P_R s)$ $\propto \frac{\alpha_s^2}{\tilde{m}^2} (\delta_d^{RR})_{32}^2 \qquad (\bar{b}\gamma_\mu P_R s)^2$

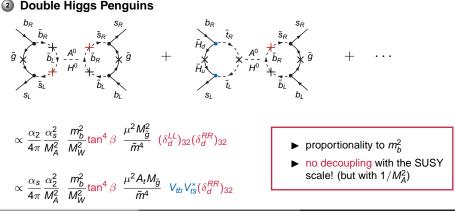
- ► color and RGE enhancement if (δ^{LL}_d)₃₂ and (δ^{RR}_d)₃₂ present simultaneously
- decoupling with $1/\tilde{m}^2$

Implications of a large $(\delta_d^{RR})_{32}$ on B_s mixing

3 Gluino boxes

 $\propto \frac{\alpha_s^2}{\tilde{m}^2} (\delta_d^{LL})_{32} (\delta_d^{RR})_{32} \quad (\bar{b}P_L s) (\bar{b}P_R s)$ $\propto \frac{\alpha_s^2}{\tilde{m}^2} (\delta_d^{RR})_{32}^2 \qquad (\bar{b}\gamma_\mu P_R s)^2$

- ► color and RGE enhancement if (δ^{LL}_d)₃₂ and (δ^{RR}_d)₃₂ present simultaneously
- decoupling with $1/\tilde{m}^2$



There are many flavor models that predict sizable δ_d^{RR}

Example: Agashe, Carone '03 (AC)

- Abelian flavor model based on a U(1) horizontal symmetry
- "remarkable level of alignment"

$$(\delta_d^{LL}) \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \lambda^2 \\ 0 & \lambda^2 & 1 \end{pmatrix}$$
$$(\delta_d^{RR}) \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Example: Agashe, Carone '03 (AC)

- Abelian flavor model based on a U(1) horizontal symmetry
- "remarkable level of alignment"

$$(\delta_d^{LL}) \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \lambda^2 \\ 0 & \lambda^2 & 1 \end{pmatrix}$$
$$(\delta_d^{RR}) \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Expected phenomenology:

- Small effects in $b \rightarrow d$ and $s \rightarrow d$ transitions
- Large effects in B_s-B_s mixing (in particular in S_{ψφ} for complex δs)

Example: Agashe, Carone '03 (AC)

- Abelian flavor model based on a U(1) horizontal symmetry
- "remarkable level of alignment"

$$(\delta_d^{LL}) \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \lambda^2 \\ 0 & \lambda^2 & 1 \end{pmatrix}$$
$$(\delta_d^{RR}) \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Expected phenomenology:

- Small effects in $b \rightarrow d$ and $s \rightarrow d$ transitions
- Large effects in B_s-B_s mixing (in particular in S_{ψφ} for complex δs)

Example: Ross, Velasco-Sevilla, Vives '04 (RVV)

- Non abelian flavor model based on a SU(3) flavor symmetry
- 1st and 2nd generation of squarks approximately degenerate

$$\begin{pmatrix} \delta_d^{LL} \\ \delta_d^{C} \end{pmatrix} \sim \begin{pmatrix} \lambda^4 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^4 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \delta_d^{RR} \\ \lambda^4 & \lambda^3 & \lambda \\ \lambda^3 & \lambda & 1 \end{pmatrix}$$

Example: Agashe, Carone '03 (AC)

- Abelian flavor model based on a U(1) horizontal symmetry
- "remarkable level of alignment"

$$(\delta_{d}^{LL}) \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \lambda^{2} \\ 0 & \lambda^{2} & 1 \end{pmatrix}$$
$$(\delta_{d}^{RR}) \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Expected phenomenology:

- Small effects in $b \rightarrow d$ and $s \rightarrow d$ transitions
- ► Large effects in D₀-D
 0 mixing (general feature of abelian models)
- Large effects in B_s-B_s mixing (in particular in S_{ψφ} for complex δs)

Example: Ross, Velasco-Sevilla, Vives '04 (RVV)

- Non abelian flavor model based on a SU(3) flavor symmetry
- 1st and 2nd generation of squarks approximately degenerate

$$\begin{pmatrix} \delta_d^{LL} \\ \delta_d^{RR} \end{pmatrix} \sim \begin{pmatrix} \lambda^4 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^4 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$$
$$\begin{pmatrix} \delta_d^{RR} \\ \lambda^4 & \lambda^3 & \lambda \\ \lambda^3 & \lambda & 1 \end{pmatrix}$$

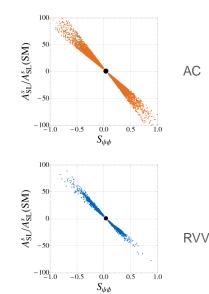
Expected phenomenology:

- Moderate effects in b → d and s → d transitions (large effects in e_K)
- Small effects in $D_0 \overline{D}_0$ mixing
- Sizeable effects in B_s-B
 s mixing (in particular in S{ψφ} for complex δs)

Numerical Results for $S_{\psi\phi}$

- ► Both models can have large effects in S_{ψφ}
- Strong (model independent) correlation with the semileptonic asymmetry A^s_{SL}

(Ligeti, Papucci, Prerez '06)

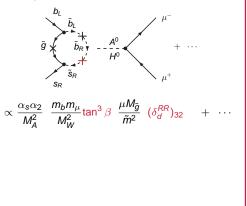


- $^{(*)}$ plots for the flavor models based on MSUGRA like spectrum 5 < tan β < 55, m_0 < 2TeV, m_{12} < 1TeV,
 - $-3m_0 < A_0 = 3m_0, \, \mu > 0$

with flavor structures implemented at the GUT scale

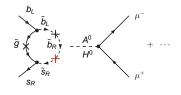
Correlation with $B_s \rightarrow \mu^+ \mu^-$

► for large double penguin contributions to B_s mixing, a correlation with $B_s \rightarrow \mu^+ \mu^-$ is expected



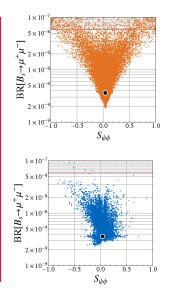
Correlation with $B_s \rightarrow \mu^+ \mu^-$

▶ for large double penguin contributions to B_s mixing, a correlation with $B_s \rightarrow \mu^+ \mu^-$ is expected



$$\propto \frac{\alpha_s \alpha_2}{M_A^2} \frac{m_b m_\mu}{M_W^2} \tan^3 \beta \frac{\mu M_{\tilde{g}}}{\tilde{m}^2} \frac{(\delta_d^{RR})_{32}}{(\delta_d^{RR})_{32}} + \cdots$$

- ► double penguins are dominant in the AC model \Rightarrow lower bound on BR($B_s \rightarrow \mu^+ \mu^-$) at the level of 10^{-8}
- ► in RVV model also boxes play a role ⇒ no correlation

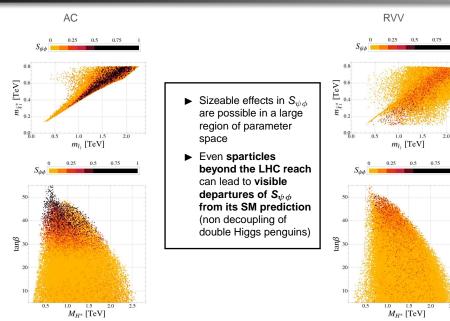


RVV

Wolfgang Altmannshofer (TUM)

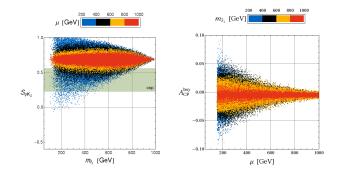
Flavor vs. Collider

Flavor Model Implications for Direct Searches



25

FBMSSM Implications for Direct Searches



- ▶ $S_{\phi K_{
 m S}} \simeq 0.4$ implies $\mu \lesssim$ 600GeV and $m_{\tilde{t}_{
 m f}} \lesssim$ 700GeV
- ► similarly, large non standard effects in $A_{CP}^{bs\gamma} \gtrsim 2\%$ imply $\mu \lesssim 600$ GeV and $m_{\tilde{t}_{L}} \lesssim 800$ GeV
- squarks lie well within the reach of LHC

Summary

- ▶ in a MFV MSSM, CP violating $\Delta F = 0$ and $\Delta F = 1$ dipole amplitudes can be strongly modified
- ▶ one finds highly correlated effects in the EDMs, $A_{CP}^{bs\gamma}$, CP asymmetries in $B \rightarrow K^* \ell^+ \ell^-$, $S_{\phi K_S}$ and $S_{\eta' K_S}$
- such effects imply SUSY particles in the reach of LHC
- ► $\Delta F = 2$ amplitudes remain however SM like (in particular: small effects in $S_{\psi\phi}$)

Summary

- ▶ in a MFV MSSM, CP violating $\Delta F = 0$ and $\Delta F = 1$ dipole amplitudes can be strongly modified
- ▶ one finds highly correlated effects in the EDMs, $A_{CP}^{bs\gamma}$, CP asymmetries in $B \rightarrow K^* \ell^+ \ell^-$, $S_{\phi K_S}$ and $S_{\eta' K_S}$
- such effects imply SUSY particles in the reach of LHC
- ► $\Delta F = 2$ amplitudes remain however SM like (in particular: small effects in $S_{\psi\phi}$)

- sizeable \u03c8_d^{RR} mass insertions lead to flavor changing right handed currents that imply a qualitatively very different phenomenology
- ► $\Delta F = 2$ amplitudes can recieve large NP effects
- in the large tan β regime, double Higgs penguin contributions to B_s mixing lead to a correlation between S_{ψφ} and B_s → μ⁺μ⁻, implying a lower bound on BR(B_s → μ⁺μ⁻) at the level of 10⁻⁸ for S_{ψφ} ≃ 0.8
- these effects do not decouple with the SUSY scale
- testable SUSY signatures in flavor observables even for sparticles that are beyond the LHC reach

"Flavor DNA"

	GMSSM	AC	RVV	δ_{LL} only	FBMSSM
$D^0 - ar{D}^0$ mixing	***	***	*	*	*
€K	***	*	***	*	*
$S_{\psi\phi}$	***	***	***	*	*
$S_{\phi K_{\rm S}}, S_{\eta' K_{\rm S}}$	***	***	**	***	***
$A^{bs\gamma}_{CP}$	***	*	*	***	***
$\langle {\cal A}_{7,8} angle ({\cal B} ightarrow {\cal K}^* \mu^+ \mu^-)$	***	*	*	***	***
$\langle {\cal A}_9 angle ({\cal B} ightarrow {\cal K}^* \mu^+ \mu^-)$	***	*	*	*	*
$B_{ m s} ightarrow \mu^+ \mu^-$	***	***	***	***	***
$B ightarrow K^{(*)} uar{ u}$	**	*	*	*	*
$K ightarrow \pi u ar{ u}$	***	*	*	*	*
d _e	***	***	***	*	***

 $\star \star \star$: large effects, $\star \star$: moderate effects, \star : small effects