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interesting case for Yukawa unification: yb ≈ yt ≈ 1,

then tan β =
vu

vd

∼ O

(

mt

mb

)

∼ O(50)

large tan β ↔ small vd ≪ v
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tanβ-enhancement

consider tree-level amplitude with suppression by vd

one-loop correction possibly contains vu instead
[Hall,Rattazzi,Sarid; Blazek,Pokorski,Raby]

well-known example:

bL bR bL bR

vd vu

mb ∝ vd , δmb ∝ loop · vu

δmb

mb

∼ loop · tan β ∼ O(1)

Question:

How should we account for such O(1) corrections?
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Accounting for tan β-enhanced corrections

1 Effective Lagrangian in the decoupling limit
[Babu,Kolda; Buras,Chankowski,Rosiek,Slawianowska; Dedes,Pilaftsis;...]

assume MSUSY ≫ MEW and integrate out SUSY fields, keep
only Higgs and SM fields. E.g. mass correction

bL bR bL bRg̃

b̃L b̃R

vu vu

2 Calculation in the full MSSM beyond decoupling (our work)
tan β-enhanced mass corrections from finite self-energies.
Re-enter self-energy, produces higher-order terms

bL bR

g̃

b̃i

∝ tan β ⇒ yb =
mb(1 − ∆b + ∆2

b
− ...)

v cos β
=

mb

v cos β(1 + ∆b)

resummation of Σb = mb∆b = mbǫb tanβ to all orders
[Carena,Garcia,Nierste,Wagner]
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Motivation: Why go beyond the decoupling limit?

MSUSY ∼ MEW is natural

validity of decoupling assumption MSUSY ≫ MEW unclear →
test accuracy

experimental constraints from Bs → µ+µ− and B− → τ ν̄τ

require heavy Higgs masses if tan β is large → why
integrate out SUSY particles while keeping Higgs bosons?

study tan β-enhanced effects in couplings of SUSY
particles (inaccessible from eff. Lagrangian)

full control over renormalization scheme (see below...)
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Our method beyond the decoupling limit

no effective Lagrangian → Renormalize MSSM Lagrangian
to account for tan β-enhanced self-energies

use on-shell renormalization to insert measured SM
parameters
at one-loop:

flavour-conserving quark self-energies subtracted by mass
or Yukawa counterterms
flavour-changing quark self-energies subtracted by
(antihermitian) flavour-changing wave-function
counterterms
CKM counterterms adjusted accordingly

[Denner,Sack; Gambino,Grassi,Madricardo]

squark self-energies not tan β-enhanced → neglected

then: define counterterms for higher orders in (loop · tan β)
and resum!
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Issues beyond the decoupling limit

Questions:

How does the resummation formula for mdi
depend on the

renormalization scheme?

Can we also resum the effects of flavour-changing
self-energies? And what are the consequences?
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(1)

Subtract SUSY-loops on-shell. Still freedom to choose
(SUSY) input parameters!

E.g.
bL bR

g̃

b̃i

bL bR

χ̃±
m

ũi, c̃i, t̃i

bL bR

χ̃0
m
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to clarify things, write δmb = δmg̃
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b

from Feynman diagrams:
gluino contribution depends on θ

b̃
, ϕ

b̃
(sbottom mixing angle

and phase), m
b̃1

, m
b̃2

chargino contribution depends on mb from Yukawa coupling
neutralino contribution depends on mb and θ

b̃
, ϕ

b̃
, m

b̃1
, m

b̃2

various relations between sbottom masses, mixing angles,
mb and SUSY-Lagrangian parameters... → clear up the
picture!
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Defining a renormalization scheme for mdi
(2)

Renormalization depends on choice of input parameters:

i) expressing ∆b by µ,tan β,m
b̃1

,m
b̃2

: (simplest formula)

yb =
mb

vd(1 + ∆g̃
b + ∆χ̃±

b + ∆χ̃0

b )
≡

mb

vd(1 + ǫb tan β)

ii) expressing ∆b by θb̃, ϕb̃,mb̃1
,mb̃2

: (collider observables)

yb =
mb(1 − ∆g̃

b)

vd(1 + ∆χ̃±

b + ∆χ̃0

b )

δmg̃
b independent of mb → no resummation

iii) expressing ∆b by µ,tan β,m
b̃L

,m
b̃R

: (parameters in
Lagrangian)
→ direct resummation impossible, only iterative use of
formula i) works
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Assumption: flavour-changing self-energies only from
W±,H±, χ̃±-exchange

dL, sL bR

χ̃±

ũ, c̃, t̃

= mb

ǫFC tan β

1 + ǫb tanβ
V ∗

tbVti (i=d,s)

absorb self-energies in matrix-valued field renormalization





dL

sL

bL





bare

=

(

1 +
δZL

2

)





dL

sL

bL





and likewise for right-handed fields
[similar approach by Buras,Chankowski,Rosiek,Slawianowska]

counterterms re-enter self-energies → tan2 β, tan3 β, ...
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Resummation of flavour non-diagonal self-energies (2)

(ǫFC tan β)n effects can be resummed to all orders. Yields

δZL

bi

2
= −

ǫFC tan β

1 + (ǫb − ǫFC) tanβ
V ∗

tbVti

δZR

bi

2
= −

mi

mb

[

ǫFC tan β

1 + (ǫb − ǫFC) tanβ

+
(1 + ǫb tan β) ǫ∗FC tan β

(1 + ǫ∗
i
tan β)(1 + (ǫb − ǫFC) tanβ)

]

V ∗

tb
Vti
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(ǫFC tan β)n effects can be resummed to all orders. Yields

δZL

bi

2
= −

ǫFC tan β

1 + (ǫb − ǫFC) tanβ
V ∗

tbVti

δZR

bi

2
= −

mi

mb

[

ǫFC tan β

1 + (ǫb − ǫFC) tanβ

+
(1 + ǫb tan β) ǫ∗FC tan β

(1 + ǫ∗
i
tan β)(1 + (ǫb − ǫFC) tanβ)

]

V ∗

tb
Vti

this results in corrections to the CKM matrix
[Denner,Sack; Gambino,Grassi,Madricardo]

V bare =





Vud Vus K∗Vub

Vcd Vcs K∗Vcb

KVtd KVts Vtb



 , K =
1 + ǫb tan β

1 + (ǫb − ǫFC) tan β
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ũj



Intro Decoupling and beyond Scheme dependence Flavour-changing resummation Feynman rules Conclusion

Resummed Feynman rules

With δmdi
, δZL

ij and δZR
ij at hand: obtain Feynman rules

including tan β-enhanced corrections to all orders

generalizes well-known vertices from decoupling limit, e.g.

H0, A0
di

dj ,

H±
di

uj

adds new corrected vertices involving superpartners

g̃, χ̃0di

d̃j ,

χ̃±di

ũj

Since δZL,R
bi ∼ V ∗

tbVtiǫFC tan β
→ CKM structure of MFV preserved
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calculations, e.g.:

Higgs masses

SUSY decays e.g.

Γ(g̃ → b̃i s)

Γ(g̃ → b̃i b)
=

∣

∣

∣

∣

δZL
bs

2
R̃b

i1

∣

∣

∣

∣

2

+

∣

∣

∣

∣

δZR
bs

2
R̃b

i2

∣

∣

∣

∣

2

∼ O(10−4)
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Applications

Easy inclusion of tan β-enhanced corrections in various
calculations, e.g.:

Higgs masses

SUSY decays e.g.

Γ(g̃ → b̃i s)

Γ(g̃ → b̃i b)
=

∣

∣

∣

∣

δZL
bs

2
R̃b
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∣

∣

∣

∣

2

+

∣

∣

∣

∣

δZR
bs

2
R̃b

i2

∣

∣

∣

∣

2

∼ O(10−4)

B decays, CP asymmetries → see talk by Lars Hofer
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Backup: parameter points

Scan ranges for C7 and C8: tan β = 40 − 60, any value for ϕAt
,

min (GeV) max (GeV)
m̃QL

, m̃uR
, m̃dR

250 1000
|At| 100 1000

µ, M1, M2 200 1000
M3 300 1000
mA0 200 1000

Parameter point used for SφKS
:

m̃QL
, m̃uR

, m̃dR
600 GeV tan β 50

µ 800 GeV mA0 350 GeV
M1 300 GeV M2 400 GeV
M3 500 GeV ϕAt

3π/2
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Backup: C7 and other operators

effect of gluino-squark contribution in C7(mb) accidentally small
(suppressed by a numerical factor from loop function)

200-400 400-600 600-800 800-1000
Μ HGeVL

0.30 0.32 0.34 0.36
È C7

new
È

0.30

0.32

0.34

0.36

È C7
old
È

-0.4
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Backup: C7 and other operators

effect of gluino-squark contribution in C7(mb) accidentally small
(suppressed by a numerical factor from loop function)

200-400 400-600 600-800 800-1000
Μ HGeVL

0.30 0.32 0.34 0.36
È C7

new
È

0.30

0.32

0.34

0.36

È C7
old
È

-0.4

effective four-quark operators in H∆B=1 and H∆B=2:
gluino-squark loops suppressed by GIM-like cancellation between
b̃- and s̃-loops → negligible compared to chargino-squark loops
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Backup: Non-local tanβ-enhanced effects

some couplings of H+ and h0 are suppressed by cos β at
tree-level

they obtain enhanced vertex corrections ∼ sin β, e.g.

H+

tR sL

∼ cosβ

+

H+

sLtR

∼ sin β

g̃

s̃t̃

this effect is local only in the decoupling limit, but cannot be
cast into a Feynman rule in the full calculation
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Backup: relation to effective CKM matrix from BCRS

Buras, Chankowski, Rosiek, Slawianowska find for the effective
CKM matrix:

V eff
ji = (V + ∆U †

L V + V ∆DL)ji
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Backup: relation to effective CKM matrix from BCRS

Buras, Chankowski, Rosiek, Slawianowska find for the effective
CKM matrix:

V eff
ji = (V + ∆U †

L V + V ∆DL)ji

They start with V = V eff to calculate ∆DL , set ∆UL = 0 and
proceed iteratively
They find that the result agrees numerically with the formula from
eff. Lagrangian if ǫ-factors are replaced by full self-energies
We prove this analytically via the resummation (iteration not
needed!)
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