MSSM at large an etabeyond the decoupling limit

Lars Hofer Ulrich Nierste Dominik Scherer

Institut für Theoretische Teilchenphysik Karlsruhe Institute of Technology

Interplay Flavour and Collider - CERN, december 2009

 MSSM contains two Higgs doublets: H_u, H_d (2-Higgs-Doublet model, Type II)

- MSSM contains two Higgs doublets: *H_u*, *H_d* (2-Higgs-Doublet model, Type II)
- both doublets have a vacuum expectation value: v_u , v_d

$$v_u^2 + v_d^2 = \frac{2m_w^2}{g^2} \equiv v \qquad , \qquad \frac{v_u}{v_d} = \tan\beta = ?$$

- MSSM contains two Higgs doublets: H_u, H_d (2-Higgs-Doublet model, Type II)
- both doublets have a vacuum expectation value: v_u , v_d

$$v_u^2 + v_d^2 = \frac{2m_w^2}{g^2} \equiv v$$
 , $\frac{v_u}{v_d} = \tan\beta = ?$

• interesting case for Yukawa unification: $y_b \approx y_t \approx 1$,

then
$$\tan \beta = \frac{v_u}{v_d} \sim \mathcal{O}\left(\frac{m_t}{m_b}\right) \sim \mathcal{O}(50)$$

- MSSM contains two Higgs doublets: H_u, H_d (2-Higgs-Doublet model, Type II)
- both doublets have a vacuum expectation value: v_u , v_d

$$v_u^2 + v_d^2 = \frac{2m_w^2}{g^2} \equiv v$$
 , $\frac{v_u}{v_d} = \tan \beta = ?$

• interesting case for Yukawa unification: $y_b \approx y_t \approx 1$,

then
$$\tan \beta = \frac{v_u}{v_d} \sim \mathcal{O}\left(\frac{m_t}{m_b}\right) \sim \mathcal{O}(50)$$

large tan $\beta \leftrightarrow \operatorname{small} v_d \ll v$

• consider tree-level amplitude with suppression by v_d

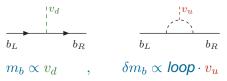
- consider tree-level amplitude with suppression by v_d
- one-loop correction possibly contains v_u instead

[Hall,Rattazzi,Sarid; Blazek,Pokorski,Raby]

- consider tree-level amplitude with suppression by v_d
- one-loop correction possibly contains v_u instead

[Hall,Rattazzi,Sarid; Blazek,Pokorski,Raby]

well-known example:

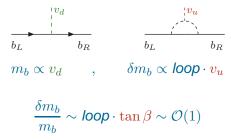


٠

- consider tree-level amplitude with suppression by v_d
- one-loop correction possibly contains v_u instead

[Hall,Rattazzi,Sarid; Blazek,Pokorski,Raby]

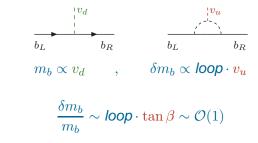
well-known example:



- consider tree-level amplitude with suppression by v_d
- one-loop correction possibly contains v_u instead

[Hall,Rattazzi,Sarid; Blazek,Pokorski,Raby]

well-known example:



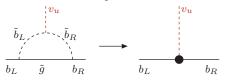
Question:

How should we account for such $\mathcal{O}(1)$ corrections?

Accounting for $\tan \beta$ -enhanced corrections

Effective Lagrangian in the decoupling limit [Babu,Kolda; Buras,Chankowski,Rosiek,Slawianowska; Dedes,Pilaftsis;...]

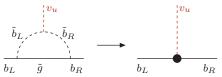
• assume $M_{\rm SUSY} \gg M_{\rm EW}$ and integrate out SUSY fields, keep only Higgs and SM fields. E.g. mass correction



Accounting for $\tan \beta$ -enhanced corrections

Effective Lagrangian in the decoupling limit [Babu,Kolda; Buras,Chankowski,Rosiek,Slawianowska; Dedes,Pilaftsis;...]

• assume $M_{\rm SUSY} \gg M_{\rm EW}$ and integrate out SUSY fields, keep only Higgs and SM fields. E.g. mass correction



Calculation in the full MSSM beyond decoupling (our work)

• $\tan \beta$ -enhanced mass corrections from finite self-energies. Re-enter self-energy, produces higher-order terms

$$\begin{array}{c} g \\ \hline b_L \\ \hline c_{b_i} \\ \hline b_k \\ \hline c_{b_i} \\ c_{b_i} \\ \hline c_{b_i} \\ \hline c_{b_i} \\ c_$$

[Carena, Garcia, Nierste, Wagner]

- $M_{\rm SUSY} \sim M_{\rm EW}$ is natural
- validity of decoupling assumption $M_{\rm SUSY} \gg M_{\rm EW}~$ unclear \rightarrow test accuracy

- validity of decoupling assumption $M_{\rm SUSY} \gg M_{\rm EW}~$ unclear \rightarrow test accuracy
- experimental constraints from B_s → μ⁺μ⁻ and B⁻ → τν̄_τ require heavy Higgs masses if tan β is large → why integrate out SUSY particles while keeping Higgs bosons?

- validity of decoupling assumption $M_{\rm SUSY} \gg M_{\rm EW}~$ unclear \rightarrow test accuracy
- experimental constraints from B_s → μ⁺μ⁻ and B⁻ → τν̄_τ require heavy Higgs masses if tan β is large → why integrate out SUSY particles while keeping Higgs bosons?
- study tan β-enhanced effects in couplings of SUSY particles (inaccessible from eff. Lagrangian)

- validity of decoupling assumption $M_{\rm SUSY} \gg M_{\rm EW}~$ unclear \rightarrow test accuracy
- experimental constraints from B_s → μ⁺μ⁻ and B⁻ → τν̄_τ require heavy Higgs masses if tan β is large → why integrate out SUSY particles while keeping Higgs bosons?
- study tan β-enhanced effects in couplings of SUSY particles (inaccessible from eff. Lagrangian)
- full control over renormalization scheme (see below...)

• no effective Lagrangian \rightarrow Renormalize MSSM Lagrangian to account for $\tan\beta$ -enhanced self-energies

- no effective Lagrangian \rightarrow Renormalize MSSM Lagrangian to account for $\tan \beta$ -enhanced self-energies
- use on-shell renormalization to insert measured SM parameters

- no effective Lagrangian \rightarrow Renormalize MSSM Lagrangian to account for $\tan \beta$ -enhanced self-energies
- use on-shell renormalization to insert measured SM parameters
- at one-loop:

- no effective Lagrangian \rightarrow Renormalize MSSM Lagrangian to account for $\tan \beta$ -enhanced self-energies
- use on-shell renormalization to insert measured SM parameters
- at one-loop:
 - flavour-conserving quark self-energies subtracted by mass or Yukawa counterterms

- no effective Lagrangian \rightarrow Renormalize MSSM Lagrangian to account for $\tan \beta$ -enhanced self-energies
- use on-shell renormalization to insert measured SM parameters
- at one-loop:
 - flavour-conserving quark self-energies subtracted by mass or Yukawa counterterms
 - flavour-changing quark self-energies subtracted by (antihermitian) flavour-changing wave-function counterterms

- no effective Lagrangian \rightarrow Renormalize MSSM Lagrangian to account for $\tan \beta$ -enhanced self-energies
- use on-shell renormalization to insert measured SM parameters
- at one-loop:
 - flavour-conserving quark self-energies subtracted by mass or Yukawa counterterms
 - flavour-changing quark self-energies subtracted by (antihermitian) flavour-changing wave-function counterterms
 - CKM counterterms adjusted accordingly

[Denner,Sack; Gambino,Grassi,Madricardo]

- no effective Lagrangian \rightarrow Renormalize MSSM Lagrangian to account for $\tan \beta$ -enhanced self-energies
- use on-shell renormalization to insert measured SM parameters
- at one-loop:
 - flavour-conserving quark self-energies subtracted by mass or Yukawa counterterms
 - flavour-changing quark self-energies subtracted by (antihermitian) flavour-changing wave-function counterterms
 - CKM counterterms adjusted accordingly

[Denner,Sack; Gambino,Grassi,Madricardo]

• squark self-energies not $\tan\beta$ -enhanced \rightarrow neglected

- no effective Lagrangian \rightarrow Renormalize MSSM Lagrangian to account for $\tan \beta$ -enhanced self-energies
- use on-shell renormalization to insert measured SM parameters
- at one-loop:
 - flavour-conserving quark self-energies subtracted by mass or Yukawa counterterms
 - flavour-changing quark self-energies subtracted by (antihermitian) flavour-changing wave-function counterterms
 - CKM counterterms adjusted accordingly

[Denner,Sack; Gambino,Grassi,Madricardo]

- squark self-energies not $\tan\beta$ -enhanced \rightarrow neglected
- then: define counterterms for higher orders in $(\operatorname{loop} \cdot \tan \beta)$ and resum!

Issues beyond the decoupling limit

Questions:

Issues beyond the decoupling limit

Questions:

• How does the resummation formula for m_{d_i} depend on the renormalization scheme?

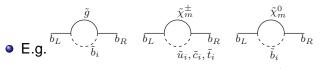
Issues beyond the decoupling limit

Questions:

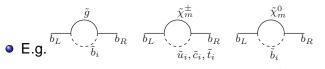
- How does the resummation formula for m_{d_i} depend on the renormalization scheme?
- Can we also resum the effects of flavour-changing self-energies? And what are the consequences?

 Subtract SUSY-loops on-shell. Still freedom to choose (SUSY) input parameters!

 Subtract SUSY-loops on-shell. Still freedom to choose (SUSY) input parameters!



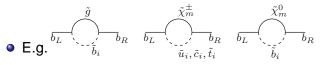
 Subtract SUSY-loops on-shell. Still freedom to choose (SUSY) input parameters!



to clarify things, write $\delta m_b = \delta m_b^{\tilde{g}} + \delta m_b^{\tilde{\chi}^{\pm}} + \delta m_b^{\tilde{\chi}^{0}}$

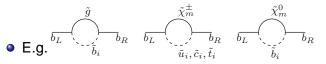
• from Feynman diagrams:

 Subtract SUSY-loops on-shell. Still freedom to choose (SUSY) input parameters!



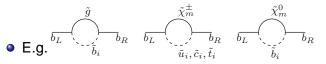
- from Feynman diagrams:
 - gluino contribution depends on $\theta_{\tilde{b}}, \varphi_{\tilde{b}}$ (sbottom mixing angle and phase), $m_{\tilde{b}_1}, m_{\tilde{b}_2}$

 Subtract SUSY-loops on-shell. Still freedom to choose (SUSY) input parameters!



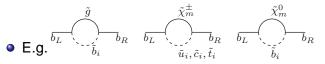
- from Feynman diagrams:
 - gluino contribution depends on θ_b, φ_b (sbottom mixing angle and phase), m_{b₁}, m_{b₂}
 - chargino contribution depends on m_b from Yukawa coupling

 Subtract SUSY-loops on-shell. Still freedom to choose (SUSY) input parameters!



- from Feynman diagrams:
 - gluino contribution depends on θ_b, φ_b (sbottom mixing angle and phase), m_{b₁}, m_{b₂}
 - chargino contribution depends on mb from Yukawa coupling
 - neutralino contribution depends on m_b and $\theta_{\tilde{b}}, \varphi_{\tilde{b}}, m_{\tilde{b}_1}, m_{\tilde{b}_2}$

 Subtract SUSY-loops on-shell. Still freedom to choose (SUSY) input parameters!



- from Feynman diagrams:
 - gluino contribution depends on $\theta_{\tilde{b}}, \varphi_{\tilde{b}}$ (sbottom mixing angle and phase), $m_{\tilde{b}_1}, m_{\tilde{b}_2}$
 - chargino contribution depends on mb from Yukawa coupling
 - neutralino contribution depends on m_b and $\theta_{\tilde{b}}, \varphi_{\tilde{b}}, m_{\tilde{b}_1}, m_{\tilde{b}_2}$
- various relations between sbottom masses, mixing angles, m_b and SUSY-Lagrangian parameters... → clear up the picture!

Renormalization depends on choice of input parameters:

i) expressing Δ_b by $\mu, \tan \beta, m_{\tilde{b}_1}, m_{\tilde{b}_2}$: (simplest formula)

$$y_b = \frac{m_b}{v_d(1 + \Delta_b^{\tilde{g}} + \Delta_b^{\tilde{\chi}^{\pm}} + \Delta_b^{\tilde{\chi}^0})} \equiv \frac{m_b}{v_d(1 + \epsilon_b \tan\beta)}$$

Defining a renormalization scheme for m_{d_i} (2)

Renormalization depends on choice of input parameters:

i) expressing Δ_b by $\mu, \tan \beta, m_{\tilde{b}_1}, m_{\tilde{b}_2}$: (simplest formula)

$$y_b = \frac{m_b}{v_d(1 + \Delta_b^{\tilde{g}} + \Delta_b^{\tilde{\chi}^{\pm}} + \Delta_b^{\tilde{\chi}^0})} \equiv \frac{m_b}{v_d(1 + \epsilon_b \tan\beta)}$$

ii) expressing Δ_b by $\theta_{\tilde{b}}, \varphi_{\tilde{b}}, m_{\tilde{b}_1}, m_{\tilde{b}_2}$: (collider observables)

$$y_b = \frac{m_b(1 - \Delta_b^{\tilde{g}})}{v_d(1 + \Delta_b^{\tilde{\chi}^{\pm}} + \Delta_b^{\tilde{\chi}^0})}$$

 $\delta m_b^{\tilde{g}}$ independent of $m_b \rightarrow$ no resummation

Defining a renormalization scheme for m_{d_i} (2)

Renormalization depends on choice of input parameters:

i) expressing Δ_b by $\mu, \tan \beta, m_{\tilde{b}_1}, m_{\tilde{b}_2}$: (simplest formula)

$$y_b = \frac{m_b}{v_d(1 + \Delta_b^{\tilde{g}} + \Delta_b^{\tilde{\chi}^{\pm}} + \Delta_b^{\tilde{\chi}^0})} \equiv \frac{m_b}{v_d(1 + \epsilon_b \tan\beta)}$$

ii) expressing Δ_b by $\theta_{\tilde{b}}, \varphi_{\tilde{b}}, m_{\tilde{b}_1}, m_{\tilde{b}_2}$: (collider observables)

$$y_b = \frac{m_b(1 - \Delta_b^{\tilde{g}})}{v_d(1 + \Delta_b^{\tilde{\chi}^{\pm}} + \Delta_b^{\tilde{\chi}^0})}$$

 $\delta m_b^{ ilde{g}}$ independent of $m_b
ightarrow$ no resummation

iii) expressing Δ_b by μ , $\tan \beta$, $m_{\tilde{b}_L}$, $m_{\tilde{b}_R}$: (parameters in Lagrangian)

 \rightarrow direct resummation impossible, only iterative use of formula i) works

Resummation of flavour non-diagonal self-energies (1)

• Assumption: flavour-changing self-energies only from $W^{\pm}, H^{\pm}, \tilde{\chi}^{\pm}$ -exchange

$$d_{L}, \overline{s_{L}} \underbrace{\bigcap_{\tilde{u}, \tilde{c}, \tilde{t}}^{\tilde{\chi}^{\pm}}}_{b_{R}} = m_{b} \frac{\epsilon_{\mathsf{FC}} \tan \beta}{1 + \epsilon_{b} \tan \beta} V_{tb}^{*} V_{ti} \qquad (\mathsf{i=d}, \mathsf{s})$$

Resummation of flavour non-diagonal self-energies (1)

• Assumption: flavour-changing self-energies only from $W^{\pm}, H^{\pm}, \tilde{\chi}^{\pm}$ -exchange

$$d_{L}, \overline{s_{L}} \underbrace{\bigcap_{\tilde{u}, \tilde{c}, \tilde{t}}^{\tilde{\chi}^{\pm}}}_{b_{R}} = m_{b} \frac{\epsilon_{\mathsf{FC}} \tan \beta}{1 + \epsilon_{b} \tan \beta} V_{tb}^{*} V_{ti} \qquad (\mathsf{i=d}, \mathsf{s})$$

absorb self-energies in matrix-valued field renormalization

$$\begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix}^{\text{bare}} = \left(1 + \frac{\delta Z^L}{2}\right) \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix}$$

and likewise for right-handed fields

[similar approach by Buras, Chankowski, Rosiek, Slawianowska]

Resummation of flavour non-diagonal self-energies (1)

• Assumption: flavour-changing self-energies only from $W^{\pm}, H^{\pm}, \tilde{\chi}^{\pm}$ -exchange

$$d_{L}, \overline{s_{L}} \underbrace{\bigcap_{\tilde{u}, \tilde{c}, \tilde{t}}^{\tilde{\chi}^{\pm}}}_{b_{R}} = m_{b} \frac{\epsilon_{\mathsf{FC}} \tan \beta}{1 + \epsilon_{b} \tan \beta} V_{tb}^{*} V_{ti} \qquad (\mathsf{i=d}, \mathsf{s})$$

absorb self-energies in matrix-valued field renormalization

$$\begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix}^{\text{bare}} = \left(1 + \frac{\delta Z^L}{2}\right) \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix}$$

and likewise for right-handed fields

[similar approach by Buras, Chankowski, Rosiek, Slawianowska]

• counterterms re-enter self-energies $\rightarrow \tan^2 \beta, \tan^3 \beta, ...$

Resummation of flavour non-diagonal self-energies (2)

• $(\epsilon_{FC} \tan \beta)^n$ effects can be resummed to all orders. Yields

$$\begin{split} \frac{\delta Z_{bi}^L}{2} &= -\frac{\epsilon_{\rm FC} \tan \beta}{1 + (\epsilon_b - \epsilon_{\rm FC}) \tan \beta} V_{tb}^* V_{ti} \\ \frac{\delta Z_{bi}^R}{2} &= -\frac{m_i}{m_b} \left[\frac{\epsilon_{\rm FC} \tan \beta}{1 + (\epsilon_b - \epsilon_{\rm FC}) \tan \beta} \right. \\ &\left. + \frac{(1 + \epsilon_b \tan \beta) \epsilon_{\rm FC}^* \tan \beta}{(1 + \epsilon_i^* \tan \beta)(1 + (\epsilon_b - \epsilon_{\rm FC}) \tan \beta)} \right] V_{tb}^* V_{ti} \end{split}$$

Resummation of flavour non-diagonal self-energies (2)

• $(\epsilon_{FC} \tan \beta)^n$ effects can be resummed to all orders. Yields

$$\begin{split} \frac{\delta Z_{bi}^L}{2} &= -\frac{\epsilon_{\rm FC} \tan \beta}{1 + (\epsilon_b - \epsilon_{\rm FC}) \tan \beta} V_{tb}^* V_{ti} \\ \frac{\delta Z_{bi}^R}{2} &= -\frac{m_i}{m_b} \left[\frac{\epsilon_{\rm FC} \tan \beta}{1 + (\epsilon_b - \epsilon_{\rm FC}) \tan \beta} \right. \\ &+ \frac{(1 + \epsilon_b \tan \beta) \epsilon_{\rm FC}^* \tan \beta}{(1 + \epsilon_i^* \tan \beta)(1 + (\epsilon_b - \epsilon_{\rm FC}) \tan \beta)} \right] V_{tb}^* V_{ti} \end{split}$$

this results in corrections to the CKM matrix

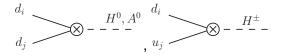
[Denner,Sack; Gambino,Grassi,Madricardo]

$$V^{\text{bare}} = \begin{pmatrix} V_{ud} & V_{us} & K^* V_{ub} \\ V_{cd} & V_{cs} & K^* V_{cb} \\ K V_{td} & K V_{ts} & V_{tb} \end{pmatrix} \quad , \quad K = \frac{1 + \epsilon_b \tan \beta}{1 + (\epsilon_b - \epsilon_{\text{FC}}) \tan \beta}$$

With δm_{d_i} , δZ_{ij}^L and δZ_{ij}^R at hand: obtain Feynman rules including $\tan \beta$ -enhanced corrections to all orders

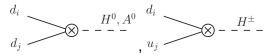
With δm_{d_i} , δZ_{ij}^L and δZ_{ij}^R at hand: obtain Feynman rules including $\tan \beta$ -enhanced corrections to all orders

• generalizes well-known vertices from decoupling limit, e.g.

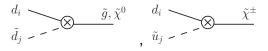


With δm_{d_i} , δZ_{ij}^L and δZ_{ij}^R at hand: obtain Feynman rules including $\tan \beta$ -enhanced corrections to all orders

• generalizes well-known vertices from decoupling limit, e.g.

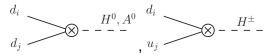


adds new corrected vertices involving superpartners

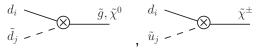


With δm_{d_i} , δZ_{ij}^L and δZ_{ij}^R at hand: obtain Feynman rules including $\tan \beta$ -enhanced corrections to all orders

generalizes well-known vertices from decoupling limit, e.g.



adds new corrected vertices involving superpartners



- Since $\delta Z_{bi}^{L,R} \sim V_{tb}^* V_{ti} \epsilon_{FC} \tan \beta$
 - \rightarrow CKM structure of MFV preserved

Easy inclusion of $\tan\beta\text{-enhanced}$ corrections in various calculations, e.g.:

Easy inclusion of $\tan\beta\text{-enhanced}$ corrections in various calculations, e.g.:

Higgs masses

Easy inclusion of $\tan\beta\text{-enhanced}$ corrections in various calculations, e.g.:

- Higgs masses
- SUSY decays e.g.

$$\frac{\Gamma(\tilde{g} \to \tilde{b}_i s)}{\Gamma(\tilde{g} \to \tilde{b}_i b)} = \left| \frac{\delta Z_{bs}^L}{2} \tilde{R}_{i1}^b \right|^2 + \left| \frac{\delta Z_{bs}^R}{2} \tilde{R}_{i2}^b \right|^2 \sim \mathcal{O}(10^{-4})$$

Easy inclusion of $\tan\beta\text{-enhanced}$ corrections in various calculations, e.g.:

- Higgs masses
- SUSY decays e.g.

$$\frac{\Gamma(\tilde{g} \to \tilde{b}_i s)}{\Gamma(\tilde{g} \to \tilde{b}_i b)} = \left| \frac{\delta Z_{bs}^L}{2} \tilde{R}_{i1}^b \right|^2 + \left| \frac{\delta Z_{bs}^R}{2} \tilde{R}_{i2}^b \right|^2 \sim \mathcal{O}(10^{-4})$$

• B decays, CP asymmetries \rightarrow see talk by Lars Hofer

• effects of $\tan\beta$ -enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM

- effects of $\tan\beta$ -enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM
- resummation to all orders is possible without assuming decoupling of SUSY particles

- effects of $\tan\beta$ -enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM
- resummation to all orders is possible without assuming decoupling of SUSY particles
- the formula for the mass resummation depends on the renormalization (input) scheme

- effects of $\tan\beta$ -enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM
- resummation to all orders is possible without assuming decoupling of SUSY particles
- the formula for the mass resummation depends on the renormalization (input) scheme
- the resummed effects can be incorporated into corrected Feynman rules

- effects of $\tan\beta$ -enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM
- resummation to all orders is possible without assuming decoupling of SUSY particles
- the formula for the mass resummation depends on the renormalization (input) scheme
- the resummed effects can be incorporated into corrected Feynman rules
- these Feynman rules allow for easy and consistent inclusion of large- $\tan \beta$ effects to all orders in calculations of flavour physics and collider physics

- effects of $\tan\beta$ -enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM
- resummation to all orders is possible without assuming decoupling of SUSY particles
- the formula for the mass resummation depends on the renormalization (input) scheme
- the resummed effects can be incorporated into corrected Feynman rules
- these Feynman rules allow for easy and consistent inclusion of large- $\tan \beta$ effects to all orders in calculations of flavour physics and collider physics

- effects of $\tan\beta$ -enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM
- resummation to all orders is possible without assuming decoupling of SUSY particles
- the formula for the mass resummation depends on the renormalization (input) scheme
- the resummed effects can be incorporated into corrected Feynman rules
- these Feynman rules allow for easy and consistent inclusion of large-tan β effects to all orders in calculations of flavour physics and collider physics

Thanks for your attention!

- effects of $\tan\beta$ -enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM
- resummation to all orders is possible without assuming decoupling of SUSY particles
- the formula for the mass resummation depends on the renormalization (input) scheme
- the resummed effects can be incorporated into corrected Feynman rules
- these Feynman rules allow for easy and consistent inclusion of large-tan β effects to all orders in calculations of flavour physics and collider physics

Thanks for your attention!

- effects of $\tan\beta$ -enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM
- resummation to all orders is possible without assuming decoupling of SUSY particles
- the formula for the mass resummation depends on the renormalization (input) scheme
- the resummed effects can be incorporated into corrected Feynman rules
- these Feynman rules allow for easy and consistent inclusion of large-tan β effects to all orders in calculations of flavour physics and collider physics

Thanks for your attention!

Backup slides

Backup: parameter points

Scan ranges for C_7 and C_8 : $\tan \beta = 40 - 60$, any value for φ_{A_t} ,

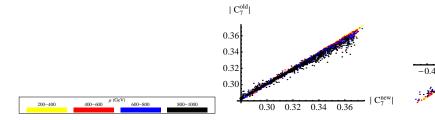
	min (GeV)	max (GeV)
$\tilde{m}_{Q_L}, \tilde{m}_{u_R}, \tilde{m}_{d_R}$	250	1000
$ A_t $	100	1000
μ, M_1, M_2	200	1000
M_3	300	1000
m_{A^0}	200	1000

Parameter point used for $S_{\phi K_S}$:

$\tilde{m}_{Q_L}, \tilde{m}_{u_R}, \tilde{m}_{d_R}$	600 GeV	$\tan\beta$	50
μ	800 GeV	m_{A^0}	350 GeV
M_1	300 GeV	M_2	400 GeV
M_3	$500~{\rm GeV}$	φ_{A_t}	$3\pi/2$

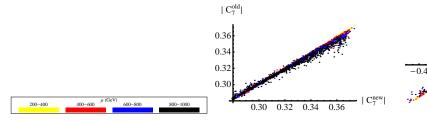
Backup: C_7 and other operators

 effect of gluino-squark contribution in C₇(m_b) accidentally small (suppressed by a numerical factor from loop function)



Backup: C₇ and other operators

 effect of gluino-squark contribution in C₇(m_b) accidentally small (suppressed by a numerical factor from loop function)



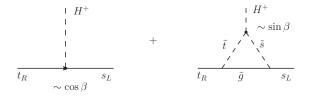
• effective four-quark operators in $\mathcal{H}^{\Delta B=1}$ and $\mathcal{H}^{\Delta B=2}$: gluino-squark loops suppressed by GIM-like cancellation between \tilde{b} - and \tilde{s} -loops \rightarrow negligible compared to chargino-squark loops

Backup: Non-local $\tan \beta$ -enhanced effects

• some couplings of H^+ and h^0 are suppressed by $\cos\beta$ at tree-level

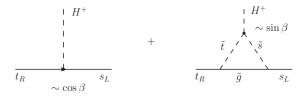
Backup: Non-local $\tan \beta$ -enhanced effects

- some couplings of H^+ and h^0 are suppressed by $\cos\beta$ at tree-level
- they obtain enhanced vertex corrections $\sim \sin \beta$, e.g.



Backup: Non-local $\tan \beta$ -enhanced effects

- some couplings of H^+ and h^0 are suppressed by $\cos\beta$ at tree-level
- they obtain enhanced vertex corrections $\sim \sin \beta$, e.g.



 this effect is local only in the decoupling limit, but cannot be cast into a Feynman rule in the full calculation

 Buras, Chankowski, Rosiek, Slawianowska find for the effective CKM matrix:

 $V_{ji}^{\text{eff}} = (V + \Delta U_L^{\dagger} V + V \, \Delta D_L)_{ji}$

 Buras, Chankowski, Rosiek, Slawianowska find for the effective CKM matrix:

$$V_{ji}^{\text{eff}} = (V + \Delta U_L^{\dagger} V + V \, \Delta D_L)_{ji}$$

• They start with $V = V^{\text{eff}}$ to calculate ΔD_L , set $\Delta U_L = 0$ and proceed iteratively

 Buras, Chankowski, Rosiek, Slawianowska find for the effective CKM matrix:

 $V_{ji}^{\text{eff}} = (V + \Delta U_L^{\dagger} V + V \, \Delta D_L)_{ji}$

- They start with $V = V^{\text{eff}}$ to calculate ΔD_L , set $\Delta U_L = 0$ and proceed iteratively
- They find that the result agrees numerically with the formula from eff. Lagrangian if ϵ -factors are replaced by full self-energies

 Buras, Chankowski, Rosiek, Slawianowska find for the effective CKM matrix:

 $V_{ji}^{\text{eff}} = (V + \Delta U_L^{\dagger} V + V \, \Delta D_L)_{ji}$

- They start with $V = V^{\text{eff}}$ to calculate ΔD_L , set $\Delta U_L = 0$ and proceed iteratively
- They find that the result agrees numerically with the formula from eff. Lagrangian if ϵ -factors are replaced by full self-energies
- We prove this analytically via the resummation (iteration not needed!)