F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scale

Low scale W_R

Processes $W_R^{-\nu}R$ $\Delta_{L,R}$ $0\nu\beta\beta$

Limits *K K̄* Good mixings

L-R models

Outlook

Left-Right @ LHC through LNV

Fabrizio Nesti

University of L'Aquila, INFN - LNGS & ICTP, Italy ICTP, Trieste, Italy

Flavour WG @ CERN '09 - 16 December 2009

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scales

Low scale W_R

Processes $W_R^{-\nu}R$ $\Delta_{L,R}$ $0\nu\beta\beta$

Limits KK Good mixings

■ SM needs extension — in addition to DM, maybe hierarchy: Neutrino masses → high or low scale?

Are we satisfied with the SM?

Dirac or Majorana?

SM aestetically ugly

Addressed within the simplest extension, the LR model.

■ Can LHC help?

Yes if parity (LR symmetry) restored at low scale, via Lepton Violation, with pretty low statistics!

F. Nesti

Problem

Quantum Numbers

LR

LR Scales

Low scale W_R

 $\begin{array}{c} \operatorname{Processes} \\ W_R^{-\nu}R \\ \Delta_{L,R} \\ 0\nu\beta\beta \end{array}$

Limits *KK* Good mixings

Generically by an effective operator:

Seesaw by RH neutrinos:

Neutrino masses

$$\frac{\lambda}{M}(\ell H)(H\ell)$$

[Minkowski '77, Mohapatra Senjanovic '79] [GRS '79, Glashow '79; Yanagida '79]

$$y \,\overline{\ell} H \nu_R + M \nu_R^t \nu_R$$

...y and M quite free: $M \sim 10^{-6}$ – 10^{14} GeV.

- But...maybe *M* hints to something? New interactions?e.g.: *M* breaks lepton number, *B* − *L*, ...
- And can we test a low *M* at LHC? Yes, because of LNV:

Via standard interactions hard. (need large y and cancelations) Via new forces, much better! (on shell production)

Hints from quantum numbers...

[Weinberg '79]

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

F. Nesti

Problem

Quantum Numbers

LR

LR Scales

Low scale W_R

 $\begin{array}{c} \operatorname{Processes} \\ W_R^{-\nu}R \\ \Delta_{L,R} \\ 0\nu\beta\beta \end{array}$

Limits *KK* Good mixings

Neutrino masses

Seesaw by RH neutrinos:

Generically by an effective operator:

[Weinberg '79]

$$\frac{\lambda}{M}(\ell H)(H\ell)$$

[Minkowski '77, Mohapatra Senjanovic '79] [GRS '79, Glashow '79; Yanagida '79]

$$y \,\overline{\ell} H \nu_R + M \nu_R^t \nu_R$$

...y and M quite free: $M \sim 10^{-6}$ – 10^{14} GeV.

- But...maybe *M* hints to something? New interactions? ...e.g.: *M* breaks lepton number, *B* − *L*, ...
- And can we test a low *M* at LHC? Yes, because of LNV:

Via standard interactions hard. (need large y and cancelations) Via new forces, much better! (on shell production)

Hints from quantum numbers...

Ugly

F. Nesti

Problem

	robiciti
-	
١,	Quantum
P	lumbers

LR

LR Scale

Low scale V

 $\begin{array}{c} \operatorname{Processes} \\ W_R^{-\nu}R \\ \Delta_{L,R} \\ 0\nu\beta\beta \end{array}$

Limits *KK* Good mixing

L-R models

Outlook

	Lorentz	Q	Y	SU(2) _L		<i>SU</i> (3)
		$(Y+T_{3L})$		T _{3L}		
uL	2	2/3	1/6	1/2		3
dL	2	-1/3	1/6	-1/2		3
ν_L	2	0	-1/2	1/2		1
eL	2	-1	- 1/2	-1/2		1
u _R	2	2/3	2/3	0		3
d _R	2	-1/3	- 1/3	0		3
ν_R	2	0	0	0		1
e _R	2	-1	-1	0		1

Plenty of symmetries to restore "beauty", starting from the simplest, Left-Right symmetry, restoring a "Parity" at some scale:

 $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

[Pati Salam '74, Mohapatra Pati '75, Senjanović Mohapatra '75]

(Then Pati-Salam SU(2)_L×SU(2)_R × SU(4)_c, SO(10), etc, even with Lorentz)

[Pati Salam '74; Georgi '75; FN '07, FN Percacci '09]

Nice

F. Nesti

-				
Р				

Quantum Numbers

LR

LR Scal

Low scale 1

 $\begin{array}{c} \operatorname{Processes} \\ W_R^{-\nu}_R \\ \Delta_{L,R} \\ 0\nu\beta\beta \end{array}$

Limits *KK* Good mixing:

L-R models

Outlook

	Lorentz	Q	Y	$SU(2)_L$	$SU(2)_R$	B-L	<i>SU</i> (3)
		$(Y+T_{3L})$	$\left(T_{3R}+\frac{(B-L)}{2}\right)$	T _{3L}	T _{3R}		
uL	2	2/3	1/6	1/2	0	1/3	3
dL	2	-1/3	1/6	-1/2	0	1/3	3
ν_L	2	0	-1/2	1/2	0	$^{-1}$	1
eL	2	-1	-1/2	-1/2	0	-1	1
u _R	2	2/3	2/3	0	1/2	1/3	3
d _R	2	-1/3	- 1/3	0	-1/2	1/3	3
ν_R	2	0	0	0	1/2	$^{-1}$	1
e _R	2	$^{-1}$	-1	0	-1/2	-1	1

Plenty of symmetries to restore "beauty", starting from the simplest, Left-Right symmetry, restoring a "Parity" at some scale:

 $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

[Pati Salam '74, Mohapatra Pati '75, Senjanović Mohapatra '75]

(Then Pati-Salam $SU(2)_L \times SU(2)_R \times SU(4)_c$, SO(10), etc, even with Lorentz)

[Pati Salam '74; Georgi '75; FN '07, FN Percacci '09]

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scales

Low scale W

Processes $W_R^{-\nu}R$ $\Delta_{L,R}$ $0\nu\beta\beta$

Limits *KŘ* Good mixings L-R models

Left + Right models

Model content: bidoublet $\phi \sim (h_{\textit{light}}, H_{\textit{heavy}})$, triplets Δ_L , Δ_R ,

$$\langle \Delta_L \rangle = \begin{pmatrix} & \\ v_L & \end{pmatrix}, \quad \langle \Delta_R \rangle = \begin{pmatrix} & \\ v_R & \end{pmatrix}, \quad \langle \phi \rangle = \begin{pmatrix} v' & \\ & v \end{pmatrix}$$

spontaneously with $v_L \ll v' < v \ll v_R$. [Mohapatra Senjanovic '75] Quark masses from two yukawa matrices, $\bar{\psi}_L(h\phi + \tilde{h}\tilde{\phi})\psi_R$: $M_u = |v| h + |\tilde{v}|e^{i\alpha}\tilde{h}$

$$M_d = |\mathbf{v}'|\,\mathbf{h} + |\mathbf{v}| \mathrm{e}^{\prime \alpha} \mathbf{h}$$

We have Majorana neutrino masses, in addition to Dirac:

$$m_{LL} = y_\Delta \langle \Delta_L \rangle \quad \ll \quad m_{RR} = y_\Delta \langle \Delta_R \rangle$$

- Spectrum: W_R , ν_R , $\Delta_{L,R}$ may be near TeV
- H should be very heavy (tree-level FC) [Senjanovič Senjanovič '80, ..., Zhang et al '07]

 M_R scales

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scales

Low scale W_R

Processes $W_R^{-\nu}R$ $\Delta_{L,R}$ $0\nu\beta\beta$

Limits $K\bar{K}$ Good mixings L-R models

So long for beauty, now we want to know if testable:

• Low $M_{W_R} \gtrsim \text{TeV}$ possible and testable:

- Collider signals of W_R and ν_R . [Keung Senjanovic '83]
- Also, lepton number violation enters in rare processes: e.g. new contributions to $0\nu\beta\beta$

(disentangled from neutrino masses and their (cosmological) bound)

A selection of processes. .

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scales

Low scale *W*_f

Processes $W_R^{-\nu}R$ $\Delta_{L,R}$ $0\nu\beta\beta$

Limits *KK* Good mixings L-R models

Outlook

M_R scales

So long for beauty, now we want to know if testable:

- Low $M_{W_R} \gtrsim \text{TeV}$ possible and testable:

```
leading to striking signals
```

(...direct probe of new interactions) (...of P restoration) (...of majorana charachter) (...of additional flavour structure)

- Collider signals of W_R and ν_R . [Keung Senjanovic '83]
- Also, lepton number violation enters in rare processes: e.g. new contributions to $0\nu\beta\beta$

(disentangled from neutrino masses and their (cosmological) bound)

A selection of processes...

F. Nesti

I R

Processes

 $W_R - \nu_R$ $\Delta_{I,R}$

ΚĒ

 Δ_{i} $\langle \Delta_R \rangle$ Δ_R^{--} • $\Delta_R^{\pm\pm}$ production (W fusion) *p*+ . . .


... depends of course on which particles lie at low scale.

Interesting processes

Premium: $W_R - \nu_R$ production Same-sign dileptons.

• $\Delta_{l}^{\pm\pm}$ production (pairwise)

- W_R - Δ_R pair production
- $0\nu 2\beta$ (LR vs RR)

(日)、

F. Nesti

Problem

Problem Quantum Numbers

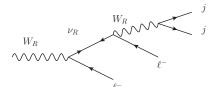
LR

LR Scale

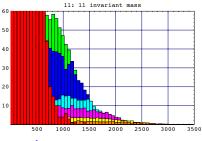
Low scale W_R

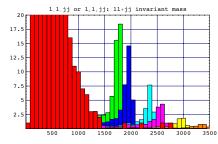
Processes

 $W_{R}^{-\nu}R$ $\Delta_{L,R}$ $0\nu\beta\beta$


Limits *K K* Good mixings

L-R models


Outlook


$W_R - \nu_R$

Yukawa-free production of W_R , ν_R possibly on-shell.

allows reconstruction of W_R and neutrino invariant mass, probing neutrino flavour structure.

[Keung Senjanovic '83]

8fb⁻¹ @ 14 TeV, PT cuts 20GeV, $t\bar{t}$ background $\langle \Box \rangle \langle \Box \rangle$

900

э

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scale

Low scale W_R

Processes

 $W_{R}^{-\nu}R$ $\Delta_{L,R}$ $0\nu\beta\beta$

Limits *KĀ* Good mixings L-R models

But early signal through $\ell^{\pm}\ell^{\pm}$ large energy (wrt to $t\bar{t}$ ones)?

 Neutrino masses and flavour: yukawa-free, but probing RH neutrino matrix.
 For flavour need updated montecarlo (CalcHEP? Update Pythia?)

Displaced Vertex?

 $W_R - \nu_R$ cont'd

LHC reach?

 $au_{
u_R}\gtrsim 1\,{
m cm}\,\,{
m for}\,\,m_{
u_R}\lesssim 10\,{
m GeV}\,\,\,\,(m_{W_R}=2.5\,{
m TeV})$

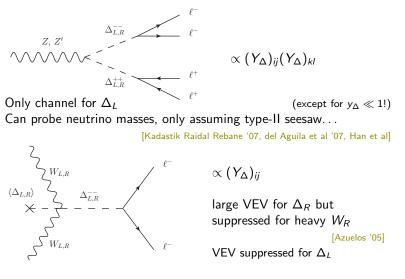
Difficult (tuning) from the model point of view to have light ν_R . On the other hand this signal would be quite unmistakable.

$\Delta_{L,R}$

Problem

Problem Quantum Numbers

LR


LR Scales

Low scale W_R

Processes $W_R - \nu_R$ $\Delta_{L,R}$ $0\nu\beta\beta$

Limits *KK* Good mixings L-R models

Outlook

 ${\sf Reach} < 1\,{\sf TeV}$

 $0\nu\beta\beta$

F. Nesti

Problem

Problem Quantum Numbers

LR

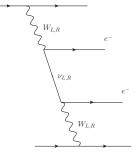
LR Scales

Low scale W_R

Processes $W_R^{-\nu}R$ $\Delta_{L,R}$ $0\nu\beta\beta$

Limits *KŘ* Good mixings L-R models

New contributions, that can compete with the standard LL $0\nu\beta\beta$ amplitude $\propto m_{ee}/p^2$ with $m_{ee}\sim 0.1\,{\rm eV}$:


LR important if:

$$\left(rac{m_{W_R}}{\mathrm{TeV}}
ight)^4 \left(rac{m_{
u_R}}{\mathrm{TeV}}
ight) < 0.02 \, (U_L \; O \; U_R^t)_{ee}^2$$

where *O* are orthogonal complex, maybe large! (seesaw example)

RR important if:

$$\left(rac{m_{W_R}}{\mathrm{TeV}}
ight)^4 \left(rac{m_{
u_R}}{\mathrm{TeV}}
ight) < 0.2\,.$$

- LR can (over)dominate for large Yukawa.
- RR survives even for vanishing Yukawa.

Important e.g. for $m_{W_R} \simeq 1 \text{ TeV}$, $m_{\nu_R} \simeq 200 \text{ GeV}!$

Limits

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scales

Low scale W_R

Processes $W_R^{-\nu}R$ $\Delta_{L,R}$ $0\nu\beta\beta$

Limits KR

Good mixings

L-R models

Outlook

- Direct limits $M_{W_R} \ge 800 \text{ GeV}$ (from dijets @ D0 [PRL '96, '04, '08])
- Strongest limit comes from *K* mass difference:
 - If disentangled $V_{CKMR} \neq V_{CKML}$ then no limit on M_{W_R} .
 - In models where $V_{CKMR} \simeq V_{CKML}$, we need $m_{W_R} > 2.5 \pm ...$ [Beall Bander Soni '81, ..., Zhang An Ji Mohapatra '07]
- In general ϵ , ϵ' harmless, due to phases. (also in minimal models!)

Thus it is Δm_K that matters

ΚĀ

F. Nesti

Problem

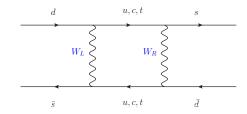
Problem Quantum Numbers

LR

LR Scales

Low scale W_R

Processes $W_R^{-\nu}R$ $\Delta_{L,R}$ $0\nu\beta\beta$


Limits

KK Good mixings

L IT MOUL

Outlook

$W_R \rightarrow$ new boxes for $\Delta S = 2$ — larger is W_L - W_R , e.g.:

Dominant is c-c loop – Correlated bounds $V_R-M_{W_R}$:

$$m_{W_R}^2 > (2.5 \,\mathrm{TeV})^2 \left(rac{V_{cd\,R}^*}{\lambda_c}
ight) \left(rac{V_{cs\,R}}{1}
ight)$$

• With hadronic matrix elements uncertainty 50%.

[Baremboim, Barnabeu, Prades, Raidal, '96]

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

So it is V_R that matters...

Good mixing matrices

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scale

Low scale W_R

Processes $W_R^{-\nu}R$ $\Delta_{L,R}$ $0\nu\beta\beta$

Limits *KK̄* Good mixings

L-R models

Outlook

Good V_R have thus one of the following forms:

$$\begin{pmatrix} e^{i\psi} & 0 & 0 \\ 0 & ce^{i\sigma} & -se^{i\gamma} \\ 0 & se^{i\theta} & ce^{i\epsilon} \end{pmatrix}, \qquad \begin{pmatrix} 0 & e^{i\psi} & 0 \\ ce^{i\sigma} & 0 & -se^{i\gamma} \\ se^{i\theta} & 0 & ce^{i\epsilon} \end{pmatrix}$$

$$[Langacker Sarkar '98]$$

By inspection, one checks that this is enough to relax limits from Δm_K as well from B_s , B_d .

Then also CP violation bounds can be satisfied, by exploiting the phases.

$$\theta_{12R} = 0$$
 or $\pi/2$

Can we reach this form?

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scales

Low scale W_R

 $\begin{array}{c} \operatorname{Processes} \\ W_R^{-\nu}R \\ \Delta_{L,R} \\ 0\nu\beta\beta \end{array}$

Limits *K K̄* Good mixings

L-R models

Outlook

L-R symmetric models

Generically, if α , h, \tilde{h} unconstrained, V_R free, hence yes, no limits on m_{W_R} .

■ *C*-type (generalized Charge conj.): $f_L \leftrightarrow (f_R)^c$, $\phi \leftrightarrow \phi^T$: Here *h*, *h* symmetric and

$$V_R = \mathbf{K}_1 \, V_L^* \, \mathbf{K}_2 \,,$$

with K_1 , K_2 diagonal phases. So equal mixings, and from Δm_K ,

$$m_{W_R} \geq (2.5 \pm 25\%_{had}) \, {
m TeV}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

■ \mathcal{P} -type (generalized Parity): $f_L \leftrightarrow f_R$, $\phi \leftrightarrow \phi^{\dagger}$: Here h, \tilde{h} hermitean.

here $V_R \neq V_L$ because of the spontaneous phase $e^{i\alpha}$...

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scales

Low scale W_R

 $\begin{array}{c} \operatorname{Processes} \\ W_R^{-\nu}R \\ \Delta_{L,R} \\ 0\nu\beta\beta \end{array}$

Limits *K K̄* Good mixing

L-R models

Outlook

\mathcal{P} -type: RH mixings and W_R

• Can disentangle V_R and V_L if masses are not hermitean:

$$M_{u} = v h + v' \tilde{h} e^{i\alpha}$$
$$M_{d} = v' h + v \tilde{h} e^{i\alpha}$$

Key parameters are α and x = v'/v. (0 < x < 1)

 \blacksquare For small $x \lesssim m_b/m_t$: one obtains analytically $V_R \simeq V_L$ [Zhang An Ji Mohapatra '0

For $x > m_b/m_t$ there may be cancellations and large angles. . .

... However α is limited by the need to adjust $m_b \ll m_t$. (plot of an analytical bound).

So in general matrices ~hermitean and mixings similar...

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scales

Low scale W_R

 $\begin{array}{c} \operatorname{Processes} \\ W_R \hbox{-} \nu_R \\ \Delta_{L,R} \\ 0\nu\beta\beta \end{array}$

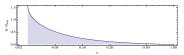
Limits *K K̄* Good mixing:

L-R models

Outlook

\mathcal{P} -type: RH mixings and W_R

• Can disentangle V_R and V_L if masses are not hermitean:


$$M_{u} = v h + v' \tilde{h} e^{i\alpha}$$
$$M_{d} = v' h + v \tilde{h} e^{i\alpha}$$

Key parameters are α and $x = \nu' / \nu$. (0 < x < 1)

For small $x \lesssim m_b/m_t$: one obtains analytically $V_R \simeq V_L$ [Zhang An Ji Mohapatra '07]

For $x > m_b/m_t$ there may be cancellations and large angles...

... However α is limited by the need to adjust $m_b \ll m_t$. (plot of an analytical bound).

So in general matrices ~hermitean and mixings similar...

F. Nesti

I R

 $W_R - \nu_R$ $\Delta_{I,R}$

ΚĒ

L-R models

Completing the landscape

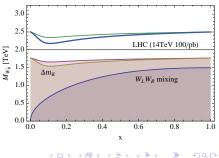
1.4

1.3 1.2 $\theta_{12R}/\theta_{12L}$

1.1

1.0

0.9 0.8


0.0

0.2

Need numerical fit (14 parameters). [W/ Maiezza, Nemevshek, Senjanovic] Preliminary result of complete analysis:

> 0.4 0.6 0.8 1.0 х 3.0

Bound is maybe bound to stay. (Still 25%(?) from matrix element)

Angles are quite aligned again.

Other angles similarly related.

Here $\theta_{12R}/\theta_{12L}$.

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scales

Low scale W_R

Processes $W_R^{-\nu}R$ $\Delta_{L,R}$ $0\nu\beta\beta$

Limits *KK* Good mixings

Outlook

Outlook

The interesting case of TeV-scale L-R symmetry:

- A symmetric extension of the SM.
- LR Parity restored, at low scale!
- Premium channel still on-shell W_{R} - ν_{R} @ LHC.
- Lepton Number Violation.
- Possibly very rich phenomenology $(W_R, \nu_R, \Delta_L, \Delta_R)$
- Todo WIP: update montecarlo for flavour? Matrix element? Polarizations? Disentangling different signals...

For minimal models...

... the Right chances Left.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Thanks

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scales

Low scale W_R

 $\begin{array}{c} \operatorname{Processes} \\ W_R^{-\nu}R \\ \Delta_{L,R} \\ 0\nu\beta\beta \end{array}$

Limits *KK* Good mixings

L-R models

Outlook

Outlook

The interesting case of TeV-scale L-R symmetry:

- A symmetric extension of the SM.
- LR Parity restored, at low scale!
- Premium channel still on-shell W_R - ν_R @ LHC.
- Lepton Number Violation.
- Possibly very rich phenomenology $(W_R, \nu_R, \Delta_L, \Delta_R)$
- Todo WIP: update montecarlo for flavour? Matrix element? Polarizations? Disentangling different signals...

For minimal models...

... the Right chances Left.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Thanks

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scales

Low scale W_R

Processes $W_R^{-\nu}R$ $\Delta_{L,R}$ $0\nu\beta\beta$

Limits *KK* Good mixings

L-R models

Outlook

Outlook

The interesting case of TeV-scale L-R symmetry:

- A symmetric extension of the SM.
- LR Parity restored, at low scale!
- Premium channel still on-shell W_R - ν_R @ LHC.
- Lepton Number Violation.
- Possibly very rich phenomenology (W_R , ν_R , Δ_L , Δ_R)
- Todo WIP: update montecarlo for flavour? Matrix element? Polarizations? Disentangling different signals...

For minimal models...

... the Right chances Left.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Thanks!

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scales

Low scale W_R

 $\begin{array}{c} \operatorname{Processes} \\ W_R^{-\nu}R \\ \Delta_{L,R} \\ 0\nu\beta\beta \end{array}$

Limits *KK* Good mixings

L-R models

Outlook

Outlook

The interesting case of TeV-scale L-R symmetry:

- A symmetric extension of the SM.
- LR Parity restored, at low scale!
- Premium channel still on-shell W_{R} - ν_{R} @ LHC.
- Lepton Number Violation.
- Possibly very rich phenomenology $(W_R, \nu_R, \Delta_L, \Delta_R)$
- Todo WIP: update montecarlo for flavour? Matrix element? Polarizations? Disentangling different signals...

For minimal models...

... the Right chances Left.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Thanks!

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scales

Low scale W_R

 $\begin{array}{c} \operatorname{Processes} \\ W_R^{-\nu}R \\ \Delta_{L,R} \\ 0\nu\beta\beta \end{array}$

Limits *KK* Good mixings

L-R models

Outlook

Outlook

The interesting case of TeV-scale L-R symmetry:

- A symmetric extension of the SM.
- LR Parity restored, at low scale!
- Premium channel still on-shell W_{R} - ν_{R} @ LHC.
- Lepton Number Violation.
- Possibly very rich phenomenology $(W_R, \nu_R, \Delta_L, \Delta_R)$
- Todo WIP: update montecarlo for flavour? Matrix element? Polarizations? Disentangling different signals...

For minimal models...

... the Right chances Left.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Thanks!

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scale

Low scale W_R

 $\begin{array}{c} \operatorname{Processes} \\ W_R^{-\nu}R \\ \Delta_{L,R} \\ 0\nu\beta\beta \end{array}$

Limits *K K̄* Good mixings

L-R models

Outlook

L-R Lagrangian

$$L = R$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

F. Nesti

Problem

Problem Quantum Numbers

LR

LR Scales

Low scale W_R

 $\begin{array}{c} \operatorname{Processes} \\ W_R^{-\nu}R \\ \Delta_{L,R} \\ 0\nu\beta\beta \end{array}$

Limits *K K̄* Good mixings

L-R models

Outlook

W_L - W_R mixing

In the minimal models, tree level W_L - W_R mixing angle ζ is bound by weak decays, $\zeta < 10^{-2}$ (3 10^{-3}).

This translates into a limit on the W_R mass:

$$M_{W_R} > 1.5 \, {
m TeV} \sqrt{rac{2x}{1+x^2}} \, ,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

... quite harmless.