LONGITUDINAL beam DYNAMICS in circular accelerators

Frank Tecker CERN, BE-OP

Introduction to Accelerator Physics
Constanta, 16-29/9/2018

Scope and Summary of the 2 lectures:

The goal of an accelerator is to provide a stable particle beam.

The particles nevertheless perform transverse betatron oscillations. We will see that they also perform (so-called synchrotron) oscillations in the longitudinal plane and in energy.

We will look at the stability of these oscillations, their dynamics and derive some basic equations.

- Introduction
- Circular accelerators: Cyclotron / Synchrotron
- Dispersion Effects in Synchrotron
- Stability and Longitudinal Phase Space Motion
- Hamiltonian
- Stationary Bucket
- Injection Matching

More related lectures:

- Linacs
- RF Systems
- Electron Beam Dynamics
- Non-Linear longitudinal Beam Dynamics
- David Alesini
- Heiko Damerau
- Lenny Rivkin
- Heiko Damerau
- Discussion longitudinal BD on Friday 15:00

Motivation for circular accelerators

- Linear accelerators scale in size and cost(!) ~linearly with the energy.
- Circular accelerators can each turn reuse
- the accelerating system
- the vacuum chamber
- the bending/focusing magnets
- beam instrumentation, ...
-> economic solution to reach higher particle energies
-> high energy accelerators today are synchrotrons.

Particle types and acceleration

The accelerating system will depend upon the evolution of the particle velocity:

- electrons reach a constant velocity (~speed of light) at relatively low energy
- heavy particles reach a constant velocity only at very high energy
\rightarrow need different types of resonators, optimized for different velocities
\rightarrow the revolution frequency will vary, so the RF frequency will be changing
\rightarrow magnetic field needs to follow the momentum increase

Particle rest mass m_{0} :

 electron 0.511 MeV proton 938 MeV $239 \mathrm{U} \sim 220000 \mathrm{MeV}$Total Energy: $E=m_{0} c^{2}$ Relativistic gamma factor:

$$
=\frac{E}{E_{0}}=\frac{m}{m_{0}}=\frac{1}{\sqrt{1 r^{2}}}
$$

Momentum:

$$
p=m v=\frac{E}{c^{2}} \quad c=\frac{E}{c}=m_{0} c
$$

Particle energy (MeV)

Revolution frequency variation

The revolution and RF frequency will be changing during acceleration Much more important for lower energies (values are kinetic energy - protons).

PS Booster: $\quad 50 \mathrm{MeV}(\beta=0.314)$-> $1.4 \mathrm{GeV}(\beta=0.915)$ 602 kHz -> 1746 kHz => 190\% increase

PS
$1.4 \mathrm{GeV}(\beta=0.915)$-> $25.4 \mathrm{GeV}(\beta=0.9994)$
437 KHz -> 477 kHz => 9\% increase
SPS: $\quad 25.4 \mathrm{GeV}$-> $450 \mathrm{GeV}(\beta=0.999998)$
=> 0.06% increase
LHC: $\quad 450 \mathrm{GeV} \rightarrow 7 \mathrm{TeV}(\beta=0.999999991)$
=> 210^{-6} increase
RF system needs more flexibility in lower energy accelerators.

Acceleration + Energy Gain

 be with you!To accelerate, we need a force in the direction of motion!
Newton-Lorentz Force on a charged particle:

$$
\vec{F}=\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=e(\vec{E}+\vec{v}<\vec{B})
$$

$2^{\text {nd }}$ term always perpendicular to motion $=>$ no acceleration

Hence, it is necessary to have an electric field E (preferably) along the direction of the initial momentum (z), which changes the momentum p of the particle.

$$
\frac{d p}{d t}=e E_{z}
$$

In relativistic dynamics, total energy E and momentum p are linked by

$$
E^{2}=E_{0}^{2}+p^{2} c^{2} \quad d E=v d p \quad\left(2 E d E=2 c^{2} p d p \Leftrightarrow d E=c^{2} m v / E d p=v d p\right)
$$

The rate of energy gain per unit length of acceleration (along z) is then:

$$
\frac{d E}{d z}=v \frac{d p}{d z}=\frac{d p}{d t}=e E_{z}
$$

and the kinetic energy gained from the field along the z path is:

$$
d W=d E=q E_{z} d z \quad \rightarrow \quad W=q \quad E_{z} d z=q V
$$

- V is a potential
- q the charge

Unit of Energy

Today's accelerators and future projects work/aim at the TeV energy range.
LHC: 7 TeV $\rightarrow 14 \mathrm{TeV}$
CLIC: 380 GeV -> 3 TeV HE-LHC/FCC: 33/100 TeV

In fact, this energy unit comes from acceleration:
1 eV (electron Volt) is the energy that 1 elementary charge e (like one electron or proton) gains when it is accelerated in a potential (voltage) difference of 1 Volt.

Basic Unit: eV (electron Volt) $\mathrm{keV}=1000 \mathrm{eV}=10^{3} \mathrm{eV}$
$\mathrm{MeV}=10^{6} \mathrm{eV}$
$\mathrm{GeV}=10^{9} \mathrm{eV}$
$\mathrm{TeV}=10^{12} \mathrm{eV}$
LHC $=\sim 450$ Million km of batteries!!! $3 x$ distance Earth-Sun

Methods of Acceleration: Time varying fields

Electrostatic field is limited by insulation problems, the magnetic field does not accelerate at all.
Circular machine: DC acceleration impossible since $\oint \vec{E} \cdot \mathrm{~d} \vec{s}=0$

From Maxwell's Equations: $\begin{aligned} \vec{E} & =\vec{\nabla} \quad \frac{\partial \vec{A}}{\partial t} \\ \vec{B} & =\vec{H}=\vec{\nabla} \times \vec{A}\end{aligned}$
The electric field is derived from a scalar potential φ and a vector potential A The time variation of the magnetic field H generates an electric field E

The solution: => time varying electric fields

- Induction
- RF frequency fields

$$
\oint \vec{E} \cdot \mathrm{~d} \vec{s}=-\iint \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{A}
$$

Acceleration by Induction: The Betatron

It is based on the principle of a transformer:

- primary side: large electromagnet - secondary side: electron beam.

The ramping magnetic field is used to guide particles on a circular trajectory as well as for acceleration.

Limited by saturation in iron ($\sim 300 \mathrm{MeV}$ e-)
Used in industry and medicine, as they are compact accelerators for electrons

Donald Kerst with the first betatron, invented at the University of Illinois in 1940

Common Phase Conventions

1. For circular accelerators, the origin of time is taken at the zero crossing of the RF voltage with positive slope
2. For linear accelerators, the origin of time is taken at the positive crest of the RF voltage

Time $t=0$ chosen such that:

3. I will stick to convention 1 in the following to avoid confusion

Circular accelerators

Cyclotron

Synchrotron

Circular accelerators: Cyclotron

Courtesy: EdukiteLearning, https://youtu.be/cNnNM2ZqIsc

Circular accelerators: Cyclotron

Used for protons, ions

$$
\begin{aligned}
& B=\text { constant } \\
& \omega_{\mathrm{RF}}=\text { constant }
\end{aligned}
$$

Synchronism condition

$$
\Rightarrow \quad \begin{aligned}
\omega_{s} & =\omega_{R F} \\
2 \pi \rho & =v_{s} T_{R F}
\end{aligned}
$$

Ions trajectory

Cyclotron frequency $\quad \omega=\frac{q B}{m_{0} \gamma}$

1. \quad increases with the energy \Rightarrow no exact synchronism
2. if $v \ll c \Rightarrow \gamma \cong 1$

Circular accelerators: Cyclotron

Courtesy Berkeley Lab, https://www.youtube.com/watch?v=cutKuFxeXmQ

Cyclotron / Synchrocyclotron

Synchrocyclotron: Same as cyclotron, except a modulation of ω_{RF}

B	$=$ constant	
$\gamma \omega_{\mathrm{RF}}$	$=$ constant	$\omega_{\text {RF }}$ decreases with time

More in lectures by Mike Seidel

Allows to go beyond the non-relativistic energies

The condition:

$$
\omega_{s}(t)=\omega_{R F}(t)=\frac{q B}{m_{0} \gamma(t)}
$$

Circular accelerators: The Synchrotron

Synchronism condition

1. Constant orbit during acceleration
2. To keep particles on the closed orbit, B should increase with time
3. ω and $\omega_{R F}$ increase with energy

RF frequency can be multiple of revolution frequency

$$
\omega_{R F}=h \omega
$$

$$
T_{s}=h T_{R F}
$$

$$
\frac{2 \pi R}{v_{s}}=h T_{R F}
$$

h integer, harmonic number: number of RF cycles per revolution

Circular accelerators: The Synchrotron

EPA (CERN)
Electron Positron Accumulator

Examples of different proton and electron synchrotrons at CERN

+ LHC (of course!)

Introductory CAS, Constanta, September 2018

The Synchrotron

The synchrotron is a synchronous accelerator since there is a synchronous RF phase for which the energy gain fits the increase of the magnetic field at each turn. That implies the following operating conditions:

If $v \approx c, \omega$ hence $\omega_{\text {RF }}$ remain constant (ultra-relativistic e^{-})

The Synchrotron - LHC Operation Cycle

The magnetic field (dipole current) is increased during the acceleration.

The Synchrotron - Energy ramping

Energy ramping by increasing the B field (frequency has to follow v):

$$
p=e B \Rightarrow \frac{d p}{d t}=e \quad \dot{B} \Rightarrow(p)_{t u r n}=e \quad \dot{B} T_{r}=\frac{2 \quad R \dot{B}}{v}
$$

Since:

$$
\begin{aligned}
& E^{2}=E_{0}^{2}+p^{2} c^{2} \Rightarrow E=v p \\
& (E)_{\text {turn }}=(W)_{s}=2 \text { e } R \dot{B}=e \hat{V} \sin
\end{aligned}
$$

Stable phase φ_{s} changes during energy ramping

$$
\sin \phi_{s}=2 \pi \rho R \frac{\dot{B}}{\hat{V}_{R F}} \quad \phi_{s}=\arcsin \left(2 \pi \rho R \frac{\dot{B}}{\hat{V}_{R F}}\right)
$$

- The number of stable synchronous particles is equal to the harmonic number h. They are equally spaced along the circumference.
- Each synchronous particle satisfies the relation $p=e B p$. They have the nominal energy and follow the nominal trajectory.

The Synchrotron - Frequency change

During the energy ramping, the RF frequency increases to follow the increase of the revolution frequency:

$$
\omega=\frac{\omega_{R F}}{h}=\omega\left(B, R_{s}\right)
$$

Hence: $\frac{f_{R F}(t)}{h}=\frac{v(t)}{2 R_{s}}=\frac{1}{2} \frac{e c^{2}}{E_{s}(t)} \frac{-}{R_{s}} B(t) \quad$ (using $p(t)=e B(t), \quad E=m c^{2}$)
Since $E^{2}=\left(m_{0} c^{2}\right)^{2}+p^{2} c^{2}$ the RF frequency must follow the variation of the B field with the law

$$
\frac{f_{R F}(t)}{h}=\frac{c}{2 R_{s}} \frac{B(t)^{2}}{\left(m_{0} c^{2} / e c\right)^{2}+B(t)^{2}}{ }^{1 / 2}
$$

This asymptotically tends towards $\quad f_{r} \rightarrow \frac{c}{2 R_{s}} \quad$ when B becomes large
compared to $m_{0} c^{2} /(e c)$ which corresponds to $v \rightarrow c$

Example: PS - Field / Frequency change

During the energy ramping, the B-field and the revolution frequency increase

Introductory CAS, Constanta, September 2018

Wait until the lecture...

Wait until the lecture...

Wait until the lecture...

Overtaking in a Synchrotron

$\mathrm{p}=$ particle momentum
$\mathrm{R}=$ synchrotron physical radius $f_{r}=$ revolution frequency

A particle slightly shifted in momentum will have a

- dispersion orbit and a different orbit length
- a different velocity.

As a result of both effects the revolution frequency changes with a "slip factor η ":

$$
=\frac{\mathrm{d} f_{r} / f_{r}}{\mathrm{~d} p / p} \quad \eta=\frac{p}{f_{r}} \frac{d f_{r}}{d p}
$$

Note: you also find n defined with a minus sign!
The "momentum compaction factor" is defined as relative orbit length change with momentum:

$$
\alpha_{c}=\frac{d L / L}{d p / p} \quad \alpha_{c}=\frac{p}{L} \frac{d L}{d p}
$$

Momentum Compaction Factor

$$
\begin{array}{ll}
\alpha_{c}=\frac{p}{L} \frac{d L}{d p} & d s_{0}=d \\
d s=(+x) d
\end{array}
$$

The elementary path difference from the two orbits is: definition of dispersion D_{x}

$$
\frac{d l}{d s_{0}}=\frac{d s \quad d s_{0}}{d s_{0}}=\frac{x}{=} \frac{D_{x}}{=} \frac{d p}{p}
$$

leading to the total change in the circumference:

$$
\begin{aligned}
& d L=d l=\frac{x}{C} d s_{0}=\frac{D_{x}}{} \frac{d p}{p} d s_{0} \\
& \alpha_{c}=\frac{1}{L} \int_{C} \frac{D_{x}(s)}{\rho(s)} d s_{0} \begin{array}{l}
\text { With } \rho=\infty \text { in } \\
\text { straight sections } \\
\text { we get: }
\end{array} \alpha_{c}=\frac{\left\langle D_{x}\right\rangle_{m}}{R}
\end{aligned}
$$

$\left\langle>_{m}\right.$ means that the average is considered over the bending magnet only

Dispersion Effects - Revolution Frequency

The two effects of the orbit length and the particle velocity change the revolution frequency as:

$$
\begin{aligned}
& f_{r}=\frac{c}{2 R} \\
& \frac{d f_{r}}{f_{r}}=\left(\frac{1}{\gamma^{2}}-\alpha_{c}\right) \frac{d p}{p}
\end{aligned}
$$

$$
\text { Slip } \quad \eta=\frac{1}{\gamma^{2}}-\alpha_{c} \quad \text { or } \quad \eta=\frac{1}{\gamma^{2}}-\frac{1}{\gamma_{t}^{2}} \quad \text { with } \quad \gamma_{t}=\frac{1}{\sqrt{\alpha_{c}}}
$$

Note: you also find n defined with a minus sign!
At transition energy, $\eta=0$, the velocity change and the path length change with momentum compensate each other. So the revolution frequency there is independent from the momentum deviation.

RECAP: Principle of Phase Stability (Linac)

Let's consider a succession of accelerating gaps, operating in the 2π mode, for which the synchronism condition is fulfilled for a phase Φ_{s}.
is the energy gain in one gap for the particle to reach the next gap with the same RF phase: P_{1}, P_{2}, \qquad are fixed points.

If an energy increase is transferred into a velocity increase =>

$$
\begin{array}{ll}
M_{1} \& N_{1} \text { will move towards } P_{1} & \Rightarrow \text { stable } \\
M_{2} \& N_{2} \text { will go away from } P_{2} & \Rightarrow \text { unstable }
\end{array}
$$

(Highly relativistic particles have no significant velocity change)

Phase Stability in a Synchrotron

From the definition of η it is clear that an increase in momentum gives

- below transition ($\eta>0$) a higher revolution frequency (increase in velocity dominates) while
- above transition ($\eta<0$) a lower revolution frequency ($v \approx c$ and longer path) where the momentum compaction (generally >0) dominates.

Crossing Transition

At transition, the velocity change and the path length change with momentum compensate each other. So the revolution frequency there is independent from the momentum deviation.
Crossing transition during acceleration makes the previous stable synchronous phase unstable. The RF system needs to make a rapid change of the RF phase, a 'phase jump'.

In the PS: γ_{+}is at $\sim 6 \mathrm{GeV}$
In the SPS: $\gamma_{\dagger}=22.8$, injection at $\gamma=27.7$
\Rightarrow no transition crossing!
In the $\mathrm{LHC}: \gamma_{+}$is at $\sim 55 \mathrm{GeV}$, also far below injection energy
Transition crossing not needed in leptons machines, why?

Dynamics: Synchrotron oscillations

Simple case (no accel.): $B=$ const., below transition $\quad \gamma<\gamma_{t}$
The phase of the synchronous particle must therefore be $\phi_{0}=0$.
$\Phi_{1} \quad$ - The particle B is accelerated

- Below transition, an energy increase means an increase in revolution frequency
- The particle arrives earlier - tends toward ϕ_{0}

- The particle is decelerated
- decrease in energy - decrease in revolution frequency
- The particle arrives later - tends toward ϕ_{0}

Synchrotron oscillations

Particle B is performing Synchrotron Oscillations around synchronous particle A.
The amplitude depends on the initial phase and energy.
The oscillation frequency is much slower than in the transverse plane. It takes a large number of revolutions for one complete oscillation. Restoring electric force smaller than magnetic force.

The Potential Well

Cavity voltage

Potential well

Longitudinal phase space

The energy - phase oscillations can be drawn in phase space:

The particle trajectory in the phase space $(\Delta p / p, \phi)$ describes its longitudinal motion.

Emittance: phase space area including all the particles

NB: if the emittance contour correspond to a possible orbit in phase space, its shape does no \dagger change with time (matched beam)

Longitudinal Phase Space Motion

Particle B oscillates around particle A
This is a synchrotron oscillation
Plotting this motion in longitudinal phase space gives:

Synchrotron oscillations - No acceleration

Phase space picture

Synchrotron oscillations (with acceleration)

Case with acceleration B increasing

$$
\gamma<\gamma_{t}
$$

Phase space picture

$$
\phi_{s}<\phi<\pi-\phi_{s}
$$

Synchrotron motion in phase space

$\Delta \mathrm{E}-\phi$ phase space of a stationary bucke \dagger (when there is no acceleration)

Dynamics of a particle
Non-linear, conservative oscillator \rightarrow e.g. pendulum

Particle inside the separatrix:

Particle at the unstable fix-point

Bucket area: area enclosed by the separatrix The area covered by particles is the longitudinal emittance

Particle outside the separatrix:

(Stationary) Bunch \& Bucket

The bunches of the beam fill usually a part of the bucket area.

Bucket area = longitudinal Acceptance [eVs]
Bunch area $=$ longitudinal beam emittance $=4 \pi \sigma_{E} \sigma_{\dagger}[\mathrm{eVs}]$
Attention: Different definitions are used!
Introductory CAS, Constanta, September 2018

Synchrotron motion in phase space

The restoring force is non-linear.
\Rightarrow speed of motion depends on position in phase-space
(here shown for a stationary bucket)

RF Acceptance versus Synchronous Phase

The areas of stable motion (closed trajectories) are called "BUCKET". The number of circulating buckets is equal to " h ".

The phase extension of the bucket is maximum for $\phi_{s}=180^{\circ}$ (or 0°) which means no acceleration.

During acceleration, the buckets get smaller, both in length and energy acceptance.
=> Injection preferably without acceleration.

Longitudinal Motion with Synchrotron Radiation

Synchrotron radiation energy-loss energy dependant:
During one period of synchrotron oscillation:

$$
U_{0}=\frac{4}{3} \square \frac{r_{e p}}{\left(m_{0} c^{2}\right)^{3}} \frac{E^{4}}{\rho}
$$

- when the particle is in the upper half-plane, it loses more energy per turn, its energy gradually reduces

- when the particle is in the lower half-plane, it loses less energy per turn, but receives U_{0} on the average, so its energy deviation gradually reduces
The phase space trajectory spirals towards the origin (limited by quantum excitations)
\Rightarrow The synchrotron motion is damped toward an equilibrium bunch length and energy spread.

More details in the lectures on Electron Beam Dynamics

$$
\sigma_{\tau}=\frac{\alpha}{\Omega_{S}}\left(\frac{\sigma_{\varepsilon}}{E}\right)
$$

Longitudinal Dynamics in Synchrotrons

Now we will look more quantitatively at the "synchrotron motion".
The RF acceleration process clearly emphasizes two coupled variables, the energy gained by the particle and the RF phase experienced by the same particle.
Since there is a well defined synchronous particle which has always the same phase ϕ_{s}, and the nominal energy E_{s}, it is sufficient to follow other particles with respect to that particle.
So let's introduce the following reduced variables:

revolution frequency :	$\Delta f_{r}=f_{r}-f_{r s}$
particle RF phase :	$\Delta \phi=\phi-\phi_{s}$
particle momentum :	$\Delta p=p-p_{s}$
particle energy $:$	$\Delta E=E-E_{s}$
azimuth angle	$\Delta \theta=\theta-\theta_{s}$

First Energy-Phase Equation

$$
f_{R F}=h f_{r} \Rightarrow h \quad \text { with }=\int \begin{gathered}
\text { particle ahead arrives earlier } \\
\text { => smaller RF phase }
\end{gathered}, ~=\int t
$$

For a given particle with respect to the reference one:

$$
\Delta \omega=\frac{d}{d t}(\Delta \theta)=-\frac{1}{h} \frac{d}{d t}(\Delta \phi)=-\frac{1}{h} \frac{d \phi}{d t}
$$

Since: $\eta=\frac{p_{s}}{\omega_{r s}}\left(\frac{d \omega}{d p}\right)_{s} \quad$ and $\quad \begin{aligned} & \\ & E=v_{0}^{2}+p^{2} c^{2} \\ & \\ & E={ }_{r s} R_{s} p\end{aligned}$
one gets:

Second Energy-Phase Equation

The rate of energy gained by a particle is: $\quad \frac{d E}{d t}=e \hat{V} \sin \phi \frac{\omega_{r}}{2 \pi}$
The rate of relative energy gain with respect to the reference particle is then:

$$
2 \quad\left(\frac{\dot{E}}{r}\right)=e \hat{V}\left(\sin \quad \sin { }_{s}\right)
$$

Expanding the left-hand side to first order:

$$
\left(\dot{E} T_{r}\right) \quad \dot{E} \quad T_{r}+T_{r s} \quad \dot{E}=E \dot{T}_{r}+T_{r s} \quad \dot{E}=\frac{d}{d t}\left(T_{r s} \quad E\right)
$$

leads to the second energy-phase equation:

$$
2 \frac{d}{d t}\left(\frac{E}{r s}\right)=e \hat{V}\left(\sin _{r s} \sin { }_{s}\right)
$$

Equations of Longitudinal Motion

$$
\begin{gathered}
\frac{\Delta E}{\omega_{r s}}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \frac{d(\Delta \phi)}{d t}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \dot{\phi} \quad 2 \pi \frac{d}{d t}\left(\frac{\Delta E}{\omega_{r s}}\right)=e \hat{V}\left(\sin \phi-\sin \phi_{s}\right) \\
\text { deriving and combining } \\
\frac{d}{d t}\left[\frac{R_{s} p_{s}}{h \eta \omega_{r s}} \frac{d \phi}{d t}\right]+\frac{e \hat{V}}{2 \pi}\left(\sin \phi-\sin \phi_{s}\right)=0
\end{gathered}
$$

This second order equation is non linear. Moreover the parameters within the bracket are in general slowly varying with time.
We will study some cases in the following...

Potential Energy Function

The longitudinal motion is produced by a force that can be derived from a scalar potential:

$$
\frac{d^{2} \phi}{d t^{2}}=F(\phi) \quad F(\phi)=-\frac{\partial U}{\partial \phi}
$$

$$
U=-\int_{0}^{\phi} F(\phi) d \phi=-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)-F_{0}
$$

The sum of the potential energy and kinetic energy is constant and by analogy represents the total energy of a non-dissipative system.

Hamiltonian of Longitudinal Motion

Introducing a new convenient variable, W, leads to the $1^{\text {st }}$ order equations:

$$
W=\frac{\Delta E}{\omega_{r s}} \quad \longrightarrow \quad \begin{aligned}
& \overline{d t}=-\frac{p R}{V V} \\
& \frac{d W}{d t}=\frac{e \hat{V}}{2 \pi}\left(\sin \phi-\sin \phi_{s}\right)
\end{aligned}
$$

The two variables ϕ, W are canonical since these equations of motion can be derived from a Hamiltonian $H(\phi, W, t)$:

$$
\begin{gathered}
\frac{d \phi}{d t}=\frac{\partial H}{\partial W} \quad \frac{d W}{d t}=-\frac{\partial H}{\partial \phi} \\
H(\phi, W)=-\frac{1}{2} \frac{h \eta \omega_{r s}}{p R} W^{2}+\frac{e \hat{V}}{2 \pi}\left[\cos \phi-\cos \phi_{s}+\left(\phi-\phi_{s}\right) \sin \phi_{s}\right]
\end{gathered}
$$

Hamiltonian of Longitudinal Motion

What does it represent?
 Surface of H (φ, W)

The total energy of the system!
Contours of H (φ, W)

Contours of constant H are particle trajectories in phase space! (H is conserved)

Hamiltonian Mechanics can help us understand some fairly complicated dynamics (multiple harmonics, bunch splitting, ...)

Small Amplitude Oscillations

Let's assume constant parameters R_{s}, p_{s}, ω_{s} and η :

$$
\ddot{\phi}+\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0 \quad \text { with }
$$

$$
\Omega_{s}^{2}=\frac{h \eta \omega_{r s} e \hat{V} \cos \phi_{s}}{2 \pi R_{s} p_{s}}
$$

Consider now small phase deviations from the reference particle:

$$
\sin \phi-\sin \phi_{s}=\sin \left(\phi_{s}+\Delta \phi\right)-\sin \phi_{s} \cong \cos \phi_{s} \Delta \phi
$$

and the corresponding linearized motion reduces to a harmonic oscillation:
${ }^{\bullet}+{ }_{s}^{2}=0$ where Ω_{s} is the synchrotron angular frequency.
The synchrotron tune v_{s} is the number of synchrotron oscillations per revolution:

$$
v_{s}=\Omega_{s} / \omega_{r}
$$

Typical values are <<1, as it takes several 10-1000 turns per oscillation.

- proton synchrotrons of the order 10^{-3}
- electron storage rings of the order 10^{-1}

Stability condition for ϕ_{s}

Stability is obtained when Ω_{s} is real and so $\Omega_{s}{ }^{2}$ positive:

$$
{ }_{s}^{2}=\frac{e \hat{V}_{R F} h_{s}}{2 R_{s} p_{s}} \cos { }_{s} \Rightarrow \quad{ }_{s}^{2}>0 \Leftrightarrow \cos _{s}>0
$$

Stable in the region if

Synchrotron tune measurement

Reminder: Non-linear force $=>$ Synchrotron tune depends on amplitude
Principle A: The synchrotron oscillation modulates the arrival time of a bunch.
Use pick-up intensity signal and perform an FFT
\Rightarrow The synchrotron tune will appear as sideband of revolution harmonics

Practical approach: Mix the signal with RF signal => proportional to phase offset

Synchrotron tune measurement - cont.

Principle B: The transverse beam position is modulated through dispersion:

$$
x=x_{0}+D \frac{\Delta p}{p}
$$

Use horizontal position signal from a BPM in dispersive region + perform FFT

Radial beam position after injection with phase/energy offset (at the PS)

Synchrotron tune measurement - cont.

Principle C: The transverse tune is modulated through chromaticity:

$$
Q=Q_{0}+\xi \frac{\Delta p}{p}
$$

Frequency modulation (FM) of the betatron tunes.
Use horizontal position signal from a BPM + perform FFT
The synchrotron tune will appear as sidebands of the betatron tune.
Tune measurement for positrons (at the SPS)

Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference the second order differential equation is non-linear:

$$
\ddot{\phi}+\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0 \quad\left(\Omega_{\mathrm{s}} \text { as previously defined }\right)
$$

Multiplying by $\dot{\phi}$ and integrating gives an invariant of the motion:

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=I
$$

which for small amplitudes reduces to:

(the variable is $\Delta \phi$, and ϕ_{s} is constant)

Similar equations exist for the second variable : $\Delta \mathrm{E} \propto d \phi / d \dagger$

Large Amplitude Oscillations (2)

When ϕ reaches $\pi-\phi_{s}$ the force goes to zero and beyond it becomes non restoring.
Hence $\pi-\phi_{s}$ is an extreme amplitude for a stable motion which in the phase space (-,) is shown as closed trajectories.

Equation of the separatrix:

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}\right)
$$

Second value ϕ_{m} where the separatrix crosses the horizontal axis:

$$
\cos \phi_{m}+\phi_{m} \sin \phi_{s}=\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}
$$

Energy Acceptance

From the equation of motion it is seen that $\dot{\phi}$ reaches an extreme at $\phi=\phi_{s}$.
Introducing this value into the equation of the separatrix gives:

$$
{ }_{\text {max }}^{2}=2{ }_{s}^{2}\left\{2+\left(2_{s}\right) \tan _{s}\right\}
$$

That translates into an energy acceptance:

$$
\begin{gathered}
\left(\frac{\Delta E}{E_{S}}\right)_{\max }= \pm \beta \sqrt{\frac{e \hat{V}}{\pi h \eta E_{S}} G\left(\phi_{s}\right)} \\
G\left({ }_{s}\right)=2 \cos _{s}+\left(2_{s}\right) \sin { }_{s}
\end{gathered}
$$

This "RF acceptance" depends strongly on ϕ_{s} and plays an important role for the capture at injection, and the stored beam lifetime.
It's largest for $\phi_{s}=0$ and $\phi_{s}=\pi$ (no acceleration, depending on η).
It becomes smaller during acceleration, when ϕ_{s} is changing
Need a higher RF voltage for higher acceptance.
For the same RF voltage it is smaller for higher harmonics h.
Introductory CAS, Constanta, September 2018

RF Acceptance versus Synchronous Phase

The areas of stable motion (closed trajectories) are called "BUCKET". The number of circulating buckets is equal to " h ".

The phase extension of the bucket is maximum for $\phi_{s}=180^{\circ}$ (or 0°) which means no acceleration.

During acceleration, the buckets get smaller, both in length and energy acceptance.
=> Injection preferably without acceleration.

Stationnary Bucket - Separatrix

This is the case $\sin \phi_{s}=0$ (no acceleration) which means $\phi_{s}=0$ or π. The equation of the separatrix for $\phi_{s}=\pi$ (above transition) becomes:

$$
\frac{\dot{\phi}^{2}}{2}+\Omega_{s}^{2} \cos \phi=\Omega_{s}^{2}
$$

$$
\frac{\dot{\phi}^{2}}{2}=2 \Omega_{s}^{2} \sin ^{2} \frac{\phi}{2}
$$

Replacing the phase derivative by the (canonical) variable W:

Phase Space Trajectories inside Stationary Bucket

A particle trajectory inside the separatrix is described by the equation:

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=I \quad \xrightarrow{\phi_{s}=\pi} \quad \frac{\dot{\phi}^{2}}{2}+\Omega_{s}^{2} \cos \phi=I
$$

$$
\begin{array}{r}
W= \pm W_{b k} \sqrt{\cos ^{2} \frac{m}{2} \quad \cos ^{2} \frac{}{2}} \\
\cos ()=2 \cos ^{2} \frac{1}{2}
\end{array}
$$

Injection: Bunch-to-bucket transfer

- Bunch from sending accelerator into the bucket of receiving

Advantages:

\rightarrow Particles always subject to longitudinal focusing
\rightarrow No need for RF capture of de-bunched beam in receiving accelerator
\rightarrow No particles at unstable fixed point
\rightarrow Time structure of beam preserved during transfer

Effect of a Mismatch

Injected bunch: short length and large energy spread after $1 / 4$ synchrotron period: longer bunch with a smaller energy spread.

For larger amplitudes, the angular phase space motion is slower ($1 / 8$ period shown below) \Rightarrow can lead to filamentation and emittance growth

restoring force is non-linear

stationary bucket

accelerating bucket

Effect of a Mismatch (2)

- Long. emittance is only preserved for correct RF voltage

\rightarrow Bunch is fine, longitudinal emittance remains constant

Effect of a Mismatch (3)

Evolution of an injected beam for the first 100 turns.
For a mismatched transfer, the emittance increases (right).

matched beam

mismatched beam - phase error

Longitudinal matching - Beam profile

Matched case

$\Delta \phi=0, V_{\mathrm{inj}} / V_{\mathrm{RF}}=1$

\rightarrow Bunch is fine, longitudinal emittance remains constant

Longitudinal mismatch

\rightarrow Dilution of bunch results in increase of long. emittance

Matching quiz!

- Find the difference!

$\rightarrow-45^{\circ}$ phase error at injection
\rightarrow Can be easily corrected by bucket phase

\rightarrow Equivalent energy error
\rightarrow Phase does not help: requires beam energy change

Phase Space Tomography

We can reconstruct the phase space distribution of the beam.

- Longitudinal bunch profiles over a number of turns
- Parameters determining Ω_{s}

Bunch Rotation

Phase space motion can be used to make short bunches.
Start with a long bunch and extract or recapture when it's short.

initial beam

Capture of a Debunched Beam with Fast Turn-On

Capture of a Debunched Beam with Adiabatic Turn-On

Generating a 25ns LHC Bunch Train in the PS

- Longitudinal bunch splitting (basic principle)
- Reduce voltage on principal RF harmonic and simultaneously rise voltage on multiple harmonics (adiabatically with correct phase, etc.)

Use double splitting at 25 GeV to generate 50ns bunch trains instead

Production of the LHC 25 ns beam

1. Inject four bunches $\sim 180 \mathrm{~ns}, 1.3 \mathrm{eVs}$

Wait 1.2 s for second injection
2. Inject two bunches

~ 0.7 eVs
4. Accelerate from $1.4 \mathrm{GeV}\left(\mathrm{E}_{\text {kin }}\right)$ to 26 GeV

Production of the LHC 25 ns beam

5. During acceleration: longitudinal emittance blow-up: 0.7 - 1.3 eVs

6. Fine synchronization, bunch rotation \rightarrow Extraction!

The LHC25 (ns) cycle in the PS

\rightarrow Each bunch from the Booster divided by $12 \rightarrow 6 \times 3 \times 2 \times 2=72$

Triple splitting in the PS

Two times double splitting in the PS

Two times double splitting and bunch rotation:

- Bunch is divided twice using RF systems at $h=21 / 42(10 / 20 \mathrm{MHz})$ and $h=42 / 84(20 / 40 \mathrm{MHz})$
- Bunch rotation: first part h84 only + h168 (80 MHz) for final part

Summary

- Cyclotrons/Synchrocylotrons for low energy
- Synchrotrons for high energies, constant orbit, rising field and frequency
- Particles with higher energy have a longer orbit (normally) but a higher velocity
- at low energies (below transition) velocity increase dominates
- at high energies (above transition) velocity almost constant
- Particles perform oscillations around synchronous phase
- synchronous phase depending on acceleration
- below or above transition
- Hamiltonian approach can deal with fairly complicated dynamics
- Bucket is the stable region in phase space inside the separatrix
- Matching the shape of the bunch to the bucket is essential

Bibliography

S.Y. Lee
M. Conte, W.W. Mac Kay
P. J. Bryant and K. Johnsen
D. A. Edwards, M. J. Syphers
H. Wiedemann
M. Reiser
A. Chao, M. Tigner
K. Wille
E.J.N. Wilson

Accelerator Physics
(World Scientific, 2011)
An Introduction to the Physics of particle Accelerators
(World Scientific, 1991)
The Principles of Circular Accelerators and Storage Rings (Cambridge University Press, 1993)
An Introduction to the Physics of High Energy Accelerators (J. Wiley \& sons, Inc, 1993)

Particle Accelerator Physics
(Springer-Verlag, Berlin, 1993)
Theory and Design of Charged Particles Beams
(J. Wiley \& sons, 1994)

Handbook of Accelerator Physics and Engineering
(World Scientific 1998)
The Physics of Particle Accelerators: An Introduction (Oxford University Press, 2000)
An introduction to Particle Accelerators
(Oxford University Press, 2001)

> And CERN Accelerator Schools (CAS) Proceedings In particular: CERN-2014-009 Advanced Accelerator Physics - CAS

Acknowledgements

I would like to thank everyone for the material that I have used.
In particular (hope I don't forget anyone):

- Joël Le Duff (from whom I inherited the course)
- Rende Steerenberg
- Gerald Dugan
- Heiko Damerau
- Werner Pirkl
- Genevieve Tulloue
- Mike Syphers
- Daniel Schulte
- Roberto Corsini
- Roland Garoby
- Luca Bottura
- Chris Warsop
- Berkeley Lab
- Edukite Learning

Appendix: Relativity + Energy Gain

Newton-Lorentz Force $\vec{F}=\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=e\left(\begin{array}{ll}\vec{E}+\vec{v} & \vec{B}\end{array}\right)$
$2^{\text {nd }}$ term always perpendicular to motion $=>$ no acceleration

Relativistics Dynamics

$\beta=\frac{v}{c}=\sqrt{1-\frac{1}{\gamma^{2}}} \quad=\frac{E}{E_{0}}=\frac{m}{m_{0}}=\frac{1}{\sqrt{12^{2}}}$
$p=m v=\frac{E}{c^{2}} \quad c=\frac{E}{c}=\quad m_{0} c$
$E^{2}=E_{0}^{2}+p^{2} c^{2} \longrightarrow \quad d E=v d p$
$\frac{d E}{d z}=v \frac{d p}{d z}=\frac{d p}{d t}=e E_{z}$
$d E=d W=e E_{z} d z \quad \rightarrow W=e \quad E_{z} d z$

RF Acceleration

$$
E_{z}=\hat{E}_{z} \sin { }_{R F} t=\hat{E}_{z} \sin (t)
$$

$$
\hat{E}_{z} d z=\hat{V}
$$

$$
W=e \hat{V} \sin \phi
$$

(neglecting transit time factor)
The field will change during the passage of the particle through the cavity
=> effective energy gain is lower

