Cyclotrons - II

CERN Accelerator School – Introductory Course Constanta, September 25, 2018

Mike Seidel

Paul Scherrer Institut

Cyclotrons II - Outline

- brief review of the previous lesson
- cyclotron subsystems

Injection/extraction schemes, RF systems/resonators, magnets, vacuum issues, instrumentation

- applications and examples of existing cyclotrons TRIUMF, RIKEN SRC, PSI Ring, PSI medical cyclotron
- discussion

classification of circular accelerators, cyclotron vs. FFAG, Pro's and Con's of cyclotrons for different applications

review of Cyclotrons-I

- insufficient vertical focusing
- limited energy reach

next: injection & extraction

• spiral inflector, internal source, electrostatic deflectors, stripping

injection schemes – spiral inflector

- an electrostatic component, basically a capacitor
- E-field arranged perpendicular to orbit, particles move on equipotential surfaces

[inflector IBA Cyclone 30 cyclotron]

simulation of orbits injected through a spiral inflector

[courtesy: W.Kleeven (IBA)]

internal ion source \rightarrow example COMET

- Hydrogen is injected and ionized through chimney
- first acceleration by puller, connected to one Dee (80kV)

chimney = ion source deflector electrode for intensity regulation

electrostatic septum and charge exchange extraction

- deflecting element should affect just one turn, not neighboured turn \rightarrow critical, cause of losses
- often used: electrostatic deflectors with thin electrodes
- alternative: charge exchange, stripping foil; accelerate H⁻ or H₂⁺ to extract protons (problem: significant probability for unwanted loss of electron; Lorentz dissociation: B-field low, scattering: vacuum 10⁻⁸mbar)

injection/extraction with electrostatic elements

electrostatic rigidity:

$$E\rho = \frac{\gamma + 1}{\gamma} \frac{E_k}{q}$$

extraction foil

- thin foil, for example carbon, removes the electron(s) with high probability
- new charge state of ion brings it on a new trajectory → separation from circulating beam
- lifetime of foil is critical due to heating, fatigue effects, radiation damage
- conversion efficiencies, e.g. generation of neutrals, must be considered carefully

electrons removed from the ions spiral in the magnetic field and may deposit energy in the foil

How much power is carried by the electrons? \rightarrow velocity and thus γ are equal for *p* and *e*

$$E_k = (\gamma - 1)E_0$$

$$\rightarrow E_k^e = \frac{E_0^e}{E_0^p}E_k^p = 5.4 \cdot 10^{-4}E_k^p$$

Bending radius of electrons?

$$\rho^e = \frac{E_0^e}{E_0^p} \rho^p$$

 \rightarrow typically mm

example: multiple H⁻ stripping extraction at TRIUMF

example: H₂⁺ stripping extraction in planned Daedalus cyclotron [neutrino source]

*

next: RF, magnets, vacuum, diagnostics

components: sector cyclotron resonators

cyclotron resonators are basically box resonators resonant frequency: 1

beam
$$f_r = \frac{c}{2}\sqrt{\frac{1}{a^2} + \frac{1}{l^2}}$$

beam passes in center plane;
accelerating voltage varies as sin(r)

cross sections of PSI resonators

copper resonator in operation at PSI's Ring cyclotron

- **f = 50.6MHz**; **Q**₀ = 4,8·10⁴; **U**_{max}=1.2MV (presently 0.85MV)
- transfer of up to 400kW power to the beam per cavity
- Wall Plug to Beam Efficiency (RF Systems): **32%**

50 MHz 1 MW amplifier chain for Ring cyclotron

4- STAGE POWER AMPLIFIER CHAIN, EMPLOYING POWER TETRODE TUBES

Wall Plug to Beam Efficiency (RF Systems): **32%** [AC/DC: 90%, DC/RF: 64%, RF/Beam: 55%]

cyclotron technology: sector magnets

cyclotron magnets typically cover a wide radial range \rightarrow magnets are heavy and bulky, thus costly

PSI sector magnet

iron weight: 250 tons coil weight: 28 tons Field: 2.1T orbit radius: 2.1...4.5 m spiral angle: 35 deg

Riken SRC sector magnet

weight: 800 tons Field: 3.8T, 5000A orbit radius: 3.6...5.4m

Magnets – Fine-tuning with trim coils

- isochronicity depends critically on exact field distribution
- circulation time is measured with phase probes and field shape is adjusted using radially distributed trim coil circuits

example: AGOR cyclotron in Groningen NL

vacuum in cyclotrons – proton losses from scattering

- losses are caused by inelastic scattering at residual gas molecules, use inelastic reaction cross section to estimate losses, convert to mean free path
- compute pressure for 10⁻⁵ relative loss

common gases, protons : (atmospheric conditions)

$$\lambda_{\text{inel}}(\text{air}) = 747\text{m}$$
$$\lambda_{\text{inel}}(\text{CO}) = 753\text{m}$$
$$\lambda_{\text{inel}}(\text{H}_2) = 6110\text{m}$$
$$\lambda_{\text{inel}}(\text{Ar}) = 704\text{m}$$

mean free path:

$$\lambda_{\text{eff}} = \left(\frac{1}{P_0}\sum \frac{P_i}{\lambda_{\text{inel}}^i}\right)^{-1}$$

beam loss:

$$\frac{N_0 - N(l)}{N_0} = 1 - \exp(-l/\lambda_{\text{eff}}) \approx l/\lambda_{\text{eff}}$$

pressure for loss < 10^{-5} : $P_i(air) < 10^{-3}$ mbar \rightarrow easy, vacuum no problem for p losses!

heavy ion induced gas desorption

demonstration of transmission breakdown by gas desorption

[measurements in AGOR cyclotron, KVI-Groningen, S.Brandenburg et al]

- transmission of ⁴⁰Ar⁵⁺ 8 MeV per nucleon
- base vacuum 3 x 10⁻⁷ mbar
- injected intensity up to 6 x 10¹² pps
- beampower: \leq 320 W

comments on cyclotron vacuum system

- vacuum chamber with large radial width → difficult to achieve precisely matching sealing surfaces→ noticeable leak rates must be accepted
- use cryo pumps with high pumping speed and capacity
- $\approx 10^{-6}$ mbar for p, $\approx 10^{-8}$ mbar for ions (instability! e.g. AGOR at KVI)
- design criterion is easy access and fast mountability (activation)

example: inflatable seals installed between resonators; length: 3.5m

cyclotron instrumentation

example: PSI 72MeV injector cyclotron

instrumentation: radial probe for turn counting / orbit analysis

instrumentation: phase probes

phase probes are radially distributed RF pickups that detect the arrival time (phase) of bunches vs radius \rightarrow adjustment of isochronicity

measured phase vs. radius; green: reference phase for «good conditions»

trim coil settings (12 circuits across radius) green: predicted from phase measurement

next: cyclotron examples

- compact cyclotrons
- TRIUMF, RIKEN SRC, PSI-Comet, PSI-HIPA

compact cyclotrons for Isotope production

CYCLONE 30 (IBA) : H- 15 à 30 MeV

some cyclotrons

	TRIUMF	RIKEN SRC (supercond.)	PSI Ring	PSI medical (supercond.)
particles	$H- \rightarrow p$	ions	р	р
K [MeV]	520	2600	592	250
magnets (poles)	(6)	6	8	(4)
peak field strength [T]	0.6	3.8	2.1	3.8
R _{inj} /R _{extr} [m]	0.25/3.87.9	3.6/5.4	2.4/4.5	-/0.8
P _{max} [kW]	110	1 (86Kr)	1300	0.25
extraction efficiency (tot. transmission)	0.9995 (0.70)	(0.63)	0.9998	0.80
extraction method	stripping foil	electrostatic deflector	electrostatic deflector	electrostatic deflector
comment	variable energy	ions, flexible	high intensity	compact

cyclotron examples: TRIUMF / Vancouver

photo: iron poles with spiral shape (δ_{max} =70deg)

- p, 520MeV, up to 110kW beam power
- diameter: 18m (largest n.c. cyclotron worldwide)
- extraction by stripping H⁻
 → variable energy;
 multiple extraction points
 possible

example: RIKEN (Jp) superconducting cyclotron

K = 2,600 MeV

Max. Field: 3.8T (235 MJ) RF frequency: 18-38 MHz Weight: 8,300 tons Diameter: 19m Height: 8m

superconducting Sector Magnets :6 RF Resonator :4 Injection elements. Extraction elements.

utilization: broad spectrum of ions up to Uranium

RIKEN SRC in the vault

PSI Proton Therapy Facility

250 MeV proton cyclotron (ACCEL/Varian)

Cyclotron needs degrader :

- cyclotron has fixed energy; need **degrader** for energies down to 70MeV
- collimation after degrader to keep emittance → lose intensity with degrader

degrader: (carbon wedges in vacuum) and laminated beam line magnets for fast energy changes < 80 ms / step

examples: PSI High Intensity Proton Accelerator

finally: discussion

comparison of circular accelerators

= =

- cyclotron vs. FFAG
- suitability of cyclotrons
- some literature

classification of circular accelerators

	bending radius	bending field vs. time	bending field vs. radius	RF frequency vs. time	operation mode (pulsed/CW)	
betatron	\rightarrow	~				induction
classical cyclotron	~	\rightarrow		\rightarrow		simple, but limited E _k
isochronous (AVF) cyclotron	~	\rightarrow	~	\rightarrow		suited for high power!
synchro- cyclotron	~	\rightarrow				higher E _k , but low P
FFAG	>	\rightarrow	~	7		strong focusing!
a.g. synchrotron	\rightarrow	~		?		high E _k , strong focus

Cyclotron vs. FFAG

- many discussions on relation FFAG/Cyclotron;
 e.g. a synchro-cyclotron is actually an FFAG
- in fact both concepts can be distinguished via the dominating focusing mechanisms (M.Craddock):

	Thomas cyclotron	sector FFAG
alternating B'	yes	yes
lens pattern	FFFFF	FDFDFD
edge focusing	dominant	negligible
AG focusing	negligible	dominant

https://www.cockcroft.ac.uk/events/FFAG08/presentations/Craddock/Thomas-FFAG.pdf

pro and contra cyclotron

limitations of cyclotrons	typical utilization of cyclotrons
 energy limitation ≈1GeV due to relativistic effects relatively weak focusing is critical for space charge effects (10mA ?) tuning is difficult; field shape; many turns; limited diagnostics wide vacuum vessel (radius variation) 	 medical applications ≤250MeV; intensity range well covered isotope production → several 10MeV acceleration of heavy ions (e.g. RIKEN) very high intensity proton beams (PSI:1.4MW, TRIUMF: 100kW)

cyclotron conferences – a valuable source of knowledge

- old cyclotron conferences have been digitized for JACOW (effort of M.Craddock!)
- intl. cyclotron conference every 3 years; last month 2016 edition in Zürich; inbetween European Cyclotron Progress Meeting (ECPM)

	Select Conferen	nces	
	ALL 🗆		
	ABDW 🗆	HB'18 ELS'18 ERL'17 eeFACT'16 HB'16 ERL'15 HF'14 HB'14 ERL'13 HB'12 ERL'11 HB'10 Ecloud'10 ERL'02 HB'08 Factories'08 ERL'07 HB'06 ELS'06	
	APAC 🗆	□ <u>'07</u> □ <u>'04</u> □ <u>'01</u> □ <u>'98</u>	
	BIW 🗆		
	COOL 🗆		
Jacow	Cyclotrons 🗹	□ <u>16</u> □ <u>13</u> □ <u>10</u> □ <u>07</u> □ <u>04</u> □ <u>01</u> □ <u>98</u> □ <u>95</u> □ <u>92</u> □ <u>89</u> □ <u>86</u> □ <u>84</u> □ <u>81</u> □ <u>78</u> □ <u>75</u> □ <u>72</u> □ <u>69</u> □ <u>66</u> □ <u>63</u> □ <u>59</u>	cyclotrons
	DIPAC 🗆		,
conterences	ECRIS 🗆		
	EPAC 🗆		
	FEL 🗆		
	HIAT 🗆		
	IBIC 🗆		
	ICALEPCS 🗆		
	ICAP 🗆		
	IPAC 🗆		
	LINAC 🗆	□ <u>16</u> □ <u>14</u> □ <u>12</u> □ <u>10</u> □ <u>08</u> □ <u>05</u> □ <u>04</u> □ <u>02</u> □ <u>00</u> □ <u>98</u> □ <u>96</u> □ <u>94</u> □ <u>92</u> □ <u>90</u> □ <u>88</u> □ <u>86</u> □ <u>84</u> □ <u>81</u> □ <u>79</u> □ <u>76</u> □ <u>72</u> □ <u>70</u> □ <u>68</u> □ <u>66</u> □ <u>64</u> □ <u>63</u> □ <u>62</u> □ <u>61</u>	
	MEDSI	□ <u>'16</u>	
	NA-PAC	□ <u>'16</u> □ <u>'13</u> □ <u>PAC'11</u> □ <u>'11</u>	
	PAC 🗆	09 07 05 03 01 09 09 09 09 09 09 09 09 09 09 09 09 09	
	PCaPAC 🗌		
	RuPAC 🗆		
	SAP 🗆		C
×	SRF 🗆	□ <u>17</u> □ <u>15</u> □ <u>13</u> □ <u>11</u> □ <u>09</u> □ <u>07</u> □ <u>05</u> □ <u>03</u> □ <u>01</u> □ <u>39</u> □ <u>37</u> □ <u>35</u> □ <u>33</u> □ <u>31</u> □ <u>38</u> □ <u>87</u> □ <u>84</u> □ <u>30</u>	

some literature w.r.t. cyclotrons

comprehensive overview on cyclotrons	L.M.Onishchenko, Cyclotrons: A Survey, Physics of Particles and Nuclei 39, 950 (2008) <u>http://www.springerlink.com/content/k61mg262vng17411/fulltext.pdf</u>
50 Years of Cyclotron Development	L. Calabretta, M. Seidel IEEE Transactions on Nuclear Science, Vol. 63, No. 2, 965 – 991(2016) <u>http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410111</u>
space charge effects and scalings	W.Joho, High Intensity Problems in Cyclotrons, Proc. 5th intl. Conf. on Cyclotrons and their Applications, Caen, 337-347 (1981) http://accelconf.web.cern.ch/AccelConf/c81/papers/ei-03.pdf
long. space charge; comparison to analytical result	E.Pozdeyev, A fast code for simulation of the longitudinal space charge effect in isochronous cyclotrons, cyclotrons (2001) <u>http://accelconf.web.cern.ch/AccelConf/c01/cyc2001/paper/P4-11.pdf</u>
Intensity limitation	R.Baartman, SPACE CHARGE LIMIT IN SEPARATED TURN CYCLOTRONS, cyclotrons (2013) http://accelconf.web.cern.ch/AccelConf/CYCLOTRONS2013/papers/we2pb01.pdf
PSI medical facility	J. M. Schippers et al., "The SC cyclotron and beam lines of PSI's new proton therapy facility PROSCAN", <i>NIM B</i> , 261 , 773–776 (2007).
OPAL simulations; documentation	J.Yang, A. Adelmann, et al. Phys. Rev. STAB Vol. 13 Issue 6 (2010) http://amas.web.psi.ch

