

1

Designing a synchrotron -A real life example **Yannis PAPAPHILIPPOU Accelerator and Beam Physics group Beams Department CERN**

CERN Accelerator School

Introduction to Accelerator Physics 2018 Zenith Hotel. Constanța, Romania 26 September 2018

Purpose of the Lectures

Review several aspects of beam dynamics (mostly) presented in the introductory CAS lectures, applied to the design and operation of a real synchrotron

- □ Choice of energy, bending field and circumference
- Optics design
 - Cell optics, insertions, transition energy
- Collective effects
 - Instabilities, Space-charge
- Electron / Positron beam dynamics
 - Equilibrium beam properties, energy loss/turn, damping time

Choosing a Synchrotron

- Our choice is the CERN Super Proton Synchrotron (SPS)
- From its design and operation, it has shown enormous versatility used for several purposes and serving various applications
 - High energy synchrotron serving fixed target experiments (West Area, North Area, CNGS, HIRADMAT)
 - Collider of protons and anti-protons (W and Z bosons discovery in 1983)
 - Accelerating electrons and positrons and injecting them to the Large Electron-Positron (LEP) Collider
 - □ Accelerating protons for the Large Hadron Collider (LHC)
 - □ Accelerating ions for fixed target physics and the LHC
 - Extracting protons for exciting plasma for a plasma wakefield acceleration experiment (AWAKE)

Basic parameters energy, bending field and circumference

Energy and bending field

- Consider accelerator ring for particles with energy E with Ndipoles of length *L* or effective length *l*, i.e. measured on beam path
 - \Box Bending angle $\theta = rac{2\pi}{N}$
 - \square Bending radius $\rho = \frac{\sigma}{\rho}$
 - The magnetic rigidity is $B\rho = \frac{\beta E}{-}$
 - The **integrated dipole strength** is

$$Bl = \frac{2\pi}{N} \frac{\beta E}{q}$$

- By imposing a dipole field, the dipole length is fixed and vice versa
- The higher the field, the shorter or smaller number of dipoles can be used

Circumference

The filling factor, is defined as the ratio of the total length of the bending path, with respect to the circumference

 $k_f = \frac{Nl}{C}$

The ring circumference becomes

$$C = \frac{2\pi}{k_f B} \frac{\beta E}{q}$$

The ring circumference (cost) is driven by the bending field choice (technology), the energy reach (physics case, applications) and the design of the lattice cells (optics)

Con Designing the SPS

The maximum possible circumference between the CERN I (Meyrin) and CERN II (Prevessin) site was $C_{\rm SPS} = 11 C_{\rm PS} = 2\pi \times 1100 \text{ m} \approx 6912 \text{ m}$

1200

1000

800

600

400

200

Combined function magnets with 1.2 Tfield (PS-like) would give an energy of no more then ~260 GeV for a highly packed lattice

Designing the SPS

The maximum possible circumference between the CERN I (Meyrin) and CERN II (Prevessin) site was $C_{\rm SPS} = 11 C_{\rm PS} = 2\pi \times 1100 \ {\rm m} \approx 6912 \ {\rm m}$

Designing the SPS

The maximum possible circumference between the CERN I (Meyrin) and CERN II (Prevessin) site was $C_{\rm SPS} = 11 C_{\rm PS} = 2\pi \times 1100 \ {\rm m} \approx 6912 \ {\rm m}$

The 300 GeV Program, CERN/1050, 14/01/1972

a Synchrotron, CERN Accelerator School, September 2018

Designing

Designing the SPS

The maximum possible circumference between the CERN I (Meyrin) and CERN II (Prevessin) site was $C_{\rm SPS} = 11 C_{\rm PS} = 2\pi \times 1100 \ {\rm m} \approx 6912 \ {\rm m}$

Super-conducting option could raise the energy to 1 TeV 10

Optics design

FODO cell of around 65 m long with phase advances of $\pi/2$

Beta function maxima slightly above 100 m

Magnet aperture

Magnet apertures follow beta function and dispersion evolution

Dipole B1

Quadrupole F

Quadrupole D

The 300 GeV Program, CERN/1050, 14/01/1972

Dispersion suppression

- Dispersion has to be eliminated in special areas like injection, extraction or interaction points (orbit independent to momentum spread)
- Use dispersion suppressors
 - Two methods for suppressing dispersion
 - Eliminate two dipoles in a FODO cell (missing dipole)
 - Set last dipoles with different bending angles

$$\theta_{1} = \theta (1 - \frac{1}{4 \sin^{2} \mu_{\text{HFODO}}})$$
$$\theta_{2} = \frac{\theta}{4 \sin^{2} \mu_{\text{HFODO}}}$$

For equal bending angle dipoles, the FODO phase advance should be equal to π/2

Dispersion suppression in the SPS

In the SPS, all dipoles are powered in series, i.e. dispersion suppressor cells looks like a missing dipole, but they are not!

Dispersion

suppression is achieved by tuning the phase advance of the arc, to a multiple of 2π

Dispersion oscillates through the arc and vanishes at the edges

2018

a Synchrotron, CERN Accelerator School,

Designing

Ring is composed by 6 identical sectors ("sextants") with 16 cells in the arc and 2 cells in the straight section

The cell phase advance of π/2 brings the tunes to 26-27 (Q26)

 $\cos Sp\overline{p}S$ collider insertion optics

Replace two straight section quadrupoles with 2 doublets (4 quadrupoles)

 Equip adjacent left/right quadrupoles with individual bipolar power convertors
 Achieved low β* of 1.3/0.65 m

Magnet system

SPS dipole magnets

744 dipoles (MBAs and MBBs) with 6.26 m length and different gaps

744
1976
2.02
38.5/51.5
L,W
C,G
4150
Cycled
9
40

D. Tommasini CERN/TE-Note-2010-003

- Maximum field of
 2.02 T, for reaching
 450 GeV
- High mechanical stress on coils

SPS quadrupoles

- 216 quadrupoles (102 QF, 100 QD, 6 QFA and 8 QDA)
- Maximum gradient of 22 T/m, corresponding to a pole-tip field of around **1 T**
 - Normal operation necessitates almost the full gradient @ 450 GeV

Number of magnets	216
Year of 1 st operation	1976
Maximum gradient [T/m]	22
Physical vertical aperture [mm]	88
Yoke assembly [Solid,Laminated,Welded,Glued]	L,W
Coil technology [Copper,Aluminium,Glass-epoxy,Mica,Other]	C,G
Maximum voltage to ground [V]	3450
Operation	Cycled
Maximum cooling water velocity [m/s]	3.6
Operational temperature [C°]	40

D. Tommasini CERN/TE-Note-2010-003

School, September 2018

SPS sextupoles

M. Giesch, CERN/SPS/80-3/AMS, 1980

		MAIN PARAMETERS OF SEXTUP(LSFN	LSDN
	Basic	: Nominal rms current Peak Current	[A] [A]	350 500	350 450
7010		* Strength at peak current 1) Sextup. $\int a_3 d\ell (a_3 = B/r^2 = B'$	'/2) [T/m]	85.8	176.6
, Jephennor		* Magnetic length Aperture, radius of inscr.circle	n ²] [m] [mm]	0.435 60.7	0.426 44.0
	Core	: Length	[m]	0.4	0.4
Designing a synchronomy chine and succession set					

 54 "focusing" and 54 "defocusing"
 0.4 m long sextupoles in two (three for F) families (24 and 30), with different apertures

- Maximum pole-tip field of around 0.8 T
- Around 80% and 60% in operational conditions

The SPS arc cell

Transition energy and slippage factor

Transition energy

Transition energy (or momentum compaction factor) is defined as $\frac{1}{\gamma_{t}^{2}} = \alpha_{p} = \frac{1}{C} \oint \frac{D(s)}{\rho(s)} ds$

The higher the dispersion oscillation in the bends, the lower the transition energy

Quadrupoles

Note also that, for FODO cells (SPS lattice), $\gamma_t \approx Q_x$, meaning that lowering the transition energy implies **lowering** the **horizontal tune**

High intensity beams can be injected in the SPS above transition avoiding losses and operational complexity of transition jump scheme

Transition energy vs SPS working point

Resonant oscillation of dispersion function close to the "Resonant integer tunes" (multiples of super-periodicity 6) → asymptotic behavior of γ_t, (difficult for routine operation)
 γ_t is a linear function of horizontal tune Q_x elsewhere

Nominal SPS working point for LHC proton beams (γ_t ~23)

- D. Boussard et al., SPS improvement note No 147, 1978; Injection above transition as TT10 was not ready for 26 GeV/c (γ_t ~14)
- G. Arduini et al., CERN/SL-Note 98-001, 1998; "Resonant tune" $(\gamma_t{\sim}20)$
- Low $\gamma_t,\,2010$ "Resonant arc" with small dispersion in long straight sections ($\gamma_t{\sim}18)$

• Avoiding transition energy with Q15

- Injection beam line TT10 has not been upgraded to 26 GeV in 1978 and limited to 16 GeV
- Injection above transition is possible if SPS integer part of the tune is lowered to 15 ($\gamma_t \sim 14$)

Manipulating optics for curing instabilities

YP et al, IPAC 2013

Transverse instabilities

- □ TMCI at injection single bunch instability in vertical plane
 - Threshold at 1.6x10¹¹p/b (ϵ_l =0.35eVs, τ =3.8ns) with low vertical chromaticity

- E-cloud vertical instability for 25ns beam
 - □ Threshold higher than 1.2x10¹¹p/b

$$N_{
m th} \propto Q_s \propto \sqrt{\eta}$$

- Longitudinal instabilities
 - Single bunch and coupled bunch
 - □ Threshold at $2x10^{10}$ p/b for single harmonic RF (800 MHz cavity use is mandatory)

$$N_{th} \propto \epsilon_l^{5/2} \eta$$

Resonant tune

- By setting the SPS integer tune to a multiple of 6, large dispersion wave can be introduced (dispersion becomes even negative) by overall reducing transition energy
- Successfully establishing cycle in the SPS and measuring dispersion very close to the one of MAD
- 3-fold increase of the slippage factor can be achieved (model)
- "Difficult" beam conditions (especially for injection)
- Need optics were dispersion is suppressed in straight section

G. Arduini et al., CERN/SL-Note 98-001 (MD), 1998

Q_h	Q_v	γ_{tr}	$\eta~(10^{-3}$
24.18	24.22	18.54	1.61
24.29	24.32	19.59	1.30
26.62	26.58	23.23	0.551

Q20 optics

Moving FODO phase advance from $4/16*2\pi (\pi/2)$ to $3/16*2\pi (3\pi/8)$

of **2.8** at **injection** and **1.6** at **flat top**

Q20 Optics measurements

Measurement of the optics functions of the new lattice

- Beta beating around 20% in horizontal and 10% in vertical plane
- Normalized dispersion in striking agreement with the model
 31

Synchrotron frequency

- Measured synchrotron frequency from "quadrupole" oscillations at injection
 - □ Same RF-voltage for both optics
- Ratio of Synchrotron frequencies ~ 1.63 corresponds to an increase in slippage factor η by factor 2.65 (MADX prediction: 2.86)

Q20: Fs=746/2=373Hz, Qs=0.0172/2=0.0086

TMCI threshold

 \Box In nominal optics, measured/simulated threshold at 1.6x10¹¹p/b for low chromaticity

□ High-chromaticity helps increasing threshold, but also losses along the cycle become excessive

 \Box Measured/simulated threshold in Q20 > 4x10¹¹p/b!!!

E-cloud instability

Simulations with HEADTAIL code

□ Injection energy, uniform cloud distribution, located in dipole regions

Linear scaling with Synchrotron tune demonstrated

Clearly higher thresholds predicted for **Q20**

More margin with Q20 if e-cloud becomes issue for high intensity

H. Bartosik et al, IPAC2011

Congitudinal impedance threshold

E. Shaposhnikova

Impedance threshold has minimum at flat top
 Controlled longitudinal emittance blow-up during ramp for Q26
 Less (or no) longitudinal emittance blow-up needed in Q20

Instability limit at flat bottom

- Critical with **Q26** when pushing intensity
- Big margin with **Q20** (factor of 3)

Congitudinal beam stability The CERN Accelerator Schoo

LHC brightness with SPS Q20

Operational deployment of Q20 optics for LHC beams since 2012 allowing around 20% brighter beams on LHC flat bottom

Opened way for **ultra-high brightness beams** of HL-LHC era

Non-linear dynamics

Con Loss map for low brightness beam

H. Bartosik et al. HB2018

Dynamic tune scan for identification of resonances

- □ Losses around 3rd order (normal) resonances and the diagonal clearly observed
- Faint traces of 4th order resonances
- Operational working point for protons 20.13/20.18 (moved up for high brightness beams)

Non-linear model through chromaticity

Designing a Synchrotron, CERN Accelerator School, September 2018

optics

Space-charge

Space-charge tune spread

Vertical tune scan with high brightness beam for 10 s storage time \square N = 1.95x10¹¹ p/b (at injection)

- $= 1.95 \times 10^{-1} \text{ p/b} (at injection)$ $= 2.95 \times 10^{-1} \text{ p/b} (at injection)$ $\Delta Q_x / \Delta Q_y \sim 0.10/0.20$
- Transmission to flat top around 94% (very small losses on flat bottom)
- Budget of 10% losses and 10% blow-up allows for tune spread of ∆Qy=0.21

Space-charge tune spread

Vertical tune scan with high brightness beam for 10 s storage time \square N = 1.95x10¹¹ p/b (at injection)

- $= 1.95 \times 10^{11} \text{ p/b} (at injection)$ $= \epsilon \sim 1.1 \ \mu\text{m} (at injection)$
- Transmission to flat top around 94% (very small losses on flat bottom)
- Budget of 10% losses and 10% blow-up allows for tune spread of ∆Qy=0.21

> Exploration of tune diagram with SC

- Tune scan with high brightness single bunch beam for 3 s storage time
 - □ Blow-up at integer resonances as expected (tune spread ΔQx , $\Delta Qy \sim 0.10, 0.19$)
 - Margin for higher brightness for working points in white box (enhanced losses only close to Qx + 2Qy = 61 normal 3rd order resonance and around 4Qx = 81 normal 4th order resonance)

Electron-positron dynamics

LSS 1

- LEP filling interleaved with proton operation
- 4 cycles with 4 bunches (2e⁺, 2e⁻) evolved to 2 cycles with 8 bunches (~2.5x10¹⁰ p/b)
- Energy to LEP: $18 \rightarrow 20 \rightarrow 22 \text{ GeV}$
- Lots of RF for leptons (200MHz SWC, 100MHz SWC, 352MHz SC),
- 2 Extractions in Point 6 towards LEP

Energy loss/turn

Energy loss/turn necessitate large RF voltage (30 MV) at high energy
 Impact of a 2-m 3.5T damping wiggler is mild at high energies

Damping time

Damping time at injection (3.5 GeV) **very large (9 s)**

A 2-m 3.5T damping wiggler could enhance damping for low energies to below 1 s (good for instabilities)

SPS low emittance optics

Move horizontal phase advance to 135 deg. i.e. $3\pi/4$ (**Q40 optics**) which is optimal for low emittance in a FODO cell

Emittance with nominal optics @ 3.5 GeV of 3.4 nm drops to 1.3nm Further reduction can

be achieved with damping wiggler

D(m)

Summary

- Using the 40+ years experience since the design and operation of the Super Proton Synchrotron (SPS), reviewed several beam dynamics concepts
 - □ Choice of energy, bending field and circumference
 - Optics design
 - Cell optics, insertions, transition energy
 - Collective effects
 - Instabilities, Space-charge
 - Electron / Positron beam dynamics
 - Equilibrium beam properties, energy loss/turn, damping time