

Project co-financed by the European Regional Development Fund through the Competitiveness Operational Programme "Investing in Sustainable Development"

Extreme Light Infrastructure-Nuclear Physics (ELI-NP) - Phase II

Ion acceleration via ultra-intense laser

D. Doria

on behalf of RA3

Extreme Light Infrastructure (ELI-NP), Str. Reactorului no.30, P.O. box MG-6, Bucharest - Magurele, Romania

domenico.doria@eli-np.ro

CAS18 – 27 Sep 2018, Constanta, Romania

Outline

Ion acceleration via ultra-intense laser

Laser matter interaction Acceleration Mechanisms Some laser ion acceleration history Issues affecting the acceleration Scaling Laws What ELI can do

Direct Laser Acceleration (DLA)

In 1957, Veksler envisioned the possibility of 'coherent acceleration':

a mechanism in which the accelerating field on each particle is proportional to the number of particle being accelerated, in contrast with conventional techniques.

V. Veksler, At. Energ. 2, 525, (1957)

Direct Laser Acceleration (DLA)

Lawson-Woodward Theorem (J.D. Lawson, IEEE Trans. Nucl. Sci. **NS-26**, 4217, 1979) *the net energy gain of an electron interacting with an electromagnetic field in vacuum is zero.*

Theorem axioms:

- I. the laser field is in vacuum with no walls or boundaries present,
- II. no static electric or magnetic field are present,
- III. The region of interaction is infinite,
- IV. Ponderomotive effects (non-linear forces, e.g. v x B force) are neglect.

Electromagnetic wave

Average kinetic energy in one cycle

$$\left\langle W\right\rangle = \frac{1}{\tau} \int_0^\tau F \cdot v \, dt > 0$$

Average momentum in one cycle

$$\left\langle P\right\rangle = \frac{1}{\tau} \int_0^\tau F \, dt = 0$$

...No net work is done! (neglecting B, i.e. low laser intensity)

nuclear physics

Direct Laser Acceleration (DLA)

Lawson-Woodward Theorem (J.D. Lawson, IEEE Trans. Nucl. Sci. **NS-26**, 4217, 1979) *the net energy gain of an electron interacting with an electromagnetic field in vacuum is zero.*

Theorem axioms:

- I. the laser field is in vacuum with no walls or boundaries present,
- II. no static electric or magnetic field are present,
- III. The region of interaction is infinite,
- IV. Ponderomotive effects (non-linear forces, e.g. v x B force) are neglect.

Conventional

accelerators

Electromagnetic wave

Average kinetic energy in one cycle

$$\left\langle W\right\rangle = \frac{1}{\tau} \int_0^\tau F \cdot v \, dt > 0$$

Average momentum in one cycle

$$\left\langle P\right\rangle = \frac{1}{\tau} \int_0^\tau F \ dt \neq 0$$

Static Accelerators

Paschen's law gives the breakdown voltage

Tandem Van de Graaff

Brookhaven National Laboratory.

Breakdown Voltage

GAS

- $P \sim 1 \text{ atm Air} \qquad E_b \sim$ 1 MV/m
- $P \sim 5 \text{ atm SF}_6 = E_b \sim 10 \text{ MV/m}$

SOLID

Porcelain 5 MV/m E_b ~ Glass

 $E_{\rm b} \sim 100 \text{ MV/m}$

Max particle energy

- x E-field x distance = Energy е
- e x few MV/m X few m = 10 MeV

RF Accelerators

RF Cavity

LINEAR ACCELERATOR RF

CIRCULAR ACCELERATOR RF

RF Cavities of 0.8MV 0 Take 10s µs to ~ 50 GeV electrons

Accelerating field 21 MV/m

8 RF Cavities of 2MV = 16 MeV/lap 11245 laps per second = 0.18 TeV/s Take 10s of seconds to get to ~ 7 TeV protons

Accelerating field 5 MV/m

RF Accelerators

Laser ion acceleration E-field > TV/m 10⁶ times higher !

LINEAR ACCELERATOR RF

CIRCULAR ACCELERATOR RF

RF Cavities of 0.8MV 0 Take 10s µs to ~ 50 GeV electrons

Accelerating field 21 MV/m

8 RF Cavities of 2MV = 16 MeV/lap 11245 laps per second = 0.18 TeV/s Take 10s of seconds to get to ~ 7 TeV protons

Accelerating field 5 MV/m

nuclear physics

Direct Laser Acceleration (DLA)

Lawson-Woodward Theorem (J.D. Lawson, IEEE Trans. Nucl. Sci. **NS-26**, 4217, 1979) *the net energy gain of an electron interacting with an electromagnetic field in vacuum is zero.*

Theorem axioms:

- I. the laser field is in vacuum with no walls or **boundaries present**,
- II. no static electric or magnetic field are present,
- III. The region of interaction is infinite,
- IV. (Ponderomotive effects (non-linear forces, e.g. v x B force) are neglect.

Electromagnetic wave packet

Superposition of plane waves

$$E[x,t] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} E_k e^{i(kx - \omega[k]t)} dk$$

 $\omega^2 = c^2 k^2$ dispersion relation in vacuum

Average kinetic energy in one cycle

$$\left\langle W\right\rangle = \frac{1}{\tau} \int_0^\tau F \cdot v \, dt > 0$$

Average momentum in one cycle $\langle P \rangle = \frac{1}{\tau} \int_0^{\tau} F \, dt \neq 0$

Direct Laser Acceleration (DLA)

In 1957, Veksler envisioned the possibility of 'coherent acceleration':

a mechanism in which the accelerating field on each particle is proportional to the number of particle being accelerated, in contrast with conventional techniques.

V. Veksler, At. Energ. 2, 525, (1957)

How?

- Inverse Bremstrahlung
- Resonance absorption
- Vacuum Heating (or Brunel heating)

Non-linear effects

- Ponderomotive Force
- JxB Heating

Boundaries (Plasma)

- Inverse Bremstrahlung
- Resonance absorption
- Vacuum Heating (or Brunel heating)

- Electrons are pushed beyond the skin depth in less than half laser cycle via direct acceleration or via plasma oscillation modes
- They acquires a velocity of the order of the quiver velocity: Low velocity

 collisional motion (e.g. inverse Bremstrahlung)
 High velocity

 collisionless motion (e.g. Resonance absorption)
- They generate a charge displacement that create an electric field
- The electric field accelerates ions

$$v_{quiver} = \frac{eE_0}{m_e\omega} \implies \underbrace{eE_0c/\omega}_{\substack{eee_0c/\omega}}^{\text{Electron}} = a_0$$

- .

Dispersion relation of a Light wave in Plasma

 $\omega^2 = \omega_{pe}^2 + c^2 k^2 > \omega_{pe}^2 \quad | , \forall k \in \Re$ $\omega_{pe} = \sqrt{\frac{4\pi n_e e^2}{m_e}}$, $\omega_{pe} \sim 10^{16}$ rad/s for solid target **Refractive index** $n \approx \sqrt{1 - \frac{\omega_{pe}^2}{\omega_{pe}^2}}$ $\omega > \omega_{pe}$ can penetrate inside $\omega < \omega_{_{pe}}$ is dumped at the interface $\delta = \frac{c}{\sqrt{\omega_{pe}^2 - \omega^2}} \cong \frac{c}{\omega_{pe}}$ skin depth Critical density $n_c = \frac{m_e \omega_L^2}{\Lambda \pi e^2}$, $(\omega_{pe} \rightarrow \omega_L)$ $\lambda_{\text{LASER}} \approx 1 \mu \text{m}$ n_e ~ 10s n_c δ ~ 10s nm Typical solid target density, n δ/c < 1s fs

nuclear physics

Non-linear effects

- Ponderomotive Force
- JxB Heating

Ponderomotive Force

It is generated by spatial gradients in the intensity of the electromagnetic wave and it corresponds to the more general concept of light pressure

Non-relativistic Ponderomotive force

Non-relativistic Ponderomotive potential

$$U_p = \frac{\omega_{pe}^2}{8\pi \,\omega^2} \left\langle E^2 \right\rangle$$

Relativistic Ponderomotive potential

$$U_p = m_e c^2 (\gamma - 1)$$

$$\gamma = \sqrt{1 + a_0 / 2}$$

JxB Heating

At high laser intensity (i.e. relativistic motion of electrons), JxB component of the Lorentz force becomes comparable with the transverse motion associated with the electric field and generates a significant longitudinal push.

Drift velocity of an electron

Lorentz Force

$$\frac{dp}{dt} = -e\left(E + \frac{v}{c} \times B\right) \qquad \qquad J \propto ev \implies J \parallel v \ (\sim \ \parallel E) \\ J \times B \sim \underbrace{E \times B \parallel k}$$

Drift velocity direction

Relativistic Ponderomotive force

$$F_p = -m_e c^2 \nabla (\gamma - 1)$$

Light pressure

Equations of motion of a free electron interacting with a monochromatic plane wave

$$A(kx - \omega t)$$
 with amplitude A_0 and $E = -\frac{1}{c}\partial_t A$, $B = \nabla \times A$

Dimensionless amplitude

$$a_0 = \frac{eE_0}{m_e c \,\omega} = \underbrace{eA_0}_{m_e c^2} \quad \underbrace{\frac{\text{Electron}}{\text{Kinetic energy}}}_{\text{Electron}} \quad \Longrightarrow \quad a_0 = \sqrt{\frac{E_0^2 \lambda^2}{m_e^2 c^4}} \sim \lambda \sqrt{I_0}$$

Linear polarization

Circular polarization

$a_0 = \rho \sqrt{\frac{I_0 \lambda^2}{10^{18} W cm^{-2} \mu m^2}}$ Linear polarization 0.85 $\rho =$ 0.60 Circular polarization

Drift velocity

+1/8

First experiments with Laser

The **first laser** was built in **1960** by Theodore H. Maiman at Hughes Research Laboratories, based on theoretical work by Charles Hard Townes and Arthur Leonard Schawlow

Laser acceleration of ions from laser irradiated targets was studied from 1960s throughout the 90s at laser Intensity below 10^{16} W/cm²

Laser couples energy into electrons Faster electrons drag ions Self-similar model of free expanding plasma in vacuum

S.J. Gitomer et al, Phys. Plasmas, 29, 2679 (1986)

High Power Laser history

Chirped pulse amplification (CPA)

G. E. Cook,"Pulse Compression-Key to More Efficient Radar Transmission", IEEE Proc. IRE 48, 310 (1960)

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses", Opt. Commun. 56, 219 (1985)

Experimental Setup

Typical Exp. setup

ASIA

<u>EROR</u>

Polarizers

Typical laser parameters used for ion acceleration wavelength: ~800nm pulse duration: 10s fs (min.) energy: 10s to 100s J focal spot size: ~ few µm

Intensity: ~ 10^{20} W/cm²

Target Normal Sheath Acceleration (TNSA)

Energy balance

Ponderomotive push

$$kT_{hot} \approx U_p = m_e c^2 \left(\sqrt{1 + \frac{a_0}{2}} - 1 \right)$$

$$a_0 = \sqrt{\frac{I_0 \lambda^2}{1.38 x 10^{18} W cm^{-2} \mu m^2}}$$

Acceleration Field

$$eE_s\lambda_D \approx kT_{hot}$$

$$E_s \approx \frac{kT_{hot} / e}{\delta} \sim \frac{\sim MV}{\sim um} = 10^{12} V / m$$

S.P.Hatchett *et al*, Phys Plasmas, **7**, 2076 (2000) P.Mora et al, PRL, **90**, 185002 (2003)

TNSA mechanism

TNSA Proto spectrum

F 210 CHE OFE Energy GE

TNSA characteristics

Target Normal Sheath Acceleration (TNSA) Characteristics

- Broad spectrum (LHC monoenergetic)
- short pulse duration (< 100s ps)
- diverging beams (10s of deg) (LHC collimated)

• Low emittance/ high laminarity

0.1 π mm mrad @ >15 MeV (LHC protons ~ 1.7)

• High brightness

 $10^{11} - 10^{13}$ protons(ions) in a single shot (>3 MeV) (LHC ~ 10^{11} p/bunch)

acceleration distance ~ 10s microns (LHC ~ km)

•Accelerating field ~ 10^{12} V/m (LHC ~ $5x10^{6}$ V/m)

Beginning of experiments with high-power lasers

50TW CLF Vulcan System (2000yr)

```
t<sub>L</sub> ~ 1ps
λ =1054nm
```

```
Laser spot (FWHM) of 10µm dia.
(p-polarization, at 45°)
```

```
Laser energy ~50 J,
Peak Intensity ~ 5x10<sup>19</sup> W/cm<sup>2</sup>
```

Pb target

- Most of the energy go onto the protons
- Max energy scales proportionally to the charge
- Cleaning from contaminants give more energy to bulk ion

Varying target any ion can easily be accelerated (not straightfoward with RF accelerators)

Beginning of experiments with high-power lasers

50TW CLF Vulcan System (2000yr)

```
t<sub>L</sub> ~ 1ps
λ =1054nm
```

```
Laser spot (FWHM) of 10µm dia. (p-polarization, at 45°)
```

```
Laser energy ~50 J,
Peak Intensity ~ 5x10^{19} W/cm<sup>2</sup>
```

Pb target

- Most of the energy go onto the protons
- Max energy scales proportionally to the charge
- Cleaning from contaminants give more energy to bulk ion

Varying target any ion can easily be accelerated (not straightfoward with RF accelerators)

nuclear physics

What do we want from TNSA?

Increasing particle energy Increasing conversion efficiency Narrowing the spectral band Collimated beam Shorten bunch size

How can we do it?

- Reduction of foil thickness
- Multi-pulse for shaping proton beam
- Target structuring for enhanced coupling
- Reduction of mass targets
- Enhanced beam properties by post acceleration

Reduction of target thickness

20TW Lund Laser Centre System

 $t_L \sim 33$ fs $\lambda = 800$ nm

Laser spot (1/e²) of 10µm dia. (p-polarization, at 30°)

Laser energy ~0.7 J, Laser energy after PM ~ 0.3 J (~40%) Contrast ~ $10^8 \rightarrow ~ 10^{10}$ Peak Intensity ~ 10^{19} W/cm²

Thickness AI targets from 30µm down to 20nm

If no PM is used the ASE will launch a shockwave with the speed of 8μ m/ns. So that a rear surface of a target with thickness < few μ m will be destroyed by the ASE before the main pulse arrives

Maximum proton energies obtained as a function of AI target thickness for on-target contrasts of 10¹⁰ crosses. The solid line is a trend line fitted to the on-axis average for each thickness circles.

Multi-pulse for enhancing energy coupling

1PW CLF Vulcan System

t_L ~ 800fs λ =1054nm

Laser spot (FWHM) of 30µm dia. (p-polarization, at 45°)

Laser energy main ~180 J Contrast ~ 10^{10} (ns) and ~ 10^{8} (ps) Peak Intensity main ~ $2.9x10^{19}$ W/cm² Peak Intensity sec. ~ $3.2x10^{18}$ W/cm²

Time delay btw pulses form 0 to 4ps

Au target 5µm thick

Proton energy spectra obtained from 5 μ m-thick targets with single pulse ($t_{delay} = 0 \text{ ps}$) and double-pulse ($t_{delay} = 1, 2, \text{ and } 4 \text{ ps}$) irradiation. Sample errorbars are shown for the 1 ps delay spectrum.

Multi-pulse for enhancing energy coupling

Proton energy spectra obtained from 5 μ m-thick targets with single pulse ($t_{delay} = 0 \text{ ps}$) and double-pulse ($t_{delay} = 1, 2, \text{ and } 4 \text{ ps}$) irradiation. Sample errorbars are shown for the 1 ps delay spectrum.

Target structuring for enhanced coupling

100TW APRI System

 $t_L \sim 30 \text{fs}$ $\lambda = 805 \text{nm}$

Laser spot (FWHM) of 5µm dia. (p-polarization, at 22.5°)

Laser energy ~ 2 J Laser energy after PM ~ 1 J (~50%) Contrast ~ 10^{11} (ps) Peak Intensity ~ $5x10^{19}$ W/cm²

Target Mylar 1µm

with nanosphere on front surface (266, 535, 920 nm)

Proton energy distributions from analysis of TP spectra (a) and PIC simulations (b) for different irradiated targets. The vertical axis in (b) was rescaled in order to match the experimental values. The experimental cutoff energy for PET, PET-266, PET-535, PET-920 is 5.3, 5, 7.5, and 8.6 MeV, respectively. The PIC simulation cutoff energy for PET, PET-266, PET-535, PET-920 is 5.2, 7.2, 8, and 8.4 MeV, respectively.

Reduced mass target

S. Buffechoux et al., PRL 105, 015005 (2010)

100 TW LULI System

 $t_L \sim 400$ fs $\lambda = 1064$ nm doubled to 529 nm (for contrast improvement)

Laser spot (FWHM) of 6µm dia. (s-polarization, at 45°, target centre)

Laser energy ~7 J, Intensity ~ 2x10¹⁹ W/cm²

Target Au 2μm (constant thickness) with variable surface areas (few mm to 10s μm)

(a) Setup of the experiment.

(b) Effective number of hot electrons in the accelerating sheath N_{hot},

(c) effective hot electron temperature T_{hot} as a function of surface area.

Squares are extracted from the RCF measured proton spectra.

Data from RCF give (a) maximum proton energies for $2\mu m$ thick Au targets of various surface area

(b) laser-to-proton energy conversion efficiencies (for protons with energy >1.5 MeV) for the same targets.

Post-Acceleration

Maximum published energies: ~100 MeV

Acceleration more effective with higher energy, longer pulses, at equal intensities < 10²⁰ W/cm² Effective on protons, less so on higher-Z species

Maximum published energies: ~100 MeV

Acceleration more effective with higher energy, longer pulses, at equal intensities < 10²⁰ W/cm² Effective on protons, less so on higher-Z species

Why do we want to go for RPA?

Collimated beam Narrow-band spectrum (whole-foil acceleration) High conversion efficiency Short bunch duration Faster scaling with intensity

How can we do it?

Ultra-thin foil Shaping the laser focal spot Solving detrimental issues

Acceleration mechanisms

Radiation Pressure Acceleration

Kar, S., et al., Phys. Rev. Lett, 109, 185006 (2012)

Schematic of the experimental setup.

1PW CLF Vulcan System

 $t_L \sim 800 \text{fs}$ $\lambda = 1054 \text{nm}$

Laser spot (FWHM) of 30µm dia. (p-polarization, at 45°)

Laser energy main up to 600J Laser energy after PM up to 450 J (~75%) Contrast ~ 10¹¹⁻¹² (ps)

Intensity main ~ $1-3x10^{20}$ W/cm²

Cu target 50-500 nm thick

Detector structure

CR39 trace

TP 1 – typical signal

Radiation Pressure Acceleration

B. M. Hegelich, et al., Nature 439, 441 (2006).

A. Henig et al., Phys. Rev. Lett. **103**, 245003 (2009)

Kar, S., Kakolee, K. F., Qiao, B., Macchi, A., Cerchez, M., Doria, D., et al.,

Phys. Rev. Lett, **109**, 185006 (2012)

Doria, D. et al., RSI. 86 12, 123302 (2015)

$E_{ion} \propto (a_0^2 \tau_p / \chi)^2 E_{ion} = 0$ 10¹⁴ Scaling •e/m = 1 dN/dE (in /MeV/nucleon/Sr) (9) (9) (10) (9) (10) (9) (10) (9) (10) (9) (10) (9) (10) (9) (10) (9) (10) (9) (10) (9) (10) (9) (10) (9) (10) (9) (10) (9) (10) (9) (10) (9) (10) (9) (10) e/m = 0.5 C6+ on energy (MeV/nucleon) 10³ 10¹³ e/m = 0.42 Cu Experimental data 10² 10¹² PIC 10¹ 10¹¹ 10°-10¹⁰ 10¹ 10³ **10**⁴ 10 $a_0^2 \tau_p / \eta$ Energy/nucleon (MeV)

Targets thicker than 500nm show standard continuous, exponential spectra (TNSA) Peaks observed regardless of laser polarization (LP or CP) Hybrid scheme where TNSA and RPA cohesist Theory described in B. Qiao et al, PRL, 108, 115002 (2012)

Thomson parabola spectra

Difficulties in extending scaling due to transparency and instability issues

Issues for RPA

Rayleigh-Taylor instability (RTI)

PIC code ALADYN and PICCANTE

 $L_{C} = \lambda, \qquad n_{C} = 64n_{c}$ $L_{P} = \lambda/22, \qquad n_{P} = 8n_{c}$ Laser Intensity $a_{0} = 198$

The early growth of the RTI does not prevent reaching high energy of ions in the radiation pressure-dominated regime.

The ion beam becomes strongly modulated and non-uniform as a consequence of the RTI

Sgattoni, A. et al., PRE, 91 1, 013106 (2015)

FIG. 5. (Color online) A 3D snapshot image of the density of both proton (dark green tones) and carbon (light blue tones) densities at t = 30T. In order to make the carbon ion density visible, the proton density is shown only on the left part ($y \ge 0$) of the image.

FIG. 6. (Color online) Areal density of carbon ions at t = 15T in 3D simulations with the same parameters as in Fig. 5 but for a plane wave, for circular (CP) and linear (LP) polarization.

EPOCH Simulations for Linear and Circular polarization

Target 10nm Carbon Intensity = 4.9x10²⁰ W/cm²

Time Ofs

Electron density

EPOCH 2D

- Resolution 5x6.6nm
- -5 μ m → 50 μ m for x (propagation)
- -10 μ m \rightarrow +10 μ m for y
- 11000 x 3000 cells
- 200 particles per cell

Laser

- 3 µm FWHM focal spot
- 40fs FWHM pulse width
- λ = 800nm
- Normal incidence

Target

- Carbon 2g/cm³
- Bulk is pure Carbon ne=350nc
- Rear Low density Proton Layer 12.5nm - Mimics contaminant layer , ne=10nc
- nc=1.75x10²⁴ g/cc

L-pol

nuclear physic

EPOCH Simulations for Linear and Circular polarization

Target 10nm Carbon Intensity = 4.9x10²⁰ W/cm²

Time 20fs

Electron density

Ey - field

-4 -3 -2 -1 0 1 2 3 4 5 x (µm)

-5 -4 -3 -2 -1 0 1 2 3 4 5 x (μm)

EPOCH Simulations for Linear and Circular polarization

Target 10nm Carbon Intensity = 4.9x10²⁰ W/cm²

Time 30fs

Electron density

Ex - field

L-pol

EPOCH Simulations for Linear and Circular polarization

Target 10nm Carbon Intensity = 4.9x10²⁰ W/cm²

Time 40fs

Electron density

x (µm)

Ex - field

Ey - field

C-pol

x (µm)

5 x (μm)

EPOCH Simulations for Circular polarization

Targets 10nm and 5nm Carbon Intensity = 4.9×10^{20} W/cm²

Time 20fs

Ex - field

Electron density

x (µm)

Electron density

Ex - field

x (µm)

-3 -2

-1 0 1 2 3 4

-2 0 2 x (µm)

C-pol

nuclear physics

Scullion, C., *Doria, D., et al., PRL 2017

C target 2-100 nm thick

Carbon Spectra

Carbon Spectra

THOMSON PARABOLA^{nuclear physics} 10nm Circula 10nmLinear C⁶⁺ bunch shot# 32 shot# 31

Ion energy versus target thickness and polarization

- First evidence of polarization dependence for high energy ions from thin foils evidence of a transition to RPA
- Evidence of transparency and other issues

Linear

Effect of polarization on ion energy

Circular

Σ_sn_e (a.u.)

CP

LP

SHOT #151

SHOT #152

0

Υ (μm)

B. Gonzalez-Izquierdo et al Nat. Com. 7:12891 (2016)

2

-2

0

Y (μm)

2

T.Esirkepov, et al. PRL., **92**, 175003 (2004)

$$I = 1.37 \times 10^{23} \text{ W/cm}^2$$
$$\lambda \simeq 1 \ \mu\text{m}$$
$$n_e = 5.5 \times 10^{22} \text{ cm}^{-3}$$

FIG. 2 (color). The maximum ion kinetic energy versus time and the ion phase space projection (x, p_x) at $t = 80 \times 2\pi/\omega$.

The ion density isosurface for $n = 8n_{cr}$

The isosurface for $n = 2n_{cr}$

Radiation Pressure Acceleration at ELI-NP

Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme^{nuc} A. Higginson et al, Nature Communications 9, 724 (2018)

Radiation Pressure Acceleration at ELI-NP

R. Capdessus & P. McKenna, Phys. Rev. E., 91, 053105 (2015)

Efficient ion acceleration and dense electron–positron plasma creation in ultra-high intensity laser-solid interactions

D. Del Sorbo, New J. Phys. 20 (2018) 033014

 $5x10^{23}$ W/cm² < I_L < $1x10^{25}$ W/cm²

For a standard solid target ion start loosing energy for laser intensities above 10²⁴ W/cm².

<u>ank</u>

Project co-financed by the European Regional Development Fund through the Competitiveness Operational Programme "Investing in Sustainable Development"

Extreme Light Infrastructure-Nuclear Physics

(ELI-NP) – Phase II

www.eli-np.ro