Results form operation and MDs and implications for HL-LHC: Linear corrections

Jaime Maria Coello de Portugal - Martinez Vazquez

Flat optics MD

• Clear local error found in IP1 vertical plane

- Matched using the automatic tool
- Only matched beam 1 and then checked that beam 2 more or less OK with ADT-kicks
- Errors differ from round optics

Flat optics MD

- Setting the residual $\frac{\Delta p}{p}$ in the model accounts for another 5% peak β -beating
- But β -beating in arc 45 remains uncorrected (also seen in 10cm round optics*)
- Our normal global corrections seem to have little effect in this region.
- Try to do a correction with orbit bumps in the sextupoles?

**https://cds.cern.ch/record/2290899/files/CERN-ACC-2017-0088.pdf?*

Flat optics MD

- Perform the typical global correction using non-common quads
- But including all the $\pi\text{-}\mathrm{bumps}$ in the 45 arc
- The β -beating is expected to vanish in the region
- ...but an orbit of up to 5.2mm is needed in MS.26R4.B1
- Using 4 combined bumps for strong and weak sextupoles in R4 and L5 does not seem to work...
- Deeper investigation of possible local errors around 26R4 needed

• The global correction as we use it now also seems to be more challenging in the HL-LHC*:

*https://cds.cern.ch/record/2290899/files/CERN-ACC-2017-0088.pdf?

Flat optics MD tune jitter

- 60/15cm optics
- Only beam 1 as beam 2 AC-dipole was not working

		Tune jitter [10 ⁻⁵]					
		40cm 2016	40cm 2017	30cm (200m arcs)	25cm (600m arcs)	Ballistic optics 2017	Flat optics 60/15cm
*	Beam 1 x	5±2	6±2	0 <u>+</u> 32	3 <u>±</u> 2	0.9±0.4	2.3 ±1.3
	Beam 2 x	4±2	4±2	3±2	1.7 <u>±</u> 0.8	0.8±0.4	-
	Beam 1 y	2.4±1.0	3.0±1.2	1.7 <u>±</u> 0.8	4 <u>±</u> 2	0±0.8	0±1
	Beam 2 y	8±4	0±20	2.1±1.1	2.6±1.3	1.7±0.7	-
	W. Average	3.8 <u>+</u> 1.5	3.9 <u>+</u> 1.7	2.1 <u>±</u> 1.0	2.6±1.1	0.8±0.4	-
	Sim. Beam 1 x	1.85	1.82	2.22	3.07	1.04	-
	Sim. Beam 1 y	1.83	1.81	2.22	3.01	1.01	-

• For HL-LHC at 15cm with the upgraded power supplies in the ATS bends*

Beam 1 tune jitter $[10^{-5}]$ x: 2.77 (4.13 without upgrade) Beam 1 tune jitter $[10^{-5}]$ y: 2.75 (4.05 without upgrade)

- β -beating in the IP with $2.5\cdot 10^{-5}$ tune stability
- Trimming only the innermost part of Q1
- In RMS, the target* of 2% β^* error would produce around 5% luminosity imbalance between IP1 and 5
- Still far away from the target for 15cm optics
- The proposed upgrade of the ATS bends power supplies to class 0 will be critical to reach $\sim 2.7 \cdot 10^{-5}$ tune jitter according to Davide's simulations (not far from the 2.5 $\cdot 10^{-5}$ assumed here)

**https://cds.cern.ch/record/2290899/files/CERN-ACC-2017-0088.pdf?*

- A oscillation in the tune of a 100s period has been observed in the LHC*
- Measured at flattop (1m)

• If it is enhanced in HL-LHC, it could challenge the K-modulation measurements

*Sergey Antipov, collimator impedance MD

- Simulations performed using HL-LHC 1.2 lattice
- Removed the trim in Q2a and applied sorting (pairing magnets with similar errors in Q2a and Q2b)
- 15cm round optics
- 10 units of B2R error in the IR1 and IR5 triplet quadrupoles
- 2mm uniform longitudinal misalignments
- Added the noise in the simulated K-mod measurement corresponding to $2.5 \cdot 10^{-5}$ tune resolution
- Also added 10^{-3} noise to the phase measurement in the focusing BPMs

- The new automatic correction approach gets close to the limit given by the β^{*} measurement resolution
- The correction is only limited by tune resolution/accuracy
- The correction identifies quadupole errors within 1 unit:

β -beatings in important elements

- Local triplet errors differ from round optics
- The β -beating of arc45 might be corrected using orbit bumps, deeper analysis needed
- Upgrading the telescopic bends power supplies to class 0 will be critical to even get close to the desired β^* precision
- The automatic local correction tool is now able to correct to the measurement level at 10 units of B2R
- No significant β -beating leaks to the rest of the machine

Alternatives: K-modulation with tune feedback?

- K-modulation with tune feedback, would allow bigger k trims -> Limited by β -beating coming from MQTs, Q1 and cross terms.
- Not total compensation of the modulation and lag observed:

Measurement

• Very complex alternative, it is unclear if it works.

- Effect of the errors in the triplet without correction
- 50 seeds per point.
- Independent Gaussian errors in all the quadrupoles of the triplets (IR1/5).

• 2 units of field error correspond to 5mm longitudinal misalignment (round 20cm optics).

- More or less half of the local error corrected
- Around 4% β -beating corrected in RMS
- Too much degeneration because of the lack of constraints from beam 2?

