IR-nonlinear errors: 2017 experience & implications for HL-LHC

Ewen H. Maclean, Felix Carlier, and the **O**ptics **M**easurement and **C**orrection (**OMC**) Team

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

First commissioning for NL-errors in IR1 & IR5 performed in 2017

• Various studies in 2016 demonstrated that reduction of β^* to \leq 0.4 m meant nonlinearities in ATLAS/CMS IRs started to be relevant to operation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Corrections operational for:

- *b*₄ in IR1/IR5
- *b*₃ in IR1/IR5
- *a*₃ in IR1
- a₄ in IR1 (KCOSX3.R1 only: L1 is dead)

Beam-based corrs mandatory in LHC

 \rightarrow e.g. see \sim 30 % discrepancy with model amplitude detuning

Beam-based correction compensated the amplitude detuning generated by b₄ in IR1/IR5

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Feed-down demonstrates achieve reasonably local correction of b_4
- Obtain reduced strength of $4Q_x$

0.10

After b₄ compensation, corrections applied for feed-down to tune in IR1/5 and coupling in IR1

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

• a_3 correction in IR1 demonstrated to reduce strength of $3Q_{\nu}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Clear improvement to lifetime at 0.14 m when IR-b₄ correction was applied during ATS MD

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト ● ④ ● ●

Recent studies with beam have demonstrated we can achieve several baseline aims for IRNL correction in HL-LHC

- Beam-based corrections
- Local correction of sextupole and octupole errors
- Compensation of resonance driving terms
- Improvements to lifetime at low-β*

Unfortunately additional challenges have also been revealed...

Impact of nonlinear errors on linear optics commissioning

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Clear improvement to BBQ upon IR-octupole correction

K-mod to correct β^* requires high-quality tune measurement

→ Reduced BBQ performance due to IR-octupoles may impede ability to correct linear optics NL-errors contribute directly to linear optics quality via feed-down

Already observe non-negligible impact of sextupoles on β^* -imbalance (~ 2 %)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Impact on linear optics can become considerably more serious for smaller β^{\ast}

e.g. simulation studies of HL-LHC (15cm, 295µrad)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Also need to consider effect on linear coupling

- Direct impact due to feed-down
- Ability to measure

- At low- β linear and nonlinear optics commissioning cannot be considered independent
 - \rightarrow Nonlinear optics correction requires good linear optics
 - \rightarrow Can't measure or correct linear optics to desired quality without also compensating nonlinearities

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Combined linear & nonlinear optics commissioning

Being pushed towards iterative commissioning strategy, e.g. 2017

Effect of higher-order NL-corrections on lower-orders

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

In Run1 saw issues with alignment/orbit in b_4 correctors introducing additional sextupole errors

 \rightarrow Observed again in 2017 with a_4 correction spoiling a_3 compensation

 a_3 correction in 2017 had to be re-iterated after application of $a_4 \rightarrow$ expect HL-LHC needs iterative corrections as more orders are added!

Impact of nonlinear errors on AC-dipole performance

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Tried kicking AC-dipole after artificially increasing skew sextupoles using KCSSX3.R1

Appear to loose AC-dipole adiabaticity with strong a₃ errors

Potentially a massive problem for low- β commissioning

- After 8 VERY low-amplitude kicks beam was basically unusable
- Performed \sim 460 kicks/beam at $\beta^* \leq$ 0.6 m during 2017 commissioning
- Forget AC-dipole amplitude detuning & RDTs...

Only explored this on a single occasion,

with single configuration for large a_3

- \rightarrow Want to understand how reproducible this is
- \rightarrow How much worse does this become with all multipole orders
- \rightarrow Have MD proposal for 2018 to look at free/driven DA, scaling all multipole correctors to replicate HL-LHC like conditions

- If DA of driven oscillations / AC-dipole adiabaticity is a problem:
- Can ADT-AC dipole measure optics? Longer excitation?
- Felix demonstrated use of AC-dipole WP to enhance/diminish RDTs
 - \rightarrow To follow up in MD
 - \rightarrow Depending on natural WP, may be limited by existing ACD hardware
- Start with model-based corrections applied
 - \rightarrow Require very accurate magnetic and alignment data
- Iterative commissioning strategy for decreasing β^*
 - $\rightarrow \geq$ 2 complete linear+nonlinear commissionings at decreasing β^* would significantly increase time required

What should we correct???

■ IRNL-errors influence many aspects of operation, directly & via feed-down

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

- How do we decide what to correct?
- What is the effect of optimizing on different observables?

e.g. linear optics:

 \rightarrow In simulation ideal sextupole RDT correction leaves up to 7 % residual beta-beat from sextupole errors

Can we do better by optimizing for beta-beat / β^* rather than RDTs ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

If so how much is the DA deteriorated?

Dodecapole errors have many potential effects

 During DA MD started seeing significant losses at 40 cm for max MCTX powering (80 A) at flat-orbit

- 80A @ 40cm \equiv 1-2A @ 10cm
- Should expect direct impact b_6 to become relevant for very low β^*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Performed AC-dipole kicks with max MCTX powering in separate MD

- Observe typical AC-dipole losses at flat orbit (white)
- With X-ing angle (green) see slow persistent losses following AC-dipole kicks (signature of free-DA)

 \rightarrow b₆ feed-down possibly more relevant for DA than direct b₆

Feed-down from decapole/dodecapoles to normal octupole likely to be a particular challenge for instabilities in HL-LHC

- Correction of b_6 : $\propto \beta^3$
- Correction of b_6 feed-down to b_4 : $\propto \beta^2 \Delta_{orbit}$

Skew octupoles also have multiple observables which could be optimized

э

Increasing a_4 RDT is clearly associated with increased losses when kicking with AC-dipole

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

a4 errors also directly influence the tune footprint

- \rightarrow tentative confirmation at injection (offline analysis needed)
- \rightarrow potential for large influence on Landau damping

- a_4 has at least 3 behaviours with potential relevance to operation: \rightarrow footprint, DA (free/driven), feed-down
- Want to understand the extent to which these are consistent with each other & identify priorities for correction in HL-LHC

Conclusions

- Have already achieved some initial objectives of IRNL-correction in HL-LHC, during 2017 LHC commissioning
 - \rightarrow Local correction of sextupoles/octupoles to improve RDTs and lifetime
- Starting to get an idea of what nonlinear optics commissioning of HL-LHC may involve
 - \rightarrow Iterative corrections between linear/nonlinear optics
 - \rightarrow Iterative corrections between multipole orders
 - \rightarrow some nonlinear corrections in place before progressing to smallest β^*

Some clear challenges identified

- \rightarrow Performance of AC-dipole with strong nonlinearities
- \rightarrow Need to decide priorities for correction with given multipole order