Microelectronics at CERN Introduction to the Medipix Project

The Microelectronics section at CERN

- Provides support to the HEP (High Energy Physics) community:
- Radiation and multi-tesla tolerant chip design
- GBT & Versatile Link
- DC-DC Converters
- Medipix
- These components are named ASICs (Application Specific Integrated Circuits)

DC DC converter modules

Radiation Hard Optical Link Project (Gigabit/s)

Chip designer Iraklis working on new pixel detectors

The Medipix Pixel detector

- Medipix a family of successive generations of hybrid pixel detectors
- Collaboration with multiple institutes all around the world
- Medipix1 chip was produced in the 1990s (1µm technology)
- Medipix2 (0.25µm)
 - Medipix2MXR, Timepix
- Medipix3 (0.13µm)
 - Timepix3, Medipix3RX
- Medipix4: (65nm) Timepix4 (2019)

\$	Medipix2 Collaboration
	University and INFN Cagliari, Italy
	CEA-LIST Saclay, France
	CERN, Geneva, Switzerland
	Friedrich-Alexander-University Erlangen-Nurnberg, Germany
	ESRF, Grenoble, France
	University of Freiburg, Germany
	University of Glasgow, UK
	IFAE Barcelona, Spain
	 Mid-Sweden University, Sundsvall, Sweden
	MRC-LMB. Cambridge, UK
	 University and INFN Napoli, Italy
	 NIKHEF, Amsterdam, The Netherlands
	University and INFN Pisa, Italy
	 FZU Czech Academy of Science, Prague, Czech Republic
	IEAP, Czech Technical University in Prague, Czech Republic
	 Space Science Laboratory, UC Berkeley, USA

Technical Introduction of Timepix chip

- ASIC (Application Specific Integrated Circuit)
- Pixel Array: 256x256
- Pixel Pitch: 55µm
- Pixel functionality: PC, TOT and TOA

Application Areas and Commercialization

- Medical Imaging
- Education
- Space Dosimetry
- Material Analysis
- Back to High-Energy Physics

Image of the astronaut Chris Cassidy working near the Timepix USB on the ISS

Hybrid Silicon Pixel Detectors

Standard CMOS can be used allowing on-pixel signal processing

Sensor material can be changed (Si, GaAs, CdTe..)

Hybrid Pixels Detector – Measuring Energy

 \rightarrow Noise hit free imaging

X-ray photon energy deposition

Fluorescence in High-Z Materials

(Timepix chip) – 60s exposure

256

X (column number) 256

Near sea level

34 000 feet

My Internship

- Does my proposed solution work?
- Could the solution improve?
- Will my solution be of use?
- Is my supervisor satisfied?
- Am I happy? What have I learned?

Probably!

YES!

Surprisingly YES!

Hopefully!

Thank you for your attention!

Special thanks to Jerome Alexandre Alozy