

48010 를

Training and preparation?

Radiation Protection Awareness - ISOLDE Fundamentals

SIR - Safety Information Registration Main Menu > Radiation Protection- Supervised Area > 1 - Supervised Radiation areas - Introduction - Page $1 / 9$

RP COURSE / SUPERVISED RADIATION AREAS - INTRODUCTION

You are going to follow the training module:
"Introduction to radiological risks in CERN Supervised Radiation Areas" Passing the test that follows is necessary to work in a Supervised Radiation Area

NOT CONTAMINATED

Tasks and work!

Doppler analysis

1. Draw graph of interest
2. Locate Doppler Shift
3. Fit peak(s)
4. Take note of important values
5. $8 \cdot 3 \cdot 6=144$ graphs!

Angle analysis

$E_{D C}=\gamma E_{L a b}\left[1-\beta \cos \left(\vartheta_{\gamma}\right)\right]$,
(4)
where $\gamma=1 / \sqrt{1-\beta^{2}}, \beta=v / c$ and ϑ_{γ} is related to the angles of the γ-ray $\left(\theta_{\gamma}, \phi_{\gamma}\right)$ and of the particle emitting the γ-ray $\left(\theta_{p}, \phi_{p}\right)$ by
$\cos \left(\theta_{\gamma}\right)=\sin \left(\theta_{p}\right) \sin \left(\theta_{\gamma}\right) \cos \left(\phi_{p}-\phi_{\gamma}\right)+\cos \left(\theta_{p}\right) \cos \left(\theta_{\gamma}\right)$.
Θ angle

Angle manipulation

Energy difference

		minibal@mbanapc:~/ne_data/angles/GeneticPositionClusters							-	\square
File Edit	View Search	Terminal	Help							
theta[5]	50.34	phi [5]	282.84	alpha[5]	$=$	67.56	r [5]	$=$	87.18	
theta[6]	$=125.36$	phi[6]	$=279.89$	alpha[6]	$=$	251.50	r[6]		97.83	
theta[7]	$=40.89$	phi[7]	310.29	alpha [7]	$=$	270.35	r[7]		92.14	
${ }^{2}$ Chisqr $=$	0.185918 Be	ta $=0.0$	09941 E	101.26 MeV	Ite	ration 1				
theta[0]	$=127.70$	phi [0]	106.98	alpha[0]	$=$	292.01	$\mathrm{r}[0]$		98.35	
theta[1]	$=\quad 35.79$	phi[1]	45.14	alpha[1]	=	72.80	$\mathrm{r}[1]$		90.56	
theta[2]	$=\quad 50.19$	phi[2]	128.91	alpha[2]	$=$	58.61	r[2]		93.89	
theta[3]	130.83	phi [3]	93.69	alpha [3]	$=$	89.90	r[3]		93.69	
\%theta[4]	$=124.93$	phi[4]	291.07	alpha [4]		120.25	r[4]		94.82	
theta [5]	$=50.34$	phi [5]	$=282.84$	alpha [5]		67.69	r 5]		87.18	
theta[6]	125.36	phi[6]	279.73	alpha [6]		251.49	r[6]		96.65	
theta[7]	40.89	phi [7]	310.29	alpha[7]		270.35	r[7]		92.14	
Chisqr $=$	0.185307 Bet	ta $=0.0$	$09941 \mathrm{E}=$	101.26 MeV	Ite	ration 18				
theta[0]	$=127.76$	phi [0]	107.18	alpha[0]	$=$	292.22	r [0]		98.51	
theta[1]	35.79	phi[1]	45.18	alpha[1]		72.80	r [1]		90.07	
3theta[2]	50.19	phi[2]	$=128.91$	alpha[2]		58.32	r [2]		93.26	
3theta[3]	$=130.83$	phi[3]	93.69	alpha[3]		89.90	$\mathrm{r}[3]$		93.49	
theta[4]	$=124.93$	phi[4]	290.93	alpha[4]		120.33	$r[4]$		94.91	
theta[5]	$=50.34$	phi [5]	283.16	alpha [5]		67.43	$\mathrm{r} 5 \mathrm{5}]$		87.26	
theta[6]	$=125.36$	phi [6]	$=279.73$	alpha[6]	$=$	251.57	r[6]		96.85	
theta[7]	40.89	phi[7]	310.24	alpha[7]		270.34	r[7]		92.09	
${ }^{3}$ Chisqr $=$	0.185054 Bet	ta $=0.0$	$89940 \mathrm{E}=$	101.24 MeV		ration 20				
theta[0]	$=127.76$	phi [0]	$=107.25$	alpha [0]		292.22	$\mathrm{r}[0]$		98.35	
theta[1]	35.79	phi[1]	45.14	alpha[1]		72.80			90.44	
theta[2]	50.19	phi [2]	128.91	alpha[2]		58.45	r [2]		93.61	
theta [3]	130.85	phi [3]	92.62	alpha [3]	$=$	89.14	r [3]	$=$	92.94	
theta[4]	124.93	phi[4]	290.89	alpha [4]		120.25	r[4]		94.93	
theta[5]	$=50.34$	phi [5]	282.95	alpha [5]		67.69	r[5]		87.18	
3theta[6]	$=125.36$	phi [6]	$=279.53$	alpha[6]		251.49	$\mathrm{r}[6]$		96.75	
theta[7] ,	$=40.89$	phi[7]	$=310.25$	alpha[7]		270.35			92.14	

Background radiation detection!

E_gam_0_0_1_core

E_gam_0_0_1_core

Experience

Thank you!

