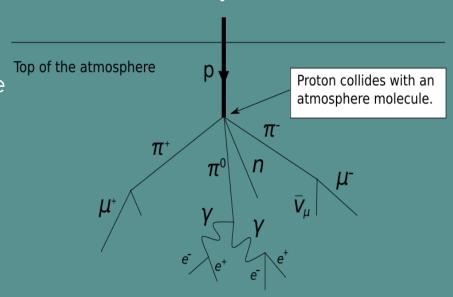
EEE Extreme Energy Events

Alva Johansson, Lucas Vacha, Johanna Lindblom Supervised by Despina Hatzifotiadou

What is the EEE project?

A cosmic ray experiment to detect muons from outer space in order to search for their origin

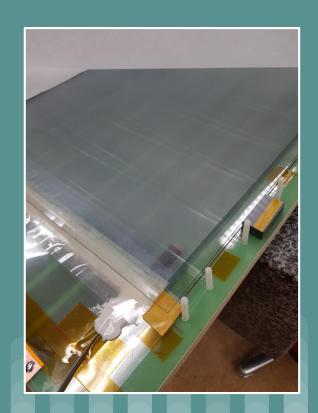
It takes place in ~50 Italian schools

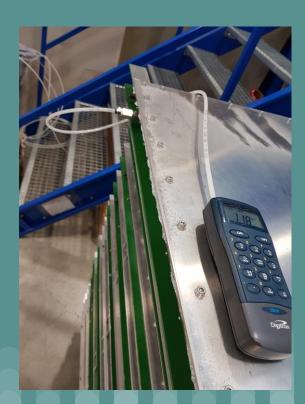

Background

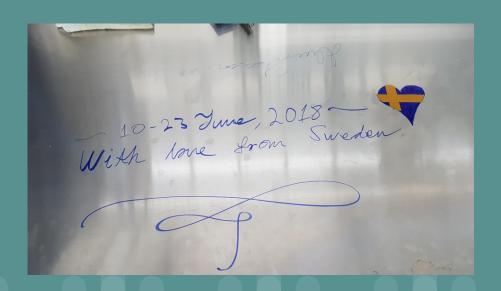
- At first people believed that all radiation originated from the ground
- In 1912, Victor Hess conducted an experiment that proved them wrong

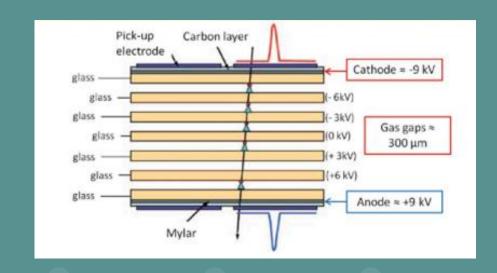
What are cosmic rays?

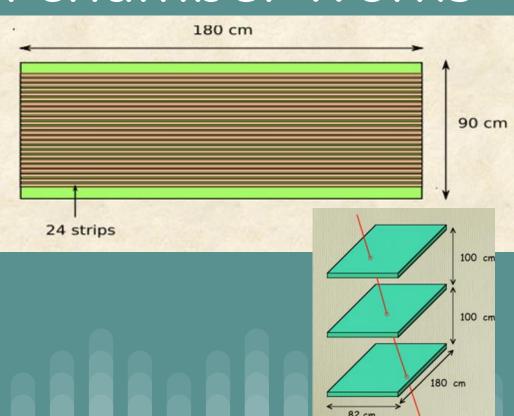
- High energy-radiation
- Mainly originating outside of the solar system, even from distant galaxies
- Produces showers of secondary particles:
 - o positrons
 - electrons
 - o photons
 - o muons
 - o and more...



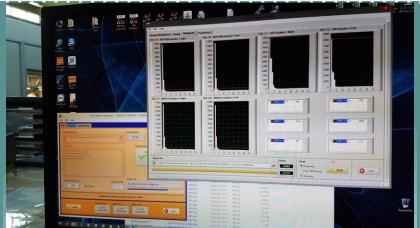







How a muon chamber works

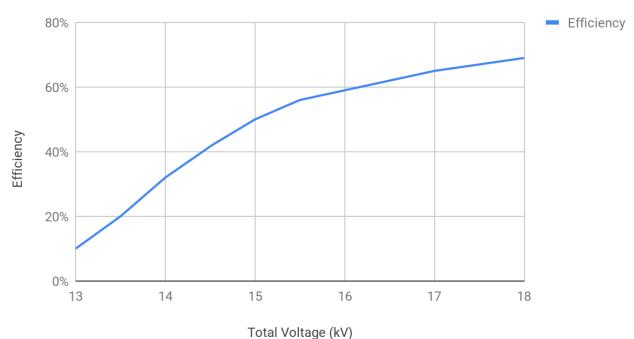
- The high energy muons hit the chamber and ionize the gas in the gaps
- The movement of the electrons creates avalanches
- As charges move inside the chamber, the disruption of the electric field is registered by the copper strips

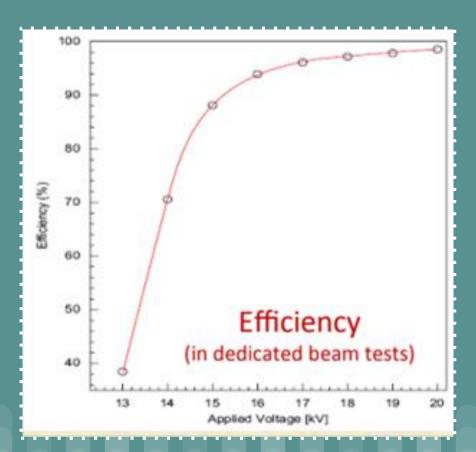

How a muon chamber works

 The location of the hit is recognized by the difference of the times, which it takes for the signal to reach each side of the chamber, as well as which strip has been hit

The Results

(+)High Voltage ((-)High Voltage (I	Total Voltage (kV	(+) Current (µA)	(-) Current (µA)	(N) Events	(N) Real	(N) Top-(0 hits)	Inefficiency	Efficiency
6,5	6,5	13	0,63	0,64	20002	20002-653	18100-653	90%	10%
6,75	6,75	13,5	0,65	0,69	20000	20000-661	16150-661	80%	20%
7	7	14	0,68	0,73	20000	20000-662	13900-662	68%	32%
7,07	7,45	14,52	0,7	0,72	20084	20084-660	12000-660	58%	42%
7,5	7,5	15	0,77	0,8	20000	20000-665	10400-665	50%	50%
7,75	7,75	15,5	0,82	0,93	20000	20000-669	9250-669	44%	56%
8	8	16	0,94	1,05	20000	20000-666	8600-666	41%	59%
8,25	8,25	16,5	0,88	1,44	20000	20000-666	7950-666	38%	62%
8,5	8,5	17	1,47	1,66	20000	20000-663	7500-663	35%	65%
8,75	8,75	17,5	1,77	2,01	20000	20000-658	7080-658	33%	67%
9	9	18	2,2	2,56	20000	20000-656	6690-656	31%	69%




The Results

$$1 - \frac{N_{Top-(0 hits)}}{N_{Real}}$$

The Results

Efficiency per Total Voltage

