lattice QCD for precision flavour physics

Carlos Pena

GETTING TO GRIPS WITH QCD, Paris, 05/04/2018

GETTING TO GRIPS WITH QCD

Campus des Cordeliers, Paris 4-6 April 2018

• energy frontier has revealed the/a BEH + barren (?) land

- exquisite control of SM predictions needed to dig up possible new Physics
- hadronic sector: α_s, quark masses, ...

[[]ATLAS 2017]

• energy frontier has revealed the/a BEH + barren (?) land

- exquisite control of SM predictions needed to dig up possible new Physics
- hadronic sector: α_s, quark masses, ...

intensity frontier

- land of opportunity (LHCb, Belle II, (g-2) programme, nEDM, ...)
- strong interaction effects key to attain necessary precision

• energy frontier has revealed the/a BEH + barren (?) land

- exquisite control of SM predictions needed to dig up possible new Physics
- hadronic sector: α_s , quark masses, ...

intensity frontier

- land of opportunity (LHCb, Belle II, (g-2) programme, nEDM, ...)
- strong interaction effects key to attain necessary precision

• this talk: focus on hadronic flavour physics, especially B decay

- leptonic
- tree-level semileptonic + R(D) + CKM
- rare semileptonic, mixing

• energy frontier has revealed the/a BEH + barren (?) land

- exquisite control of SM predictions needed to dig up possible new Physics
- hadronic sector: α_s, quark masses, ...

intensity frontier

- land of opportunity (LHCb, Belle II, (g-2) programme, nEDM, ...)
- strong interaction effects key to attain necessary precision

• this talk: focus on hadronic flavour physics, especially B decay

[G Salerno (next talk), D Mohler: charm physics]

[(g-2) talks by G Colangelo and A Gérardin] [QED corrections by F Sanfilippo] [meson DA by F Hutzler]

[related B-physics talks by M Fedele, P Colangelo, A Bharucha, D Leljak]

lattice QCD

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2g^2} \operatorname{tr} \left[F_{\mu\nu} F^{\mu\nu} \right] + \sum_{q=1}^{N_{\text{f}}} \bar{\psi}_q \left[i D - m_q \right] \psi_q + \frac{i\theta}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} \operatorname{tr} \left[F_{\mu\nu} F_{\rho\sigma} \right] \underbrace{\mathcal{L}_{\text{QCD}}}_{\text{CP}}$$

first-principles approach = control all systematic uncertainties

- spacetime = Euclidean lattice
- allows to define path integral rigorously and compute it via Monte Carlo methods
- QCD recovered by removing cutoffs at physical kinematics

physics reach

[Herdoíza summer 2015 + (partial) updates]

physics reach

- charm physics directly accessible for some time now
- fraction of available ensembles used for HQ physics still limited

[Herdoíza summer 2015 + (partial) updates]

lattice QCD: validation

[Kronfeld, Annu. Rev. Nucl. Part. Sci. 62 (2012)]

lattice QCD: state-of-the-art

[ALPHA Collaboration, PRL 119 (2017) 102001]

lattice QCD: state-of-the-art

Re
$$\left(\frac{\epsilon'}{\epsilon}\right)_{\rm SM} = 1.38(5.15)(4.43) \times 10^{-4}$$

cf. Re $\left(\frac{\epsilon'}{\epsilon}\right)_{\rm exp} = 16.6(2.3) \times 10^{-4}$

[RBC/UKQCD Collaboration, PRL 115 (2015) 212001]

lattice QCD for phenomenology: FLAG

Flavour Lattice Averaging Group: your one-stop repository of lattice results, world averages / estimates

```
3rd edition: results up to 30/11/2015 + updates from 2016
[Aoki et al., EPJC (2017) 77:112]
```

```
advisory board: S. Aoki, C. Bernard, H. Leutwyler, C. Sachrajda
editorial board: G. Colangelo, S. Hashimoto, A. Jüttner, S. Sharpe,
A. Vladikas, U. Wenger
working groups:
                                            T. Blum, L. Lellouch, V. Lubicz
quark masses
V_{ud}, V_{us}
                                            P. Boyle, T. Kaneko, S. Simula
LECs
                                              S. Dürr, H. Fukaya, U. Heller
kaon mixing
                                   P. Dimopoulos, B. Mawhinney, H. Wittig
                                          R. Horsley, T. Onogi, R. Sommer
\alpha_{s}
                                           Y. Aoki, M. Della Morte, D. Lin
heavy leptonic + mixing
heavy semileptonic
                                    D. Bečirević, S. Gottlieb, E. Lunghi, CP
```

4th edition: early 2019, results up to Sep 2018

lattice QCD for phenomenology: FLAG

Flavour Lattice Averaging Group: your one-stop repository of lattice results, world averages / estimates

light quark physics: simple quantities at % precision level; start working hard on isospin+QED corrections etc.

lattice QCD for phenomenology: FLAG

Flavour Lattice Averaging Group: your one-stop repository of lattice results, world averages / estimates

heavy quark physics: often significantly worse precision, still important to crosscheck approaches until significantly finer lattices are available

(FLAG-3 — references)

- 20. [ETM 13B] N. Carrasco et al., B-physics from $N_f = 2$ tmQCD: the Standard Model and beyond. JHEP **1403**, 016 (2014). arXiv:1308.1851
- [HPQCD 13] R.J. Dowdall, C. Davies, R. Horgan, C. Monahan, J. Shigemitsu, B-meson decay constants from improved lattice NRQCD and physical u, d, s and c sea quarks. Phys. Rev. Lett. 110, 222003 (2013). arXiv:1302.2644
- 53. [RBC/UKQCD 14] N.H. Christ, J.M. Flynn, T. Izubuchi, T. Kawanai, C. Lehner et al., B-meson decay constants from 2 + 1flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks. Phys. Rev. D **91**, 054502 (2015). arXiv:1404.4670
- 54. [RBC/UKQCD 14A] Y. Aoki, T. Ishikawa, T. Izubuchi, C. Lehner, A. Soni, Neutral *B* meson mixings and *B* meson decay constants with static heavy and domain-wall light quarks. Phys. Rev. D 91, 114505 (2015). arXiv:1406.6192
- 55. [HPQCD 12] H. Na, C.J. Monahan, C.T. Davies, R. Horgan, G.P. Lepage et al., The *B* and *B_s* meson decay constants from lattice QCD. Phys. Rev. D **86**, 034506 (2012). arXiv:1202.4914
- 56. [HPQCD 11A] C. McNeile, C.T.H. Davies, E. Follana, K. Hornbostel, G.P. Lepage, High-precision f_{B_s} and HQET from relativistic lattice QCD. Phys. Rev. D **85**, 031503 (2012). arXiv:1110.4510
- 57. [ALPHA 14] F. Bernardoni et al., Decay constants of B-mesons from non-perturbative HQET with two light dynamical quarks. Phys. Lett. B **735**, 349–356 (2014). arXiv:1404.3590
- 58. [ETM 13C] N. Carrasco et al., B-physics computations from Nf = 2 tmQCD. PoS LATTICE2013, 382 (2014). arXiv:1310.1851
- [HPQCD 09] E. Gamiz, C.T. Davies, G.P. Lepage, J. Shigemitsu, M. Wingate, Neutral B meson mixing in unquenched lattice QCD. Phys. Rev. D 80, 014503 (2009). arXiv:0902.1815
- 182. [ETM 11A] P. Dimopoulos et al., Lattice QCD determination of m_b , f_B and f_{B_s} with twisted mass Wilson fermions. JHEP **1201**, 046 (2012). arXiv:1107.1441
- 456. [ETM 13E] N. Carrasco, P. Dimopoulos, R. Frezzotti, V. Giménez, P. Lami et al., A $N_f = 2 + 1 + 1$ 'twisted' determination of the *b*-quark mass, f_B and f_{B_s} . PoS LATTICE2013, 313 (2014). arXiv:1311.2837
- 457. [RBC/UKQCD 13A] O. Witzel, B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks. PoS LATTICE2013, 377 (2014). arXiv:1311.0276
- 458. [ALPHA 13] F. Bernardoni, B. Blossier, J. Bulava, M. Della Morte, P. Fritzsch et al., B-physics with $N_f = 2$ Wilson fermions. PoS LATTICE2013, 381 (2014). arXiv:1309.1074
- 459. [ALPHA 12A] F. Bernardoni, B. Blossier, J. Bulava, M. Della Morte, P. Fritzsch et al., B-physics from HQET in twoflavour lattice QCD. PoS LAT2012, 273 (2012). arXiv:1210.7932

- 460. [ETM 12B] N. Carrasco, P. Dimopoulos, R. Frezzotti, V. Gimenez,
 G. Herdoiza et al., B-physics from the ratio method with Wilson twisted mass fermions. PoS LAT2012, 104 (2012). arXiv:1211.0568
- 464. [RBC/UKQCD 10C] C. Albertus et al., Neutral B-meson mixing from unquenched lattice QCD with domain-wall light quarks and static b-quarks. Phys. Rev. D 82, 014505 (2010). arXiv:1001.2023
- 503. [HPQCD 06] E. Dalgic et al., B meson semileptonic form-factors from unquenched lattice QCD. Phys. Rev. D 73, 074502 (2006). arXiv:hep-lat/0601021
- 504. [FNAL/MILC 15] J. A. Bailey et al., $|V_{ub}|$ from $B \rightarrow \pi \ell \nu$ decays and (2 + 1)-flavor lattice QCD. Phys. Rev. D **92**, 014024 (2015). arXiv:1503.07839
- 505. [RBC/UKQCD 15] J.M. Flynn, T. Izubuchi, T. Kawanai, C. Lehner, A. Soni, R.S. Van de Water et al., $B \rightarrow \pi \ell \nu$ and $B_s \rightarrow K \ell \nu$ form factors and $|V_{ub}|$ from 2 + 1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks. Phys. Rev. D **91**, 074510 (2015). arXiv:1501.05373
- 515. [HPQCD 13E] C. Bouchard, G.P. Lepage, C. Monahan, H. Na, J. Shigemitsu, Rare decay $B \rightarrow K \ell^+ \ell^-$ form factors from lattice QCD. Phys. Rev. D 88, 054509 (2013). arXiv:1306.2384
- 516. [FNAL/MILC 15D] J.A. Bailey et al., $B \rightarrow K l^+ l^-$ decay form factors from three-flavor lattice QCD. Phys. Rev. D 93, 025026 (2016). arXiv:1509.06235
- 517. [FNAL/MILC 15E] J.A. Bailey et al., $B \rightarrow \pi \ell \ell$ form factors for new-physics searches from lattice QCD. Phys. Rev. Lett. 115, 152002 (2015). arXiv:1507.01618
- 537. M. Atoui, V. Morenas, D. Becirevic, F. Sanfilippo, $b_s \rightarrow d_s \ell \nu_\ell$ near zero recoil in and beyond the standard model. Eur. Phys. J. C 74, 2861 (2014). arXiv:1310.5238
- 538. [FNAL/MILC 08] C. Bernard et al., The $\bar{B} \rightarrow D^* \ell \bar{\nu}$ form factor at zero recoil from three-flavor lattice QCD: a model independent determination of $|V_{cb}|$. Phys. Rev. D **79**, 014506 (2009). arXiv:0808.2519
- 539. [FNAL/MILC 14] J.A. Bailey et al., Update of $|V_{cb}|$ from the $\bar{B} \rightarrow D^* \ell \bar{\nu}$ form factor at zero recoil with three-flavor lattice QCD. Phys. Rev. D 89, 114504 (2014). arXiv:1403.0635
- 540. [FNAL/MILC 15C] J.A. Bailey et al., BD form factors at nonzero recoil and V_{cb} —from 2 + 1-flavor lattice QCD. Phys. Rev. D **92**, 034506 (2015). arXiv:1503.07237
- 541. [HPQCD 15] H. Na, C.M. Bouchard, G.P. Lepage, C. Monahan, J. Shigemitsu, BD form factors at nonzero recoil and extraction of—V_{cb}—. Phys. Rev. D 92, 054510 (2015). arXiv:1505.03925

lattice QCD input for flavour physics

determination of CKM matrix elements from tree-level EW decays

rare decays and mixing: study (mostly loop-level) processes sensitive to new physics

B leptonic decay

$$\frac{\mathcal{B}(B_{(c)} \to l\nu_l)}{\tau_{B_{(c)}}} = \frac{G_{\rm F}^2}{8\pi} m_l^2 m_{B_{(c)}} \left(1 - \frac{m_l^2}{m_{B_{(c)}^2}}\right)^2 |V_{qb}|^2 f_{B_{(c)}}^2 \ [+ \text{h.o. OPE}]$$

 $\langle 0|\bar{b}\gamma^{\mu}\gamma^{5}q|B_{q}(p)\rangle = f_{B_{q}}p^{\mu}$

FLAG-3 — B decay constants

FLAG-3 — B decay constants

- $\bullet\ {\rm errors}$ in the few- $\rightarrow\ {\rm sub}-\%$ ballpark: theory way ahead of experimental uncertainties
- estimates/averages dominated by few results: strong need of crosschecks from other HQ treatments to improve confidence in systematics
- electromagnetic corrections?

N_{f}	$f_B \; [{ m MeV}]$	f_{B_s} [MeV]	f_{B_s}/f_B
2	188(7)	227(7)	1.206(23)
2+1	192.0(4.3)	228.4(3.7)	1.201(16)
2+1+1	186(4)	224(5)	1.205(7)
	196(6)	236(7)	1.207(7)
	189.4(1.4)	230.7(1.2)	1.2180(49)

[HPQCD arXiv:1711.09981; FNAL/MILC arXiv:1712.09262]

$b \rightarrow u$ semileptonic

$$\frac{\mathrm{d}\Gamma(B_{(s)} \to Pl\nu)}{\mathrm{d}q^2} = \frac{G_{\rm F}^2 |V_{ub}|^2}{24\pi^3} \frac{(q^2 - m_l^2)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_{B_{(s)}}^2} \left[\left(1 + \frac{m_l^2}{2q^2} \right) m_{B_{(s)}}^2 (E_P^2 - m_P^2) |f_+(q^2)|^2 + \frac{3m_l^2}{8q^2} (m_{B_{(s)}}^2 - m_P^2)^2 |f_0(q^2)|^2 \right]$$

$$\langle P(p')|\bar{b}\gamma_{\mu}q|B_{q}(p)\rangle = f_{+}(q^{2})\left(p_{\mu} + p'_{\mu} - \frac{m_{B_{q}}^{2} - m_{P}^{2}}{q^{2}}q_{\mu}\right) + f_{0}(q^{2})\frac{m_{B_{q}}^{2} - m_{P}^{2}}{q^{2}}q_{\mu}, \quad q = p - p'$$

 $B \rightarrow \pi l \nu$ $f_{\text{large}}(q^2, \vec{b}) \equiv \frac{1}{\text{space}^2 \neq m_{B^*}^2} \sum_{k=0}^{\infty} b_k(t_0) z(q^2)^k \text{ of } q^2 \text{ dependence} \frac{\sqrt{t_+ - q^2}}{\sqrt[space]{t_+ - q^2}} = \frac{\sqrt{t_+ - q^2}}{\sqrt[space]{t_+ - q^2}} \sum_{k=0}^{\infty} b_k(t_0) z(q^2)^k \text{ of } q^2 \text{ dependence} \frac{\sqrt{t_+ - q^2}}{\sqrt[space]{t_+ - q^2}} = \frac{\sqrt{t_+ - q^2}}{\sqrt[space]{t_+ - q^2}} = \frac{\sqrt{t_+ - q^2}}{\sqrt[space]{t_+ - q^2}} \sum_{k=0}^{\infty} b_k(t_0) z(q^2)^k \text{ of } q^2 \text{ dependence} \frac{\sqrt{t_+ - q^2}}{\sqrt[space]{t_+ - q^2}} = \frac{\sqrt[space]{t_+ - q^2}}{\sqrt[space]{t_+ - q^2}} = \frac{\sqrt[space]{t_+ - q^2}}{\sqrt[space]{t_+ - q^2}} = \frac{\sqrt[space}{t_+ - q^2}} = \frac{\sqrt[space]{t_+ - q^2}}{\sqrt[space]{t_+ - q^2}}} = \frac{\sqrt[space]{t_+ - q^2}}{\sqrt[space]{t_+ - q^2}} = \frac{\sqrt[space]{t_+ - q^2}}{\sqrt[space]{t_+ - q^2}}} = \frac{\sqrt[space]{t_+ - q^2}}{\sqrt[space]{t_+ - q^2}} = \frac{\sqrt[space]{t_+ - q^2}}{\sqrt[space]{t_+ - q^2}}} = \frac{\sqrt[space]{t_+ - q^2}}{\sqrt[space]{t_+ - q^2}} = \frac{\sqrt[space]{t_+ - q^2}}{\sqrt[space]{t_+ - q^2}} = \frac{\sqrt[space]{t_+ - q^2}}{\sqrt[space]{t$

[HFAG]

$B \rightarrow \pi l \nu$

large phase space \Rightarrow accurate description of q^2 dependence over a significant region crucial for a precise CKM determination

z-parameterisations (specially BCL) becoming de facto standard in LQCD, driven by their success in the $B \rightarrow \pi$ vector channel

[Okubo PRD 3 (1971) 2807, 4 (1971) 725] [Bourrely, Machet, de Rafael NPB 189 (1981) 157] [Boyd, Grinstein, Lebed PRL 74 (1995) 4603] [Lellouch NPB 479 (1996) 353] [Bourrely, Caprini, Micu EJPC 27 (2003) 439] [Arnesen, Grinstein, Rothstein, Stewart PRL 95 (2005) 071802] [Becher, Hill PLB 633 (2006) 61] [Flynn, Nieves PRD 75 (2007) 013008] [Bourrely, Caprini, Lellouch PRD 79 (2009) 013008]

however, for basically every other process/channel there may be not enough information to control systematics via unitarity constraints ⇒ inspecting systematics still crucial!

FLAG-3 — $B \rightarrow \pi l \nu$ and $B_s \rightarrow K l \nu$

$b \rightarrow c$ semileptonic

 $\frac{\mathrm{d}\Gamma(B_{(s)} \to Pl\nu)}{\mathrm{d}q^2} = \frac{G_{\mathrm{F}}^2 |V_{cb}|^2}{24\pi^3} \frac{(q^2 - m_l^2)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_{B_{(s)}}^2} \left[\left(1 + \frac{m_l^2}{2q^2} \right) m_{B_{(s)}}^2 (E_P^2 - m_P^2) |f_+(q^2)|^2 + \frac{3m_l^2}{8q^2} (m_{B_{(s)}}^2 - m_P^2)^2 |f_0(q^2)|^2 \right]$

$$\langle P(p')|\bar{b}\gamma_{\mu}q|B_{q}(p)\rangle = f_{+}(q^{2})\left(p_{\mu} + p'_{\mu} - \frac{m_{B_{q}}^{2} - m_{P}^{2}}{q^{2}}q_{\mu}\right) + f_{0}(q^{2})\frac{m_{B_{q}}^{2} - m_{P}^{2}}{q^{2}}q_{\mu}, \quad q = p - p'$$

$b \rightarrow c$ semileptonic

$$\frac{\mathrm{d}\Gamma(B \to Dl\nu_l)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} |\eta_{\mathrm{EW}}|^2 |V_{cb}|^2 |\mathcal{G}(w)|^2 + \mathcal{O}\left(\frac{m_l^2}{q^2}\right)$$
$$\frac{\mathrm{d}\Gamma(B \to D^* l\nu_l)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2}{4\pi^3} (m_B - m_{D^*})^2 (w^2 - 1)^{1/2} |\eta_{\mathrm{EW}}|^2 \chi(w) |V_{cb}|^2 |\mathcal{F}(w)|^2 + \mathcal{O}\left(\frac{m_l^2}{q^2}\right)$$

low recoil region accessible to lattice computations \Rightarrow CKM can be determined by computing form factors at w=1

shape information relevant as precision increases + LFU

$b \rightarrow c$ semileptonic

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\ell\nu_{\ell})}$$

only zero recoil for D^* so far (including recent HPQCD update), but ongoing FNAL/MILC work should provide full results at $w \neq 1$ soon

> [HPQCD arXiv:1711.11013] [FNAL/MILC arXiv:1710.09817]

$FLAG-3 - B \rightarrow Dlv$

newer $B_{(s)} \rightarrow D_{(s)}$ computations include results $w > 1 \Rightarrow R(D) = 0.300(8)$

$B_s \rightarrow D_s lv$ new results

newer $B_{(s)} \rightarrow D_{(s)}$ computations include results $w > 1 \Rightarrow R(D_s) = 0.301(6)$

[HPQCD PRD 95 (2017) 114506]

 $R(D^{(*)})$

ongoing work on lattice determination of $R(D^*)$

[FNAL/MILC EPJ Web Conf. 175 (2018) 13003]

baryonic decays

new exclusive determination of $|V_{cb}|/|V_{ub}|$ from LHCb measurement + LQCD computation of form factors

baryonic decays

[Detmold, Lehner, Meitnel PRD 92 (2015) 034503] [cf. Detmold, Lin, Meitnel, Wingate PRD 88 (2013) 014512]

FLAG-3 — 3rd row CKM

FLAG-3 — 3rd row CKM

[Lunghi, Moriond QCD 2017]

[Gambino, Moriond EW 2018]

rare decays: form factors for $B \rightarrow K$

 $\Rightarrow O_7, O_9, O_{10}$ (similar results for $B \rightarrow \pi$ [FNAL/MILC PRL 115(2015)152002])

rare decays: form factors for $B \rightarrow K$

lattice results at similar level of maturity as for SM tree-level decays

 channels with vectors in final state (e.g. K*) much more complicated: treatment of resonances in Euclidean amplitudes quite non-trivial

 matrix elements of charmed penguins in effective Hamiltonian involve similar difficulties as their relatives in non-leptonic K and B decay a notoriously difficult nut to crack. (bounds?)
FLAG-3 — *B* mixing

ballpark \leq 10% accuracy, few computations; still hard work to do to constrain NP strongly

conclusions and outlook

 B-physics on the lattice making remarkable progress, most notably in semileptonic decays

• N.B. predictions for B_c leptonic and semileptonic rates [HPQCD arXiv:1503.05762/1605.05645/1611.01987]

• still way to go to meet the new era precision requirements

- crosscheck HQ approaches as much as possible
- full incorporation of available ensembles to HQ physics
- many systematics to be improved: use of perturbation theory, momentum dependence of FFs, incorporation of QED effects, resonances ...

• smart ways to improve our understanding of rare decays?

decrease the lattice spacing and get direct access to the b region

conclusions and outlook

• much other interesting stuff going on:

- precision of strong coupling, masses consistently below 1%
- permille kaon physics, few % charm physics [G Salerno, D Mohler]
- crack $K \rightarrow \pi \pi$; extend to heavy sector?
- $K \rightarrow \pi \nu \bar{\nu}$ within reach (ongoing, RBC/UKQCD)

• non-flavour (SM parameters, $(g-2)_{\mu}$, PDFs, ...)

[talks by G Colangelo and A Gérardin]

• large programme aimed at keeping experimental pace

extra slides

why we care

Belle II projections

Lattice Quantity	CKM element	WA Expt. Error	Lattice error			
			2013 (Present)	2014	2018	
$F(1) \ (B \to D^* \ell \nu)$	$ V_{cb} $	1.3	1.8	1.5	<1	
$G(1) \ (B \to D\ell\nu)$	$ V_{cb} $	1.3	1.8	1.5	<1	
$G_s(1) \ (B_s \to D_s^* \ell \nu)$	$ V_{cb} $	—	4.6	_	—	
$\zeta(B o \pi \ell u)$	$ V_{ub} $	4.1	8.7	Belle II F	Projection	
$f_B \ (B \to \tau \nu, \mu \nu)$	$ V_{ub} $	9.0	⁴ B) (a) 5	Ex p. Systematic	s limited 1	
$R(D)(B \to D \tau \nu)$	_	13	xclusiv	4 Total Statisti	< 2	
Mixing $\zeta(\Delta m_d/\Delta m_s)$	$ V_{td} / V_{ts} $	0.4	<u>_</u> * 34.0	Systen	natics (expectee)	
	[BEL]	LE2-NOTE-PH-2	0:2	Theory	r (current)	

B2TiP]

1⊨

lattice QCD

first-principles approach = control all systematic uncertainties

- cover all relevant scales: $L^{-1} \ll \mu \ll a^{-1}$
- \bullet control scaling (exploit universality!) \rightarrow renormalisation
- reconstruct Minkowskian amplitudes (nontrivial for multihadron final states)

complement with other first-principles/systematic approaches: dispersion relations, effective theories, ...

Belle II projections

Observables	Belle	Bel	le II	\mathcal{L}_s
	(2014)	5 ab^{-1}	50 ab^{-1}	$[ab^{-1}]$
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	± 0.012	± 0.008	6
α		$\pm 2^{\circ}$	$\pm 1^{\circ}$	
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$	$\pm 1.5^{\circ}$	
$S(B \to \phi K^0)$	$0.90\substack{+0.09\\-0.19}$	± 0.053	± 0.018	> 50
$S(B \to \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	± 0.028	± 0.011	> 50
$S(B \to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	± 0.100	± 0.033	44
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$		< 1
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\%$	$\pm 1.4\%$	< 1
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\%$	$\pm 3.0\%$	2
$ V_{ub} $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\%$	$\pm 2.4\%$	20
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\%$	$\pm 2.2\%$	3
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	96 ± 26	$\pm 10\%$	$\pm 5\%$	46
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	5σ	$>>5\sigma$	> 50
$R(B \to D \tau \nu)$	$\pm 16.5\%$	$\pm 5.6\%$	$\pm 3.4\%$	4
$R(B\to D^*\tau\nu)$	$\pm 9.0\%$	$\pm 3.2\%$	$\pm 2.1\%$	3
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40		$\pm 30\%$	> 50
$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55		$\pm 30\%$	>50
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$	$\pm 13\%$	$\pm 7\%$	$\pm 6\%$	< 1
$A_{CP}(B \to X_s \gamma)$		± 0.01	± 0.005	8
$S(B \to K^0_S \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	± 0.11	± 0.035	> 50
$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	± 0.23	± 0.07	> 50
$C_7/C_9 \ (B \to X_s \ell \ell)$	${\sim}20\%$	10%	5%	
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	± 0.3		
$\mathcal{B}(B_s \to \tau^+ \tau^-) \ [10^{-3}]$		< 2		

Observables	Belle	Bel	le II	\mathcal{L}_s
	(2014)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$	$[ab^{-1}]$
$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$	$\pm 2.9\%$	$\pm (0.9\%$ -1.3%)	> 50
$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \times 10^{-3} (1 \pm 0.037 \pm 0.054)$	$\pm (3.5\%$ -4.3%)	$\pm (2.3\%$ -3.6%)	3-5
$y_{CP} \ [10^{-2}]$	$1.11 \pm 0.22 \pm 0.11$	$\pm (0.11 \text{-} 0.13)$	$\pm (0.05 - 0.08)$	5-8
$A_{\Gamma} [10^{-2}]$	$-0.03 \pm 0.20 \pm 0.08$	± 0.10	$\pm (0.03 \text{-} 0.05)$	7 - 9
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32 \pm 0.21 \pm 0.09$	± 0.11	± 0.06	15
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	± 0.17	± 0.06	> 50
$A_{CP}^{\phi\gamma} \ [10^{-2}]$	\pm 5.6	± 2.5	± 0.8	> 50
$x^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$	± 0.14	± 0.11	3
$y^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.30 \pm 0.15 \pm {0.05 \atop 0.08}$	± 0.08	± 0.05	15
$ q/p ^{K_S \pi^+ \pi^-}$	$0.90 \pm {0.16 \atop 0.15} \pm {0.08 \atop 0.06}$	± 0.10	± 0.07	5-6
$\phi^{K_S \pi^+ \pi^-}$ [°]	$-6 \pm 11 \pm \frac{4}{5}$	± 6	± 4	10
$A_{CP}^{\pi^0\pi^0}$ [10 ⁻²]	$-0.03 \pm 0.64 \pm 0.10$	± 0.29	± 0.09	> 50
$A_{CP}^{K_S^0 \pi^0} \ [10^{-2}]$	$-0.10 \pm 0.16 \pm 0.09$	± 0.08	± 0.03	> 50
$Br(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	$\pm 30\%$	$\pm 25\%$	2
	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7
	$\tau \to e\gamma \ [10^{-9}]$	< 120	< 39	< 12
	$ au o \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0	< 0.3

[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]

Belle II projections

Lattice Quantity	CKM element	WA Expt. Error	Lattice error			
			2013 (Present)	2014	2018	
$F(1) \ (B \to D^* \ell \nu)$	$ V_{cb} $	1.3	1.8	1.5	<1	
$G(1) \ (B \to D\ell\nu)$	$ V_{cb} $	1.3	1.8	1.5	<1	
$G_s(1) \ (B_s \to D_s^* \ell \nu)$	$ V_{cb} $	—	4.6	_	—	
$\zeta(B o \pi \ell u)$	$ V_{ub} $	4.1	8.7	Belle II F	Projection	
$f_B \ (B \to \tau \nu, \mu \nu)$	$ V_{ub} $	9.0	⁴ B) (a) 5	Ex p. Systematic	s limited 1	
$R(D)(B \to D \tau \nu)$	_	13	xclusiv	4 Total Statisti	< 2	
Mixing $\zeta(\Delta m_d/\Delta m_s)$	$ V_{td} / V_{ts} $	0.4	<u>_</u> * 34.0	Systen	natics (expectee)	
	[BEL]	LE2-NOTE-PH-2	0:2	Theory	r (current)	

B2TiP]

1⊨

LHCb Run 2 + upgrade projections

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	0.009	~ 0.003
	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (\text{rad})$	0.068	0.035	0.012	~ 0.01
	$A_{\rm sl}(B_s^0)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018	0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_{\text{S}}) \text{ (rad)}$	0.30	0.20	0.036	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$	0.20	0.13	0.025	< 0.01
currents	$ au^{\mathrm{eff}}(B^0_s o \phi \gamma) / au_{B^0_s}$	5%	3.2%	0.6%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.09	0.05	0.017	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	$\mathbf{2.4\%}$	$\sim 10\%$
Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	220%	110%	40%	$\sim 5\%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	0.9 °	negligible
triangle	$\gamma(B^0_s\to D^\mp_s K^\pm)$	17°	11°	2.0°	negligible
angles	$\beta(B^0 \to J/\psi K_{\rm S}^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.4	_
CP violation	$\Delta A_{CP} \ (10^{-3})$	0.8	0.5	0.1	_

[LHCb-PUB-2014-040]

n.b.: LHCb making key contributions (B_s leptonic, Λ_b , ...)

QCD

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2g^2} \operatorname{tr} \left[F_{\mu\nu} F^{\mu\nu} \right] + \sum_{q=1}^{N_{\text{f}}} \bar{\psi}_q \left[i D - m_q \right] \psi_q + \frac{i\theta}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} \operatorname{tr} \left[F_{\mu\nu} F_{\rho\sigma} \right]$$

- $1 + N_f + 1$ free parameters:
 - $\alpha_{s}, m_{q} \longrightarrow fixed by hadron masses/decay constants$ $<math>\theta = 0 \longrightarrow fixed by neutron EDM$

once the Lagrangian parameters are fixed, everything else is a prediction

calculations in the hadronic regime are challenging: low-energy QCD is strongly non-perturbative

towards a fully relativistic b

crucial issue: strong lattice space dependence of autocorrelations

approaches to B physics

what one would like to do

approaches to B physics

effective theory used differently, different pros/cons balance: crosschecks crucial

Flavour Lattice Averaging Group: your one-stop repository of lattice results, world averages / estimates

```
advisory board: S. Aoki, C. Bernard, H. Leutwyler, C. Sachrajda
editorial board: G. Colangelo, S. Hashimoto, A. Jüttner, S. Sharpe,
A. Vladikas, U. Wenger
working groups:
quark masses
                                            T. Blum, L. Lellouch, V. Lubicz
V_{ud}, V_{us}
                                            P. Boyle, T. Kaneko, S. Simula
                                              S. Dürr, H. Fukaya, U. Heller
LECs
kaon mixing
                                   P. Dimopoulos, B. Mawhinney, H. Wittig
                                          R. Horsley, T. Onogi, R. Sommer
\alpha_{s}
                                           Y. Aoki, M. Della Morte, D. Lin
heavy leptonic + mixing
heavy semileptonic
                                    D. Bečirević, S. Gottlieb, E. Lunghi, CP
```

3rd edition: results up to 30/11/2015 + updates from 2016

[Aoki et al., EPJC (2017) 77:112]

Flavour Lattice Averaging Group: your one-stop repository of lattice results, world averages / estimates

```
advisory board: S Aoki, M Golterman, R Van De Water, A Vladikas
editorial board: G Colangelo, S Hashimoto, A Jüttner, S Sharpe, U Wenger
working groups:
                                                     T Blum, A Portelli, A Ramos
quark masses
                                                    T Kaneko, J Simone, S Simula
V_{us}
LECs
                                                       S Dürr, H Fukaya, U Heller
                                          P Dimopoulos, G Herdoíza, B Mawhinney
kaon mixing
                                                  R. Horsley, T. Onogi, R. Sommer
\alpha_{s}
                                                   Y. Aoki, M. Della Morte, D. Lin
heavy leptonic + mixing
                                            D. Bečirević, S. Gottlieb, E. Lunghi, CP
heavy semileptonic
                                         S Collins, R Gupta, A Nicholson, H Wittig
NME
```

lineup for 4th edition (due early 2019)

what FLAG provides for each quantity:

- complete list of references
- summary of relevant formulae and notation
- quick-look summary tables
- quality assessment of computation setup: colour-coded tables
- averages/estimates (if sensible)
- a "lattice dictionary" for non-experts
- thorough appendix tables with details of all computations for experts
- between-editions updates at http://itpwiki.unibe.ch/flag

cite the original works!

tables:

 $\star/\sqrt{}$ allows for satisfactory control of systematics

- allows for reasonable (but improvable) estimate of systematics
- unlikely to allow for reasonable control of systematics

Collaboration	Refs.	N_f	Publication status	Continuum extrapolation	Chiral extrapolation	Finite volume	Renormalization/ matching	Heavy-quark treatment	f_{B_s}/f_{B^+}	f_{B_s}/f_{B^0}	f_{B_s}/f_B
ETM 13E	[456]	2 + 1 + 1	С	*	0	0	0	\checkmark	_	_	1.201(25)
HPQCD 13	[52]	2 + 1 + 1	А	*	*	*	0	\checkmark	1.217(8)	1.194(7)	1.205(7)
RBC/UKQCD 14	[53]	2 + 1	А	0	0	0	0	\checkmark	1.223(71)	1.197(50)	_
RBC/UKQCD 14A	[54]	2 + 1	А	0	0	0	0	\checkmark	_	_	1.193(48)
RBC/UKQCD 13A	[457]	2 + 1	С	0	0	0	0	\checkmark	_	_	1.20(2) _{stat} ^a
HPQCD 12	[55]	2 + 1	А	0	0	0	0	\checkmark	_	_	1.188(18)
FNAL/MILC 11	[48]	2 + 1	А	0	0	*	0	\checkmark	1.229(26)	_	_
RBC/UKQCD 10C	[464]	2 + 1	А				0	\checkmark	_	_	1.15(12)
HPQCD 09	[59]	2 + 1	А	0	0	0	0	\checkmark	_	_	1.226(26)
ALPHA 14	[57]	2	А	*	*	*	*	\checkmark	_	_	1.203(65)
ALPHA 13	[458]	2	С	*	*	*	*	\checkmark	_	_	1.195(61)(20)
ETM 13B, 13C ^b	[20,58]	2	А	*	0	*	0	\checkmark	_	_	1.206(24)
ALPHA 12A	[459]	2	С	*	*	*	*	\checkmark	_	_	1.13(6)
ETM 12B	[460]	2	С	*	0	*	0	\checkmark	_	_	1.19(5)
ETM 11A	[182]	2	А	0	0	*	0	\checkmark	_	_	1.19(5)

^a Statistical errors only

^b Update of ETM 11A and 12B

plots:

- result included in average or estimate
- result OK but not included (e.g. superseded, unpublished, ...)
- all other results

$$\frac{\mathcal{B}(B_{(c)} \to l\nu_l)}{\tau_{B_{(c)}}} = \frac{G_{\rm F}^2}{8\pi} m_l^2 m_{B_{(c)}} \left(1 - \frac{m_l^2}{m_{B_{(c)}^2}}\right)^2 |V_{qb}|^2 f_{B_{(c)}}^2 \ [+ \text{h.o. OPE}]$$

 $\langle 0|\bar{b}\gamma^{\mu}\gamma^{5}q|B_{q}(p)\rangle = f_{B_{q}}p^{\mu}$

(+ e.m. corrections!)

 $m_{\mu^+\mu^-}$ [MeV/*c*²]

[LHCb PRL 118 (2017) 191801]

$$\frac{\mathcal{B}(B_c \to l\nu_l)}{\frac{\tau_{B_c}}{\Delta}} = \frac{G_{\rm F}^2}{8\pi} m_l^2 m_{B_c} \left(1 - \frac{m_l^2}{m_{B_c^2}}\right)^2 |V_{qb}|^2 f_{B_c}^2 \quad [+ \text{ h.o. OPE}]$$
(negligible)

$$\Delta = 7.3\% \qquad \qquad \Delta \sim \mathcal{O}\left(\frac{m_{B_c}^2}{M_W^2}\right) \sim 0.6\%$$

(+ e.m. corrections!)

[from C Park's talk at FPCP 2015]

Belle II projections

Observables	Belle	\mathcal{L}_s		
	(2014)	$5 {\rm ~ab^{-1}}$	$50~{\rm ab^{-1}}$	$[ab^{-1}]$
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	± 0.012	± 0.008	6
α		$\pm 2^{\circ}$	$\pm 1^{\circ}$	
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$	$\pm 1.5^{\circ}$	
$S(B \to \phi K^0)$	$0.90\substack{+0.09\\-0.19}$	± 0.053	± 0.018	> 50
$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	± 0.028	± 0.011	> 50
$S(B \to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	± 0.100	± 0.033	44
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$		< 1
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\%$	$\pm 1.4\%$	< 1
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\%$	$\pm 3.0\%$	2
$ V_{ub} $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\%$	$\pm 2.4\%$	20
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\%$	$\pm 2.2\%$	3
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	96 ± 26	$\pm 10\%$	$\pm 5\%$	46
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	5σ	$>>5\sigma$	>50
$R(B \to D \tau \nu)$	$\pm 16.5\%$	$\pm 5.6\%$	$\pm 3.4\%$	4
$R(B\to D^*\tau\nu)$	$\pm 9.0\%$	$\pm 3.2\%$	$\pm 2.1\%$	3
$\mathcal{B}(B\to K^{*+}\nu\overline{\nu})~[10^{-6}]$	< 40		$\pm 30\%$	> 50
$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55		$\pm 30\%$	> 50
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$	$\pm 13\%$	$\pm 7\%$	$\pm 6\%$	< 1
$A_{CP}(B \to X_s \gamma)$		± 0.01	± 0.005	8
$S(B\to K^0_S\pi^0\gamma)$	$-0.10 \pm 0.31 \pm 0.07$	± 0.11	± 0.035	> 50
$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	± 0.23	± 0.07	> 50
$C_7/C_9 \ (B \to X_s \ell \ell)$	$\sim 20\%$	10%	5%	
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	± 0.3		
$\mathcal{B}(B_s \to \tau^+ \tau^-) \ [10^{-3}]$		< 2		

Observables	Belle	Bel	le II	\mathcal{L}_{s}
	(2014)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$	$[ab^{-1}]$
$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$	$\pm 2.9\%$	$\pm (0.9\%$ -1.3%)	> 50
$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \times 10^{-3} (1 \pm 0.037 \pm 0.054)$	$\pm (3.5\%$ -4.3%)	$\pm (2.3\%$ -3.6%)	3-5
$y_{CP} \ [10^{-2}]$	$1.11 \pm 0.22 \pm 0.11$	$\pm (0.11 \text{-} 0.13)$	$\pm (0.05 - 0.08)$	5-8
$A_{\Gamma} \ [10^{-2}]$	$-0.03 \pm 0.20 \pm 0.08$	± 0.10	$\pm (0.03-0.05)$	7 - 9
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32 \pm 0.21 \pm 0.09$	± 0.11	± 0.06	15
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	± 0.17	± 0.06	> 50
$A_{CP}^{\phi\gamma} \ [10^{-2}]$	\pm 5.6	± 2.5	± 0.8	> 50
$x^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.56 \pm 0.19 \pm rac{0.07}{0.13}$	± 0.14	± 0.11	3
$y^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.30 \pm 0.15 \pm {0.05 \atop 0.08}$	± 0.08	± 0.05	15
$ q/p ^{K_S\pi^+\pi^-}$	$0.90 \pm {0.16 \atop 0.15} \pm {0.08 \atop 0.06}$	± 0.10	± 0.07	5-6
$\phi^{K_S \pi^+ \pi^-}$ [°]	$-6 \pm 11 \pm rac{4}{5}$	± 6	± 4	10
$A_{CP}^{\pi^0\pi^0}$ [10 ⁻²]	$-0.03 \pm 0.64 \pm 0.10$	± 0.29	± 0.09	> 50
$A_{CP}^{K_S^0 \pi^0} \ [10^{-2}]$	$-0.10 \pm 0.16 \pm 0.09$	± 0.08	± 0.03	> 50
$Br(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	$\pm 30\%$	$\pm 25\%$	2
	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7
	$\tau \to e\gamma \ [10^{-9}]$	< 120	< 39	< 12
	$\tau \to \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0	< 0.3

[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]

FLAG-3 — B decay constants

Collaboration	Refs.	N_f	Publication status	Continuum extrapolation	Chiral extrapolation	Finite volume	Renormalization/ matching	Heavy-quark treatment
ETM 13E	[456]	2 + 1 + 1	С	*	0	0	0	\checkmark
HPQCD 13	[52]	2 + 1 + 1	А	*	*	*	0	\checkmark
RBC/UKQCD 14	[53]	2 + 1	А	0	0	0	0	\checkmark
RBC/UKQCD 14A	[54]	2 + 1	А	0	0	0	0	\checkmark
RBC/UKQCD 13A	[457]	2 + 1	С	0	0	0	0	\checkmark
HPQCD 12	[55]	2 + 1	А	0	0	0	0	\checkmark
FNAL/MILC 11	[48]	2 + 1	А	0	0	*	0	\checkmark
RBC/UKQCD 10C	[464]	2 + 1	А				0	\checkmark
HPQCD 09	[59]	2 + 1	А	0	0	0	0	\checkmark
ALPHA 14	[57]	2	А	*	*	*	*	\checkmark
ALPHA 13	[458]	2	С	*	*	*	*	\checkmark
ETM 13B, 13C ^b	[20,58]	2	А	*	0	*	0	\checkmark
ALPHA 12A	[459]	2	С	*	*	*	*	\checkmark
ETM 12B	[460]	2	С	*	0	*	0	\checkmark
ETM 11A	[182]	2	А	0	0	*	0	\checkmark

^a Statistical errors only

^b Update of ETM 11A and 12B

 $(+ HPQCD result for f_{B_c})$ [PRD 86 (2012) 074503]

FLAG-3 — B decay constants

$N_{ m f}$	$f_B \; [{ m MeV}]$	f_{B_s} [MeV]	f_{B_s}/f_B
2	188(7)	227(7)	1.206(23)
2+1	192.0(4.3)	228.4(3.7)	1.201(16)
2+1+1	186(4)	224(5)	1.205(7)

Belle II projections

Observables	Belle	Bel	le II	\mathcal{L}_s	
	(2014)	$5 {\rm ~ab^{-1}}$	50 ab^{-1}	$[ab^{-1}]$	
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	± 0.012	± 0.008	6	
α		$\pm 2^{\circ}$	$\pm 1^{\circ}$		
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$	$\pm 1.5^{\circ}$		
$S(B \to \phi K^0)$	$0.90\substack{+0.09 \\ -0.19}$	± 0.053	± 0.018	>50	
$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	± 0.028	± 0.011	>50	
$S(B \to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	± 0.100	± 0.033	44	
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$		< 1	
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\%$	$\pm 1.4\%$	< 1	_
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\%$	$\pm 3.0\%$	2	
$ V_{ub} $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\%$	$\pm 2.4\%$	20	
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\%$	$\pm 2.2\%$	3	
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	96 ± 26	$\pm 10\%$	$\pm 5\%$	46	•
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	5σ	$>>5\sigma$	>50	
$R(B\to D\tau\nu)$	$\pm 16.5\%$	$\pm 5.6\%$	$\pm 3.4\%$	4	
$R(B\to D^*\tau\nu)$	$\pm 9.0\%$	$\pm 3.2\%$	$\pm 2.1\%$	3	
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40		$\pm 30\%$	>50	
$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55		$\pm 30\%$	>50	
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$	$\pm 13\%$	$\pm 7\%$	$\pm 6\%$	< 1	
$A_{CP}(B \to X_s \gamma)$		± 0.01	± 0.005	8	
$S(B\to K^0_S\pi^0\gamma)$	$-0.10 \pm 0.31 \pm 0.07$	± 0.11	± 0.035	> 50	
$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	± 0.23	± 0.07	> 50	
$C_7/C_9 \ (B \to X_s \ell \ell)$	$\sim 20\%$	10%	5%		
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	± 0.3			
$\mathcal{B}(B_s \to \tau^+ \tau^-) \ [10^{-3}]$		< 2			

Observables	Belle	Bel	le II	\mathcal{L}_s
	(2014)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$	$[ab^{-1}]$
$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$	$\pm 2.9\%$	$\pm (0.9\%$ -1.3%)	> 50
$\mathcal{B}(D_s \to \tau \nu)$	$5.70\times 10^{-3} (1\pm 0.037\pm 0.054)$	$\pm (3.5\%$ -4.3%)	$\pm (2.3\%$ -3.6%)	3-5
$y_{CP} \ [10^{-2}]$	$1.11 \pm 0.22 \pm 0.11$	$\pm (0.11 \text{-} 0.13)$	$\pm (0.05 - 0.08)$	5-8
$A_{\Gamma} [10^{-2}]$	$-0.03 \pm 0.20 \pm 0.08$	± 0.10	$\pm (0.03 \text{-} 0.05)$	7 - 9
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32 \pm 0.21 \pm 0.09$	± 0.11	± 0.06	15
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	± 0.17	± 0.06	> 50
$A_{CP}^{\phi\gamma} \ [10^{-2}]$	\pm 5.6	± 2.5	± 0.8	> 50
$x^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$	± 0.14	± 0.11	3
$y^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.30 \pm 0.15 \pm {0.05 \atop 0.08}$	± 0.08	± 0.05	15
$ q/p ^{K_S\pi^+\pi^-}$	$0.90\pm {}^{0.16}_{0.15}\pm {}^{0.08}_{0.06}$	± 0.10	± 0.07	5-6
$\phi^{K_S \pi^+ \pi^-} \ [^\circ]$	$-6\pm11\pmrac{4}{5}$	± 6	± 4	10
$A_{CP}^{\pi^0\pi^0}$ [10 ⁻²]	$-0.03 \pm 0.64 \pm 0.10$	± 0.29	± 0.09	> 50
$A_{CP}^{K_S^0 \pi^0} \ [10^{-2}]$	$-0.10 \pm 0.16 \pm 0.09$	± 0.08	± 0.03	> 50
$Br(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	$\pm 30\%$	$\pm 25\%$	2
	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7
	$\tau \to e \gamma \ [10^{-9}]$	< 120	< 39	< 12
	$\tau \to \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0	< 0.3

[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]

FLAG-3 — $B \rightarrow \pi l \nu$

Collaboration	Refs.	N_f	Publication status	Continuum extrapolation	Chiral extrapolation	Finite volume	Renormalization	Heavy-quark treatment
FNAL/MILC 15	[504]	2 + 1	А	*	0	*	0	\checkmark
RBC/UKQCD 15	[505]	2 + 1	А	0	0	0	0	\checkmark
HPQCD 06	[503]	2 + 1	А	0	0	0	0	\checkmark

$FLAG-3 - B_s \rightarrow KIv$

Collaboration	Refs.	N_f	Publication status	Continuum extrapolation	Chiral extrapolation	Finite volume	Renormalization	Heavy-quark treatment
RBC/UKQCD 15	[505]	2 + 1	А	0	0	0	0	\checkmark
HPQCD 14	[511]	2 + 1	А	0	0	0	0	\checkmark

$b \rightarrow c$ semileptonic

$$\frac{\mathrm{d}\Gamma(B_{(s)} \to Pl\nu)}{\mathrm{d}q^2} = \frac{G_{\mathrm{F}}^2 |V_{cb}|^2}{24\pi^3} \frac{(q^2 - m_l^2)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_{B_{(s)}}^2} \left[\left(1 + \frac{m_l^2}{2q^2} \right) m_{B_{(s)}}^2 (E_P^2 - m_P^2) |f_+(q^2)|^2 + \frac{3m_l^2}{8q^2} (m_{B_{(s)}}^2 - m_P^2)^2 |f_0(q^2)|^2 + \frac{3m_l^2}{8q^2} (m_{B_{(s$$

uncertainties from kinematical factors / neglected h.o. OPE at the permille level

b→*c* semileptonic

$$\frac{\mathrm{d}\Gamma(B \to Dl\nu_l)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} |\eta_{\mathrm{EW}}|^2 |V_{cb}|^2 |\mathcal{G}(w)|^2 + \mathcal{O}\left(\frac{m_l^2}{q^2}\right)$$
$$\frac{\mathrm{d}\Gamma(B \to D^* l\nu_l)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2}{4\pi^3} (m_B - m_{D^*})^2 (w^2 - 1)^{1/2} |\eta_{\mathrm{EW}}|^2 \chi(w) |V_{cb}|^2 |\mathcal{F}(w)|^2 + \mathcal{O}\left(\frac{m_l^2}{q^2}\right)$$

$$w = \frac{p_B \cdot p_{D^{(*)}}}{m_B m_{D^{(*)}}} \qquad \qquad \mathcal{G}(w) = \frac{4 \frac{m_D}{m_B}}{1 + \frac{m_D}{m_B}} f_+(q^2) \quad \text{etc}$$

$b \rightarrow c$ semileptonic

Belle II projections

Observables	Belle	Bel	\mathcal{L}_s	
	(2014)	5 ab^{-1}	$50~{\rm ab}^{-1}$	$[ab^{-1}]$
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	± 0.012	± 0.008	6
α		$\pm 2^{\circ}$	$\pm 1^{\circ}$	
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$	$\pm 1.5^{\circ}$	
$S(B \to \phi K^0)$	$0.90\substack{+0.09\\-0.19}$	± 0.053	± 0.018	>50
$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	± 0.028	± 0.011	>50
$S(B \to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	± 0.100	± 0.033	44
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$		< 1
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\%$	$\pm 1.4\%$	< 1
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\%$	$\pm 3.0\%$	2
$ V_{ub} $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\%$	$\pm 2.4\%$	20
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\%$	$\pm 2.2\%$	3
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	96 ± 26	$\pm 10\%$	$\pm 5\%$	46
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	5σ	$>>5\sigma$	>50
$R(B \to D \tau \nu)$	$\pm 16.5\%$	$\pm 5.6\%$	$\pm 3.4\%$	4
$R(B\to D^*\tau\nu)$	$\pm 9.0\%$	$\pm 3.2\%$	$\pm 2.1\%$	3
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40		$\pm 30\%$	>50
$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55		$\pm 30\%$	>50
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$	$\pm 13\%$	$\pm 7\%$	$\pm 6\%$	< 1
$A_{CP}(B \to X_s \gamma)$		± 0.01	± 0.005	8
$S(B\to K^0_S\pi^0\gamma)$	$-0.10 \pm 0.31 \pm 0.07$	± 0.11	± 0.035	> 50
$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	± 0.23	± 0.07	> 50
$C_7/C_9 \ (B \to X_s \ell \ell)$	$\sim \! 20\%$	10%	5%	
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	± 0.3		
$\mathcal{B}(B_s \to \tau^+ \tau^-) \ [10^{-3}]$		< 2		

Observables	Belle	Bel	\mathcal{L}_s	
	(2014)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$	$[ab^{-1}]$
$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$	$\pm 2.9\%$	$\pm (0.9\%$ -1.3%)	> 50
$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \times 10^{-3} (1 \pm 0.037 \pm 0.054)$	$\pm (3.5\%$ -4.3%)	$\pm (2.3\%$ -3.6%)	3-5
$y_{CP} \ [10^{-2}]$	$1.11 \pm 0.22 \pm 0.11$	$\pm (0.11 \text{-} 0.13)$	$\pm (0.05 - 0.08)$	5-8
$A_{\Gamma} \ [10^{-2}]$	$-0.03 \pm 0.20 \pm 0.08$	± 0.10	$\pm (0.03 \text{-} 0.05)$	7 - 9
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32 \pm 0.21 \pm 0.09$	± 0.11	± 0.06	15
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	± 0.17	± 0.06	> 50
$A_{CP}^{\phi\gamma} \ [10^{-2}]$	\pm 5.6	± 2.5	± 0.8	> 50
$x^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$	± 0.14	± 0.11	3
$y^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.30 \pm 0.15 \pm {0.05 \atop 0.08}$	± 0.08	± 0.05	15
$ q/p ^{K_S\pi^+\pi^-}$	$0.90\pm {}^{0.16}_{0.15}\pm {}^{0.08}_{0.06}$	± 0.10	± 0.07	5-6
$\phi^{K_S \pi^+ \pi^-} \ [^\circ]$	$-6 \pm 11 \pm \frac{4}{5}$	± 6	± 4	10
$A_{CP}^{\pi^0\pi^0}$ [10 ⁻²]	$-0.03 \pm 0.64 \pm 0.10$	± 0.29	± 0.09	> 50
$A_{CP}^{K_S^0 \pi^0} \ [10^{-2}]$	$-0.10 \pm 0.16 \pm 0.09$	± 0.08	± 0.03	> 50
$Br(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	$\pm 30\%$	$\pm 25\%$	2
	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7
	$\tau \to e\gamma \ [10^{-9}]$	< 120	< 39	< 12
	$ au o \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0	< 0.3

[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]

FLAG-3 — $b \rightarrow c$ semileptonic

Collaboration	Refs.	N_f 2+1	Publication status A	Continuum extrapolation	Chiral extrapolation	Finite volume	Renormalization O	Heavy-quark treatment	w = 1 form factor/ratio	
FNAL/MILC 14									$\mathcal{F}^{B \to D^*}(1)$	0.906(4)(12)
HPQCD 15	[541]	2 + 1	А	0	0	0	0	\checkmark	$\mathcal{G}^{B \to D}(1)$	1.035(40)
FNAL/MILC 15C	[540]	2 + 1	А	*	0	*	0	\checkmark	$\mathcal{G}^{B \to D}(1)$	1.054(4)(8)
HPQCD 15	[541]	2 + 1	А	0	0	0	0	\checkmark	R(D)	0.300(8)
FNAL/MILC 15C	[540]	2 + 1	А	*	0	*	0	\checkmark	R(D)	0.299(11)
Atoui 13	[537]	2	А	*	0	*	_	\checkmark	$\mathcal{G}^{B \to D}(1)$	1.033(95)
Atoui 13	[537]	2	А	*	0	*	_	\checkmark	$\mathcal{G}^{B_s \to D_s}(1)$	1.052(46)

Table 39 Lattice results for the $B \to D^* \ell \nu$, $B \to D \ell \nu$, and $B_s \to D_s \ell \nu$ semileptonic form factors and R(D)

newer $B \rightarrow D$ computations include results w > 1

[FLAG-3, Aoki et al., EPJC (2017) 77:112]

FLAG-3 — 3rd row CKM

[FLAG-3, Aoki et al., EPJC (2017) 77:112]
q² dependence of form factors

[from H Ma's talk on behalf of BESIII at CHARM 2015]

a benchmark case: $f_+(B \to \pi l \nu)$

various parametrisations based on pole dominance: Bećirević-Kaidalov, Ball-Zwicky, Hill, ... difficult to systematically improve precision

[Bečirević, Kaidalov PLB 478 (2000) 417] [Ball, Zwicky PRD 71 (2005) 014015] [Hill PRD 73 (2006) 014012]

z-parametrisations proposed to solve this issue (almost) rigourously by exploiting unitarity and crossing symmetry

[Okubo PRD 3 (1971) 2807, 4 (1971) 725] [Bourrely, Machet, de Rafael NPB 189 (1981) 157] [Boyd, Grinstein, Lebed PRL 74 (1995) 4603] [Lellouch NPB 479 (1996) 353] [Bourrely, Caprini, Micu EJPC 27 (2003) 439] [Arnesen, Grinstein, Rothstein, Stewart PRL 95 (2005) 071802] [Becher, Hill PLB 633 (2006) 61] [Flynn, Nieves PRD 75 (2007) 013008] [Bourrely, Caprini, Lellouch PRD 79 (2009) 013008] a benchmark case: $f_+(B \to \pi l \nu)$

$$z = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}} \implies f_{+}(q^{2}) = \frac{1}{B(q^{2})\phi(q^{2}, t_{0})} \sum_{n \ge 0} a_{n} z(q^{2}, t_{0})^{n}$$
$$\implies t_{+} = (m_{B} + m_{\pi})^{2}, \qquad t_{0} < t_{+} \qquad \text{unitarity bound:} \sum_{m,n} B_{mn}^{(\phi)} a_{m} a_{n} \le 1$$

a benchmark case: $f_+(B \to \pi l \nu)$

$$f_{+}(q^{2}) = \frac{1}{B(q^{2})\phi(q^{2}, t_{0})} \sum_{n \ge 0} a_{n} z(q^{2}, t_{0})^{n} \qquad B(q^{2}) = z(q^{2}, m_{B^{*}}^{2})$$

BGL: complicated outer function $\phi \longrightarrow \sum_{n \ge 0} |a_n|^2 \lesssim 1$ [Boyd, Grinstein, Lebed PRL 74 (1995) 4603]

BCL:
$$f_+(q^2) = \frac{1}{1 - q^2/m_{B^*}^2} \sum_{n \ge 0} a_n z^n \longrightarrow \sum_{m,n \ge 0} B_{mn} a_m a_n \lesssim 1$$

(recommended by FLAG)

[Bourrely, Caprini, Lellouch PRD 79 (2009) 013008]

crucial for optimal use:

- all sub-threshold poles included in Blaschke factor
- fixed kinematics (coefficients implicitly depend on quark masses)

does the unitarity bound apply?

using a z-parametrisation as part of a global fit including a, m_q, ...
(modified z-expansion) tricky

- poles can cross threshold as quark masses change
- complicated entanglement of (m_q, a) dependence (complete form factor vs. *z*-parametrisation coefficient)
- pole structure not always well-known (scalar channels, D decay), or complicated (Λ_b decay)
- missing sub-threshold poles may imply convergence breakdown (proton charge radius analysis by Hill, Paz et al, D semileptonic decay data by Bećirević et al)

[Hill, Paz PRD 82 (2010) 113005] [Bhattacharya, Hill, Paz PRD 84 (2011) 073006] [Epstein, Paz, Roy PRD 90 (2014) 074027] [Bećirević et al arXiv:1407.1019]

before 2017: very few computations, no q^2 dependence

[ETMC arXiv:1710.07121]

[ETMC arXiv:1706.03657]

[JLQCD arXiv:1711.11235]

[HPQCD arXiv:1710.07334; ongoing]

2. PDFs and Quasi-PDFs

[slides from L Del Debbio's review, Lattice 2017]

$$\mathcal{M}_{i}(\zeta, P) = \langle P | \bar{\psi}(\zeta) \Gamma_{i} \operatorname{P} \exp\left(-ig \int_{0}^{\zeta} d\eta \, A(\eta)\right) \psi(0) | P \rangle$$

light-cone PDF – $\zeta = (0, y^-, \vec{0}_{\perp})$:

$$f(x,\mu) = \int \frac{dy^-}{4\pi} e^{-i(xP^+)y^-} \mathcal{M}^+(y^-,P^+)$$

quasi-PDF, time-independent quantity – $\zeta = (0, 0, 0, z)$:

$$q(x,\mu,M_N,P_z) = \int \frac{dz}{4\pi} e^{-i(xP_z)z} \mathcal{M}^z(z,P_z) \xrightarrow{P_z \to \infty} f(x,\mu)$$

L Del Debbio

From quasi-PDFs to PDFs

[slides from L Del Debbio's review, Lattice 2017]

Extracting PDFs from lattice simulations:

- renormalization of the lattice operator
 - ◇ RI/MOM prescription
 - $\diamond~$ matching to $\overline{\rm MS}$
 - ◊ trace operators and power divergencies
- Euclidean to Minkowski space
- factorization theorem for the renormalized quasi-PDF
- gradient flow