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• energy frontier has revealed the/a BEH + barren (?) land 
- exquisite control of SM predictions needed to dig up possible new Physics 
- hadronic sector: αs, quark masses, … 

• intensity frontier  
- land of opportunity (LHCb, Belle II, (g-2) programme, nEDM, …) 
- strong interaction effects key to attain necessary precision 

• this talk: focus on hadronic flavour physics, especially B decay

why we care

[ATLAS 2017]



• energy frontier has revealed the/a BEH + barren (?) land 
- exquisite control of SM predictions needed to dig up possible new Physics 
- hadronic sector: αs, quark masses, … 

• intensity frontier  
- land of opportunity (LHCb, Belle II, (g-2) programme, nEDM, …) 
- strong interaction effects key to attain necessary precision 

• this talk: focus on hadronic flavour physics, especially B decay

why we care

LEPTON FLAVOUR UNIVERSALITY VIOLATION?

R(D)
0.2 0.3 0.4 0.5 0.6

R
(D

*)

0.2

0.25

0.3

0.35

0.4

0.45

0.5 BaBar, PRL109,101802(2012)
Belle, PRD92,072014(2015)
LHCb, PRL115,111803(2015)
Belle, PRD94,072007(2016)
Belle, PRL118,211801(2017)
LHCb, FPCP2017
Average

SM Predictions

 = 1.0 contours2χ∆

R(D)=0.300(8) HPQCD (2015)
R(D)=0.299(11) FNAL/MILC (2015)
R(D*)=0.252(3) S. Fajfer et al. (2012)

HFLAV

FPCP 2017

) = 71.6%2χP(

σ4

σ2

HFLAV
FPCP 2017

R(D(⇤)) =
B(B ! D(⇤)⌧⌫)

B(B ! D(⇤)µ⌫)



why we care
• energy frontier has revealed the/a BEH + barren (?) land 

- exquisite control of SM predictions needed to dig up possible new Physics 
- hadronic sector: αs, quark masses, … 

• intensity frontier  
- land of opportunity (LHCb, Belle II, (g-2) programme, nEDM, …) 
- strong interaction effects key to attain necessary precision 

• this talk: focus on hadronic flavour physics, especially B decay  
- leptonic 
- tree-level semileptonic + R(D) + CKM 
- rare semileptonic, mixing
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lattice QCD

first-principles approach = control all systematic uncertainties

• spacetime = Euclidean lattice 

• allows to define path integral rigorously 
and compute it via Monte Carlo methods 

• QCD recovered by removing cutoffs at 
physical kinematics
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Lattice sizes, quark masses, . . .

Systematic limitations

Lattice-spacing and finite-volume
e�ects

The light-quark mass m is larger
than the physical one

a
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Available range of a, L,m must be such that the results can be
extrapolated to a� 0, L�⇥ and m� 0

Niels Bohr Institute, 16.–18. August 2006 Lattice sizes, quark masses, ... 6/31
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Fig. 6.1 Quark masses.

• It would allow to study QCD in di�erent conditions, such as high density or
temperature, as took place in the early universe or in very dense systems such as
neutron stars

• QCD is in some sense a model field theory for many extensions of the SM, as
well as for the lattice approach. In QCD we know where the UV fixed point lies
so we know where the continuum limit is and how to approach it. The lattice
method might be necessary to study other field theories, such as those in models
of technicolor or dynamical gauge symmetry breaking, where things might not be
so easy. Clearly having solved QCD is a benchmark to guide future investigations.

Giving the spread of quark masses that span six orders of magnitude, dealing with
all quarks in a lattice simulation is very di⌅cult since approaching the continuum limit
in controlled conditions would require

amq ⇥ 1, (6.7)

and therefore extremely fine lattices. This brute force approach is not practical. Fortu-
nately, when we try to describe the low energy regime, the e�ect of the heavy quarks
can be accurately described by an e�ective theory that results from integrating them
out. It is a consequence of the decoupling theorem (Appelquist and Carazzone, 1975)
(which is another scenification of Wilsonian renormalization group), that the e�ects of
the heavy quarks in the low-energy dynamics are well represented by local operators
of the light fields only (gluons and the lighter quarks), where the e�ect of the heavy
scales is reabsorbed in the couplings. This implies that in order to study hadron pro-
cesses at energies much lower than the heavy quark mass scale, we can simply ignore
the heavy quarks.

We are also interested however in processes involving heavy hadrons. An e⌅cient
way to do this is to consider them as static sources, as is done in the heavy quark ef-
fective theory. I refer to R. Sommer’s lectures (Sommer, 2009) for a detailed discussion
of this e�ective theory as an e⌅cient tool to study heavy flavours on the lattice.

6.1 Wilson formulation of Lattice QCD

By now, it should be clear how to discretize this action following for example the
Wilson approach

SQCD[U, �̄,�] = S[U ] + SW [U, �̄,�] (6.8)

amq ⇡ 1/3
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(Möbius) JLQCD Nf = 2 + 1

JLQCD Nf = 2 + 1
QCDSF Nf = 2 + 1

PACS-CS Nf = 2 + 1
HSC Nf = 2 + 1
CLS Nf = 2 + 1

(stout-stag) BMW Nf = 2 + 1
(stout) BMW Nf = 2 + 1
(HEX) BMW Nf = 2 + 1

(Iwa) TWQCD Nf = 2
(plaq) TWQCD Nf = 2

JLQCD Nf = 2
BGR Nf = 2

QCDSF Nf = 2
(clover) ETMC Nf = 2

ETMC Nf = 2
CLS Nf = 2

a[fm]

MPS [MeV]

0.20

0.15

0.10

0.05

0.00
600500400300200100

[Herdoíza summer 2015 + (partial) updates]



• charm physics directly accessible for some time now 
• fraction of available ensembles used for HQ physics still limited
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input from effective theory needed for B-physics 
cross-validation between approaches crucial
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lattice QCD: validation

[Kronfeld, Annu. Rev. Nucl. Part. Sci. 62 (2012)]
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lightest scalar glueball (26). The pseudoscalar, tensor, and first radially excited
scalar glueballs are all 800–900 MeV higher than the lowest scalar (24).

Lattice QCD has been used to verify the mass spectrum of quark-model hadrons
within a few percent. Figure 2 shows four broad efforts on the spectrum of
the isopsin-1 light mesons and the isospin-12 and -32 baryons (27, 28, 29, 30, 31).
All these simulations include 2 + 1 flavors of sea quarks, and the error bars in
References 27, 28, 30 reflect thorough analyses of the systematic uncertainties.
A satisfying feature of Figure 2 is that the results do not depend in a systematic
way on the fermion formulation chosen for the quarks. Even the latest results for
the difficult η-η′ splitting are encouraging (32,33,34).

Figure 2 includes predictions for mesons with quark content b̄c (38, 36, 39).
The prediction for the pseudoscalar Bc has been (subsequently) confirmed by
experiment (40,41), whereas the prediction for the vector B∗

c awaits confirmation.
These predictions build on successful calculations of the bb̄ and cc̄ spectra (37,
42,43,44,45), which reproduce the experimental results well.

The most striking aspect of the spectrum is how well it agrees with nature.
The nucleons provide almost all the mass in everyday objects, and their masses
have been verified within 3.5%. Their mass mostly comes, via m = E/c2, from
the kinetic energy of the quarks and the energy stored in the sausage-like flux
tube(s) holding the quarks together.
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Figure 2: Hadron spectrum from lattice QCD. Comprehensive results for
mesons and baryons are from MILC (27, 28), PACS-CS (29), BMW (30), and
QCDSF (31). Results for η and η′ are from RBC & UKQCD (32), Hadron Spec-
trum (33) (also the only ω mass), and UKQCD (34). Results for heavy-light
hadrons from Fermilab-MILC (35), HPQCD (36), and Mohler & Woloshyn (37).
Circles, squares, and diamonds stand for staggered, Wilson, and chiral sea quarks,
respectively. Asterisks represent anisotropic lattices. Open symbols denote the
masses used to fix parameters. Filled symbols (and asterisks) denote results.
Red, orange, yellow, green, and blue stand for increasing numbers of ensembles
(i.e., lattice spacing and sea quark mass). Horizontal bars (gray boxes) denote
experimentally measured masses (widths). b-flavored meson masses are offset by
−4000 MeV.



lattice QCD: state-of-the-art

[ALPHA Collaboration, PRL 119 (2017) 102001]
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FIG. 2. Running couplings of Nf = 3 QCD from in-
tegrating the nonperturbative �-functions in the SF and
GF schemes [13, 14]. They are matched nonperturbatively
by defining ḡ2SF(µ0) = 2.012 and computing ḡ2GF(µ0/2) =
2.6723(64).

Monte Carlo methods, this coupling has a statistical un-
certainty that scales as �statḡ2SF ⇠ ḡ4SF, leading to good
precision at high energies. Moreover, its �-function is
known to NNLO [24, 25]. These two properties make it
an ideal choice to match with the asymptotic perturba-
tive regime of QCD.

Second, one can use the gradient flow (GF) to define
renormalized couplings [26]. The flow field Bµ(t, x) is the
solution of the gradient flow equation

@tBµ(t, x) = D⌫G⌫µ(t, x) ,

Gµ⌫(t, x) = @µB⌫ � @⌫Bµ + [Bµ, B⌫ ] ,
(9)

with the initial value Bµ(0, x) given by the original gauge
field. In infinite volume a renormalized coupling is de-
fined by

ḡ21(µ) =
16⇡2

3
⇥ t2hE(t)i

���
µ=1/

p
8t

, (10)

using the action density at positive flow time [26],
E(t) = 1

4G
a
µ⌫(t, x)G

a
µ⌫(t, x). In finite volume the cou-

pling ḡ2GF(µ) is defined by imposing a fixed relation,
p
8t = cL, between the flow time and the volume [21, 27].

Details can be found in the original work [14]. Since
the statistical precision is generally good and scales as
�statḡ2GF ⇠ ḡ2GF, this coupling is well suited at low ener-
gies.

In order to exploit the advantages of both finite-volume
schemes, we use the GF scheme at low energies, between
µhad and µ0. There we switch nonperturbatively to the
SF scheme (see Figure 2). Then we run up to µPT. In
this way, we connected hadronic scales to µPT [13, 14],
cf. Table I.

TABLE II. Scale ratios and values of the coupling determined
from nonperturbative running from µhad to µ0/2 in the GF
and from µ0 to µPT in the SF scheme.

ḡ2GF(µhad) ḡ2SF(µPT) µPT/µhad ⇤(3)

MS
/µhad

11.31 1.193(5) 349.7(6.8) 1.729(57)
10.20 1.193(5) 322.2(6.3) 1.593(53)

In Table II we show our intermediate results for
ḡ2SF(µPT) and µPT/µhad for two choices1 of a typical
hadronic scale µhad of a few hundred MeV. In addition,

we give ⇤(3)

MS
/µhad, obtained by the NNLO perturbative

asymptotic relation and the exact conversion to the MS
scheme. We have verified that the systematic uncertainty
⇠ ↵2(µPT) and power corrections ⇠ (⇤/µPT)k from this
limited use of perturbation theory at scales above µPT

are negligible compared to our statistical uncertainties
[13, 28].

CONNECTION TO THE HADRONIC WORLD

The second key element is the nonperturbative deter-
mination of µhad in units of the experimentally accessible
f⇡K. Our determination is based on CLS ensembles [29]
of Nf = 3 QCD with mu = md ⌘ bm in large volume. It
is convenient to define a scale µref by the condition2

ḡ21(µref) = 1.6⇡2
⇡ 15.8 , (11)

and trajectories in the (bare) quark mass plane (bm,ms)
by keeping the dimensionless ratio

�4 = (m2
K +m2

⇡/2) / µ
2
ref (12)

constant. Moreover, we define a reference scale µ?
ref at

the symmetric point (mu = md = ms) by

µ?
ref ⌘ µref

���
�4=1.11,mu=md=ms

. (13)

The requirement that the �4=constant trajectory passes
through the physical point, defined by

m2
⇡/f

2
⇡K = 0.8341, m2

K/f
2
⇡K = 11.21 , (14)

results in �4 = 1.11(2) in the continuum limit [30] and
motivates the particular choice in eq. (13).

1
In [14] only µhad,1 was considered. Here we extend the analysis

to µhad,2 in order to have an additional check of our connection

of large and small volume physics.
2
Note that µref is defined ensemble by ensemble, and therefore it

is a function of the quark masses. Instead of µref , it is customary

in the lattice literature to quote
p
8t0 = 1/µref [26].

) ↵MS
s (MZ) = 0.11852(84)



lattice QCD: state-of-the-art

[RBC/UKQCD Collaboration, PRL 115 (2015) 212001]
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lattice QCD for phenomenology: FLAG
Flavour Lattice Averaging Group: your one-stop repository of lattice 
results, world averages / estimates

4th edition: early 2019, results up to Sep 2018

advisory board: S. Aoki, C. Bernard, H. Leutwyler, C. Sachrajda 

editorial board: G. Colangelo, S. Hashimoto, A. Jüttner, S. Sharpe, 
A. Vladikas, U. Wenger 

working groups:
T. Blum, L. Lellouch, V. Lubicz 
P. Boyle, T. Kaneko, S. Simula 

S. Dürr, H. Fukaya, U. Heller 
P. Dimopoulos, B. Mawhinney, H. Wittig 

R. Horsley, T. Onogi, R. Sommer 
Y. Aoki, M. Della Morte, D. Lin 

D. Bečirević, S. Gottlieb, E. Lunghi, CP

quark masses 
Vud, Vus 
LECs 
kaon mixing 
αs 
heavy leptonic + mixing 
heavy semileptonic

3rd edition: results up to 30/11/2015 + updates from 2016
[Aoki et al., EPJC (2017) 77:112]



lattice QCD for phenomenology: FLAG
Flavour Lattice Averaging Group: your one-stop repository of lattice 
results, world averages / estimates

light quark physics: simple quantities at % precision level; start working 
hard on isospin+QED corrections etc.



lattice QCD for phenomenology: FLAG
Flavour Lattice Averaging Group: your one-stop repository of lattice 
results, world averages / estimates

heavy quark physics: often significantly worse precision, still important 
to crosscheck approaches until significantly finer lattices are available
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FLAG-3 — B decay constants

2 188(7) 227(7) 1.206(23)
2+1 192.0(4.3) 228.4(3.7) 1.201(16)
2+1+1 186(4) 224(5) 1.205(7)

Nf fB [MeV] fBs [MeV] fBs/fB

189.4(1.4)          230.7(1.2)           1.2180(49)
   196(6)               236(7)              1.207(7)

[HPQCD arXiv:1711.09981; FNAL/MILC arXiv:1712.09262]
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Fig. 20 Decay constants of the B and Bs mesons. The values are taken from Table 32 (the fB entry for FNAL/MILC 11 represents fB+ ). The
significance of the colours is explained in Sect. 2. The black squares and grey bands indicate our averages in Eqs. (152), (153) and (154)

Fig. 21 Ratio of the decay constants of the B and Bs mesons. The
values are taken from Table 33 (the fB entry for FNAL/MILC 11 repre-
sents fB+ ). The significance of the colours is explained in Sect. 2. The
black squares and grey bands indicate our averages in Eqs. (152), (153)
and (154)

tuned nonperturbatively in Ref. [476] by requiring that the
spin-averaged Bs-meson mass, MBs = (MBs + 3MB∗

s
)/4,

and the hyperfine splitting, !MBs
= MB∗

s
− MBs equal the

PDG values, and that the lattice rest and kinetic meson masses
are equal. Statistical uncertainties in the tuned parameters are
propagated to the decay constants via jackknife resampling.
Simulations with different values of the RHQ parameters are
used to estimate the remaining uncertainties in the decay con-
stants from the tuning procedure. Regarding valence light-
and strange-quarks, the authors of RBC/UKQCD 14 adopt
exactly the same domain-wall discretization as that in the sea-

quark sector. For each lattice spacing, such valence domain-
wall fermion propagators at six choices of the mass parameter
are generated. These six values straddle between the lightest
and strange sea-quark masses in the gauge-field ensembles,
and several of them correspond to the unitary points. With the
above lattice setting, the heavy-meson-decay constants are
obtained, employing an axial current that is O(a)-improved
to one-loop level. The renormalization of the axial current
is carried out with a mostly nonperturbative procedure pro-
posed in Ref. [477]. Linear interpolations for the heavy-quark
action parameters, as well as the valence strange-quark mass
are then performed on these heavy-meson-decay constants.
As for the chiral extrapolation for the light-quark mass, it
is implemented together with the continuum extrapolation
(linear in a2) adopting SU (2)-HMχPT at NLO.37 The decay
constants, fB+ and fB0 , are determined by chirally extrap-
olating to the physical u- and d-quark masses, respectively,
and their isospin-averaged counterpart, fB , is not reported.
Notice that only the unitary points in the light-quark mass
are used in the central procedure for the chiral extrapola-
tion. This extrapolation serves as the method to confirm that
finite-size effects are at the subpercentage level by comparing
with the prediction of finite-volume HMχPT [469]. Further-
more, since there is no observed sea-quark dependence in
fBs , it is extrapolated to the continuum limit straight after
the interpolation of the valence strange-quark mass. The

37 The authors of RBC/UKQCD 14 claim that using the NLO SU (3)-
HMχPT extrapolation formulae, acceptable fits for the decay constants
can be found. On the other hand, no reasonable fit for the ratio, fBs / fB ,
can result from this procedure, because this ratio has smaller statistical
errors. The NLO SU (3)-HMχPT predictions are then used as a means
to estimate the systematic effects arising from the chiral-continuum
extrapolation.
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FLAG-3 — B decay constants
• errors in the few- → sub-% ballpark: theory way ahead of 

experimental uncertainties 

• estimates/averages dominated by few results: strong need of 
crosschecks from other HQ treatments to improve confidence 
in systematics 

• electromagnetic corrections?

2 188(7) 227(7) 1.206(23)
2+1 192.0(4.3) 228.4(3.7) 1.201(16)
2+1+1 186(4) 224(5) 1.205(7)

Nf fB [MeV] fBs [MeV] fBs/fB

189.4(1.4)          230.7(1.2)           1.2180(49)
   196(6)               236(7)              1.207(7)

[HPQCD arXiv:1711.09981; FNAL/MILC arXiv:1712.09262]
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q2 spectrum and |Vub| 

6 

ISGW2 quark 
model excluded 

Fit BCL parameterization of f+(q2) to data: 

P = 3%  

Data in agreement with form factor shapes from LQCD and LCSR 

easily accessible kinematics on 
the lattice (not-too-fast pions)

[HFAG]

B→πlν
large phase space ⇒ accurate description of q2 dependence over a 
significant region crucial for a precise CKM determination



B→πlν
large phase space ⇒ accurate description of q2 dependence over a 
significant region crucial for a precise CKM determination

z-parameterisations (specially BCL) becoming de facto standard in 
LQCD, driven by their success in the B→π vector channel

[Okubo PRD 3 (1971) 2807, 4 (1971) 725]
[Bourrely, Machet, de Rafael NPB 189 (1981) 157]

[Boyd, Grinstein, Lebed PRL 74 (1995) 4603]
[Lellouch NPB 479 (1996) 353]

[Bourrely, Caprini, Micu EJPC 27 (2003) 439]
[Arnesen, Grinstein, Rothstein, Stewart PRL 95 (2005) 071802]

[Becher, Hill PLB 633 (2006) 61]
[Flynn, Nieves PRD 75 (2007) 013008]

[Bourrely, Caprini, Lellouch PRD 79 (2009) 013008]

however, for basically every other process/channel there may be not 
enough information to control systematics via unitarity constraints ⇒ 
inspecting systematics still crucial!

[Gambino, Moriond EW 2018]



FLAG-3 — B→πlν and Bs→Klν
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only zero recoil for D* so far (including recent HPQCD update), but 
ongoing FNAL/MILC work should provide full results at w≠1 soon

[HPQCD arXiv:1711.11013]
[FNAL/MILC arXiv:1710.09817]

R(D(⇤)) =
B(B ⇥ D(⇤)⇥�⌧ )

B(B ⇥ D(⇤)⇤�`)
[�⇥ f0(q

2)]



newer B(s)→D(s) computations include results w>1 ⇒ R(D)=0.300(8)
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newer B(s)→D(s) computations include results w>1 ⇒ R(Ds)=0.301(6)

Bs→Dslν new results

[HPQCD PRD 95 (2017) 114506]

10

FIG. 12. Correlations between B ! D`⌫ and Bs ! Ds`⌫
ensemble-averaged, three-point correlators for ensemble set
C1. The data correspond to a single B(s) meson source with
Gaussian smearing r0/a = 5, a source-sink separation of T =
13 and with a~pD(s)

= (0, 0, 0).

FIG. 13. Chiral and continuum extrapolated form factors,
f0(q

2) (lower band) and f+(q
2) (upper band), as a function

of the momentum transfer.

cays, illustrated in Figure 9. We list our choice of pri-
ors and the fit results for the ratio of form factors in
Appendix A, and provide the corresponding z-expansion
coe�cients and their correlations in Table XII.

V. RESULTS

A. Form factors

We plot our final results for the form factors, f0(q2)
and f+(q2), as a function of the momentum transfer, q2,
in Figure 13.

FIG. 14. Chiral and continuum extrapolated form factors,
f0(q

2) (lower band) and f+(q
2) (upper band), as a function

of the momentum transfer, for both Bs ! Ds (purple hatched
band) andB ! D (plain turquoise band) semileptonic decays.
The lattice data for each decay cannot be distinguished on
this plot and are therefore not included. See Figure 10 for a
detailed plot of the results for the form factors at finite lattice
spacing for both decays.

Our final result for the form factor at zero momentum
transfer is

fBs!Ds
0

(0) = fBs!Ds
+

(0) = 0.656(31). (25)

We provide an estimate of the error budget for this result
in Table VIII. For the ratio of form factors, we find

fBs!Ds
0

(M2

⇡)

fB!D
0

(M2

K)
= 1.000(62), (26)

and

fBs!Ds
0

(M2

⇡)

fB!D
0

(M2
⇡)

= 1.006(62), (27)

with corresponding error budgets in Table IX. We show
the extrapolation bands as a function of momentum
transfer for both Bs ! Ds (purple hatched band) and
B ! D (plain turquoise band) semileptonic decays in
Figure 14.
We find agreement, within errors, with the results of

[10], which are

fBs!Ds
0

(M2

⇡)

fB!D
0

(M2

K)
[FNAL/MILC] = 1.046(46) (28)

fBs!Ds
0

(M2

⇡)

fB!D
0

(M2
⇡)

[FNAL/MILC] = 1.054(50). (29)

Here we have combined the uncertainties quoted in [10],
which are statistical and systematic, in quadrature.
For the form factor at zero recoil, f+(q2max

), which is
often quoted as

G(1) =
2
p


1 + 
f+(q

2

max
), (30)
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ongoing work on lattice determination of R(D*)
[FNAL/MILC EPJ Web Conf. 175 (2018) 13003]
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[Detmold, Lehner, Meitnel PRD 92 (2015) 034503]

[cf. Detmold, Lin, Meitnel, Wingate PRD 88 (2013) 014512]18
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Table 41 Results for |Vcb|. When two errors are quoted in our averages,
the first one comes from the lattice form factor, and the second from
the experimental measurement. The HFAG inclusive average obtained
in the kinetic scheme from Ref. [197] is shown for comparison

From |Vcb| × 103

Our average for N f = 2 + 1 B → D∗ℓν 39.27(56)(49)

Our average for N f = 2 + 1 B → Dℓν 40.1(1.0)

Our average for N f = 2 B → Dℓν 41.0(3.8)(1.5)

HFAG inclusive average B → Xcℓν 42.46(88)

Fig. 29 Lattice and experimental data for f B→D
+ (q2) and f B→D

0 (q2)
versus z. Green symbols denote lattice-QCD points included in the fit,
while blue and indigo points show experimental data divided by the
value of |Vcb| obtained from the fit. The grey and orange bands display
the preferred N+ = N 0 = 3 BCL fit (six parameters) to the lattice-QCD
and experimental data with errors

9 The strong coupling αs

9.1 Introduction

The strong coupling ḡ(µ) defined at scale µ, plays a key role
in the understanding of QCD and in its application for col-
lider physics. For example, the parametric uncertainty from
αs is one of the dominant sources of uncertainty in the Stan-
dard Model prediction for the H → bb̄ partial width, and
the largest source of uncertainty for H → gg. Thus higher
precision determinations of αs are needed to maximize the
potential of experimental measurements at the LHC, and for
high-precision Higgs studies at future colliders [556– 558].
The value of αs also yields one of the essential boundary
conditions for completions of the standard model at high
energies.

In order to determine the running coupling at scale µ

αs(µ) =
ḡ2(µ)

4π
, (215)

we should first “measure” a short-distance quantityQ at scale
µ either experimentally or by lattice calculations and then
match it with a perturbative expansion in terms of a running
coupling, conventionally taken as αMS(µ),

Q(µ) = c1αMS(µ)+ c2αMS(µ)
2 + · · · . (216)

The essential difference between continuum determinations
of αs and lattice determinations is the origin of the values of
Q in Eq. (216).

The basis of continuum determinations are experimen-
tally measurable cross sections from which Q is defined.
These cross sections have to be sufficiently inclusive and at

Fig. 30 Left Summary of |Vub| determined using: (i) the B-meson lep-
tonic decay branching fraction, B(B− → τ − ν̄), measured at the Belle
and BaBar experiments, and our averages for fB from lattice QCD; and
(ii) the various measurements of the B → πℓν decay rates by Belle

and BaBar, and our averages for lattice determinations of the relevant
vector form factor f+(q2).Right Same for determinations of |Vcb| using
semileptonic decays. The HFAG inclusive results are from Ref. [197]
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[Lunghi, Moriond QCD 2017]

FLAG-3 — 3rd row CKM

Enrico Lunghi /3018

Vub and Vcb: exclusive vs inclusive

Exclusive:

Inclusive [PDG]:

[FLAG]

[PDG (BR) + FLAG (fB Nf=2+1+1)]

[FLAG]

[FLAG]

[PDG]

|Vub|B!Xu`⌫ = 4.49(16)(+16
�18)⇥ 10�3

|Vcb|B!Xc`⌫ = 42.2(0.7)⇥ 10�3

|Vub|B!⇡`⌫ = 3.73(14)⇥ 10�3

|Vub|B!⌧⌫ = 4.33(72)⇥ 10�3

|Vcb|B!D`⌫ = 40.1(1.0)⇥ 10�3

|Vcb|B!D⇤`⌫ = 39.27(56)(49)⇥ 10�3

|Vub/Vcb|⇤b!(p,⇤c)`⌫ = 0.083(6)
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The overall tension between all these 

determinations is 3.2 σ

Future progress: B→D* form factor, 

Bs→Klν
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rare decays: form factors for B→K
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Fig. 26 The B → K form factors (1 −q2/m2
B∗ ) f+(q2), (1 −

q2/m2
B∗(0+)) f0(q

2) and (1 −q2/m2
B∗ ) fT (q2) plotted versus z. (See

text for a discussion of the datasets.) The grey, orange and blue bands
display our preferred N+ = N 0 = NT = 3 BCL fit (eight parameters)
to the plotted data with errors

Concerning channels with vector mesons in the final state,
Horgan et al. have obtained the seven form factors govern-
ing B → K ∗ℓ+ℓ− (as well as those for Bs → φ ℓ+ℓ−)
in Ref. [530] using NRQCD b quarks and asqtad staggered
light quarks. In this work, they use a modified z-expansion
to simultaneously extrapolate to the physical light-quark
masses and continuum and extrapolate in q2 to the full
kinematic range. As discussed in Sect. 7.2, the modified z-
expansion is not based on an underlying effective theory, and
the associated uncertainties have yet to be fully studied. Hor-
gan et al. use their form-factor results to calculate the dif-
ferential branching fractions and angular distributions and
discuss the implications for phenomenology in a companion
paper [531]. Finally, on-going work on B → K ∗ℓ+ℓ−and

Bs → φℓ+ℓ−by RBC/UKQCD, including first results, have
recently been reported in Ref. [532].

8.4 Semileptonic form factors for B → Dℓν, B → D∗ℓν,
and B → Dτν

The semileptonic processes B → Dℓν and B → D∗ℓν have
been studied extensively by experimentalists and theorists
over the years. They allow for the determination of the CKM
matrix element |Vcb|, an extremely important parameter of
the Standard Model. |Vcb| appears in many quantities that
serve as inputs into CKM Unitarity Triangle analyses and
reducing its uncertainties is of paramount importance. For
example, when ϵK , the measure of indirect CP violation in
the neutral kaon system, is written in terms of the parameters
ρ and η that specify the apex of the unitarity triangle, a factor
of |Vcb|4 multiplies the dominant term. As a result, the errors
coming from |Vcb| (and not those from BK ) are now the
dominant uncertainty in the Standard Model (SM) prediction
for this quantity.

The decay rates for B → D(∗)ℓν can be parameterized
in terms of vector and scalar form factors in the same way
as, e.g., B → πℓν; see Sect. 8.3. Traditionally, the light
channels ℓ = e, µ have, however, been dealt with using a
somewhat different notation, viz.

d)B−→D0ℓ−ν̄

dw
= G2

Fm
3
D

48π3 (mB + mD)
2(w2 −1)3/2

× |ηEW|2|Vcb|2|G(w)|2, (188)

d)B−→D0∗ℓ−ν̄

dw
= G2

Fm
3
D∗

4π3 (mB −mD∗)2(w2 −1)1/2

× |ηEW|2|Vcb|2χ(w)|F(w)|2, (189)

wherew ≡ vB ·vD(∗) , vP = pP/mP are the four-velocities of
the mesons, and ηEW = 1.0066 is the one-loop electroweak
correction [533]. The function χ(w) in Eq. (189) depends
upon the recoilw and the meson masses, and reduces to unity
at zero recoil [513]. These formulae do not include terms
that are proportional to the lepton mass squared, which can
be neglected for ℓ = e, µ. Until recently, most unquenched
lattice calculations for B → D∗ℓν and B → Dℓν decays
focussed on the form factors at zero recoil F B→D∗

(1) and
GB→D(1); these can then be combined with experimental
input to extract |Vcb|. The main reasons for concentrating on

Table 38 Results for the B → K semileptonic form factors

Collaboration Refs. Nf Publication
status

Continuum
extrapolation

Chiral
extrapolation

Finite
volume

Renormalization Heavy-quark
treatment

z-Parameterization

HPQCD 13E [515] 2 + 1 A ◦ ◦ ◦ ◦ ! BCL

FNAL/MILC 15D [516] 2 + 1 A ⋆ ◦ ⋆ ◦ ! BCL
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rare decays: form factors for B→K

• lattice results at similar level of maturity as for SM tree-level decays 

• channels with vectors in final state (e.g. K*) much more complicated: 
treatment of resonances in Euclidean amplitudes quite non-trivial 

• matrix elements of charmed penguins in effective Hamiltonian involve 
similar difficulties as their relatives in non-leptonic K and B decay — 
a notoriously difficult nut to crack. (bounds?)



FLAG-3 — B mixing
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ballpark ≲ 10% accuracy, few computations; still hard work to do to 
constrain NP strongly



conclusions and outlook
• B-physics  on the lattice making remarkable progress, most notably 

in semileptonic decays 

• N.B. predictions for Bc leptonic and semileptonic rates 

• still way to go to meet the new era precision requirements 
- crosscheck HQ approaches as much as possible 
- full incorporation of available ensembles to HQ physics 
- many systematics to be improved: use of perturbation theory, 

momentum dependence of FFs, incorporation of QED effects, 
resonances ... 

• smart ways to improve our understanding of rare decays? 

• decrease the lattice spacing and get direct access to the b region

                               [talk by F Sanfilippo]

[HPQCD arXiv:1503.05762/1605.05645/1611.01987]



conclusions and outlook

• much other interesting stuff going on: 
- precision of strong coupling, masses consistently below 1% 
- permille kaon physics, few % charm physics 
- crack K→ππ; extend to heavy sector? 
- K→πνν within reach (ongoing, RBC/UKQCD) 

• non-flavour (SM parameters, (g-2)μ, PDFs, …) 

• large programme aimed at keeping experimental pace

                               [talks by G Colangelo and A Gérardin]

[G Salerno, D Mohler]
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why we care
[BaBar Physics Book, 1999]

[CKMfitter 2001 vs 2016]
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Figure 14-12. The overall 95% CL for ( , ) in 1998, including the limits on via the
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[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]
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APPENDIX A: LATTICE PROJECTIONS

To provide appropriate projections for the exclusive and leptonic methods of Vub and
Vcb extraction, the LQCD projections are briefly summarised. The LQCD collaboration,
USQCD, recently prepared a “white-paper” outlining the projected precision of their LQCD
predictions for the coming 5 years [20]. The relevant projections for UT side determination
are listed in Table XL. Notable improvements are expected in exclusive |Vub|, where LQCD
limits the precision. The bulk of the improvement will come from use of increased computing
power for higher statistics, and reduced lattice spacings. Sub per-cent level uncertainties will
require treatment of previously ignored e�ects. For reference the values of the semi-tauonic
quantity, R(D), and the mixing quantity � for the determination of |Vtd|/|Vts| are also listed.
This list is not exhaustive, for example |Vub| can also be extracted from the vector mode,
B ⇥ ⇤ ⇥, but accurate modern calculations do not yet exist. Similarly the semi-tauonic
ratio of the vector mode, R(D�), is yet to be accurately determined on the lattice.

TABLE XL: LQCD projections used in the evaluation of UT sides parameters. Errors are
given in percent on the respective CKM parameter. The world average (WA) experimental

errors are given for reference [7]. Dashes are given where no predictions are provided.

Lattice Quantity CKM element WA Expt. Error Lattice error
2013 (Present) 2014 2018

F (1) (B ⇥ D�⇣⇤) |Vcb| 1.3 1.8 1.5 <1
G(1) (B ⇥ D⇣⇤) |Vcb| 1.3 1.8 1.5 <1
Gs(1) (Bs ⇥ D�

s⇣⇤) |Vcb| � 4.6 � �
�(B ⇥ ⌅⇣⇤) |Vub| 4.1 8.7 4 2
fB (B ⇥ ⇧⇤, µ⇤) |Vub| 9.0 2.5 1.5 <1
R(D)(B ⇥ D⇧⇤) � 13 4.3 4 < 2
Mixing �(�md/�ms) |Vtd|/|Vts| 0.4 4.0 � < 1

58

����������	 �
���������������������������	� ��

'��������)
"��.�������

8�	��	�?����9����	��	����-(*2

;���

��

	�

�
	�

�
�


�


�$
�
�

��



�	
�

��
	�

�
��

	�
�
�$

�
�

��



�	
�
� 
�
0

#*
"

F
����/(�0=*

��$$�-#37��#�>#-(*/#(@

�
�����
��
�������� ��"�
����$>�0������
�	���
 �
	����������	����	"�

Belle II projections 



Lattice QCD
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Fig. 6.1 Quark masses.

• It would allow to study QCD in di�erent conditions, such as high density or
temperature, as took place in the early universe or in very dense systems such as
neutron stars

• QCD is in some sense a model field theory for many extensions of the SM, as
well as for the lattice approach. In QCD we know where the UV fixed point lies
so we know where the continuum limit is and how to approach it. The lattice
method might be necessary to study other field theories, such as those in models
of technicolor or dynamical gauge symmetry breaking, where things might not be
so easy. Clearly having solved QCD is a benchmark to guide future investigations.

Giving the spread of quark masses that span six orders of magnitude, dealing with
all quarks in a lattice simulation is very di⌅cult since approaching the continuum limit
in controlled conditions would require

amq ⇥ 1, (6.7)

and therefore extremely fine lattices. This brute force approach is not practical. Fortu-
nately, when we try to describe the low energy regime, the e�ect of the heavy quarks
can be accurately described by an e�ective theory that results from integrating them
out. It is a consequence of the decoupling theorem (Appelquist and Carazzone, 1975)
(which is another scenification of Wilsonian renormalization group), that the e�ects of
the heavy quarks in the low-energy dynamics are well represented by local operators
of the light fields only (gluons and the lighter quarks), where the e�ect of the heavy
scales is reabsorbed in the couplings. This implies that in order to study hadron pro-
cesses at energies much lower than the heavy quark mass scale, we can simply ignore
the heavy quarks.

We are also interested however in processes involving heavy hadrons. An e⌅cient
way to do this is to consider them as static sources, as is done in the heavy quark ef-
fective theory. I refer to R. Sommer’s lectures (Sommer, 2009) for a detailed discussion
of this e�ective theory as an e⌅cient tool to study heavy flavours on the lattice.

6.1 Wilson formulation of Lattice QCD

By now, it should be clear how to discretize this action following for example the
Wilson approach

SQCD[U, �̄,�] = S[U ] + SW [U, �̄,�] (6.8)

L�1 ⌧ µ⌧ a�1• cover all relevant scales: 

• control scaling (exploit universality!) → 
renormalisation 

• reconstruct Minkowskian amplitudes (non-
trivial for multihadron final states)

complement with other first-principles/systematic approaches: 
dispersion relations, effective theories, …

Lattice sizes, quark masses, . . .

Systematic limitations

Lattice-spacing and finite-volume
e�ects

The light-quark mass m is larger
than the physical one

a

L

Available range of a, L,m must be such that the results can be
extrapolated to a� 0, L�⇥ and m� 0

Niels Bohr Institute, 16.–18. August 2006 Lattice sizes, quark masses, ... 6/31

lattice QCD

first-principles approach = control all systematic uncertainties
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VII. SUMMARY OF THE SENSITIVITY FOR SELECTED OBSERVABLES

TABLE XXXVIII: Expected errors on several selected observables with an integrated
luminosity of 5 ab�1 and 50 ab�1 of Belle II data. The current results (from Belle) are also
given. Ls denotes the approximate integrated luminosity at which the statistical precision
of a given observable will match its systematic uncertainty. Errors given in % represent

relative errors.

Observables Belle Belle II Ls

(2014) 5 ab�1 50 ab�1 [ab�1]
sin 2⇥ 0.667± 0.023± 0.012 ±0.012 ±0.008 6
� ±2⇤ ±1⇤

⇤ ±14⇤ ±6⇤ ±1.5⇤

S(B ⌅ ↵K0) 0.90+0.09
�0.19 ±0.053 ±0.018 >50

S(B ⌅ ⌅⌅K0) 0.68± 0.07± 0.03 ±0.028 ±0.011 >50
S(B ⌅ K0

SK0
SK0

S) 0.30± 0.32± 0.08 ±0.100 ±0.033 44
|Vcb| incl. ±2.4% ±1.0% < 1
|Vcb| excl. ±3.6% ±1.8% ±1.4% < 1
|Vub| incl. ±6.5% ±3.4% ±3.0% 2
|Vub| excl. (had. tag.) ±10.8% ±4.7% ±2.4% 20
|Vub| excl. (untag.) ±9.4% ±4.2% ±2.2% 3
B(B ⌅ ⌦⌃) [10�6] 96± 26 ±10% ±5% 46
B(B ⌅ µ⌃) [10�6] < 1.7 5 >> 5 >50
R(B ⌅ D⌦⌃) ±16.5% ±5.6% ±3.4% 4
R(B ⌅ D⇥⌦⌃) ±9.0% ±3.2% ±2.1% 3
B(B ⌅ K⇥+⌃⌃) [10�6] < 40 ±30% >50
B(B ⌅ K+⌃⌃) [10�6] < 55 ±30% >50
B(B ⌅ Xs⇤) [10�6] ±13% ±7% ±6% < 1
ACP (B ⌅ Xs⇤) ±0.01 ±0.005 8
S(B ⌅ K0

S⌥
0⇤) �0.10± 0.31± 0.07 ±0.11 ±0.035 > 50

S(B ⌅ �⇤) �0.83± 0.65± 0.18 ±0.23 ±0.07 > 50
C7/C9 (B ⌅ Xs⇡⇡) ⇤20% 10% 5%
B(Bs ⌅ ⇤⇤) [10�6] < 8.7 ±0.3
B(Bs ⌅ ⌦+⌦�) [10�3] < 2
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TABLE XXXIX: Continued from previous page.

Observables Belle Belle II Ls

(2014) 5 ab�1 50 ab�1 [ab�1]
B(Ds ⌅ µ⇤) 5.31⇥ 10�3(1± 0.053± 0.038) ±2.9% ±(0.9%-1.3%) > 50
B(Ds ⌅ ⌅⇤) 5.70⇥ 10�3(1± 0.037± 0.054) ±(3.5%-4.3%) ±(2.3%-3.6%) 3-5
yCP [10�2] 1.11± 0.22± 0.11 ±(0.11-0.13) ±(0.05-0.08) 5-8
A� [10�2] �0.03± 0.20± 0.08 ±0.10 ±(0.03-0.05) 7 - 9
AK+K�

CP [10�2] �0.32± 0.21± 0.09 ±0.11 ±0.06 15
A⇥+⇥�

CP [10�2] 0.55± 0.36± 0.09 ±0.17 ± 0.06 > 50
A⇤�

CP [10�2] ± 5.6 ±2.5 ±0.8 > 50
xKS⇥+⇥� [10�2] 0.56± 0.19± 0.07

0.13 ±0.14 ±0.11 3
yKS⇥+⇥� [10�2] 0.30± 0.15± 0.05

0.08 ±0.08 ±0.05 15
|q/p|KS⇥+⇥� 0.90± 0.16

0.15 ±
0.08
0.06 ±0.10 ±0.07 5-6

⇧KS⇥+⇥� [⇥] �6± 11± 4
5 ±6 ±4 10

A⇥0⇥0

CP [10�2] �0.03± 0.64± 0.10 ±0.29 ±0.09 > 50

A
K0

S⇥0

CP [10�2] �0.10± 0.16± 0.09 ±0.08 ±0.03 > 50
Br(D0 ⌅ ��) [10�6] < 1.5 ±30% ±25% 2

⌅ ⌅ µ� [10�9] < 45 < 14.7 < 4.7
⌅ ⌅ e� [10�9] < 120 < 39 < 12

⌅ ⌅ µµµ [10�9] < 21.0 < 3.0 < 0.3
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APPENDIX A: LATTICE PROJECTIONS

To provide appropriate projections for the exclusive and leptonic methods of Vub and
Vcb extraction, the LQCD projections are briefly summarised. The LQCD collaboration,
USQCD, recently prepared a “white-paper” outlining the projected precision of their LQCD
predictions for the coming 5 years [20]. The relevant projections for UT side determination
are listed in Table XL. Notable improvements are expected in exclusive |Vub|, where LQCD
limits the precision. The bulk of the improvement will come from use of increased computing
power for higher statistics, and reduced lattice spacings. Sub per-cent level uncertainties will
require treatment of previously ignored e�ects. For reference the values of the semi-tauonic
quantity, R(D), and the mixing quantity � for the determination of |Vtd|/|Vts| are also listed.
This list is not exhaustive, for example |Vub| can also be extracted from the vector mode,
B ⇥ ⇤ ⇥, but accurate modern calculations do not yet exist. Similarly the semi-tauonic
ratio of the vector mode, R(D�), is yet to be accurately determined on the lattice.

TABLE XL: LQCD projections used in the evaluation of UT sides parameters. Errors are
given in percent on the respective CKM parameter. The world average (WA) experimental

errors are given for reference [7]. Dashes are given where no predictions are provided.

Lattice Quantity CKM element WA Expt. Error Lattice error
2013 (Present) 2014 2018

F (1) (B ⇥ D�⇣⇤) |Vcb| 1.3 1.8 1.5 <1
G(1) (B ⇥ D⇣⇤) |Vcb| 1.3 1.8 1.5 <1
Gs(1) (Bs ⇥ D�

s⇣⇤) |Vcb| � 4.6 � �
�(B ⇥ ⌅⇣⇤) |Vub| 4.1 8.7 4 2
fB (B ⇥ ⇧⇤, µ⇤) |Vub| 9.0 2.5 1.5 <1
R(D)(B ⇥ D⇧⇤) � 13 4.3 4 < 2
Mixing �(�md/�ms) |Vtd|/|Vts| 0.4 4.0 � < 1
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Table 27: Statistical sensitivities of the LHCb upgrade to key observables. For each observable the expected sensitivity is
given for the integrated luminosity accumulated by the end of LHC Run 1, by 2018 (assuming 5 fb�1 recorded during Run
2) and for the LHCb Upgrade (50 fb�1). An estimate of the theoretical uncertainty is also given – this and the potential
sources of systematic uncertainty are discussed in the text.

Type Observable LHC Run 1 LHCb 2018 LHCb upgrade Theory
B0

s mixing ⌃s(B0
s ⇥ J/⌥⌃) (rad) 0.049 0.025 0.009 � 0.003

⌃s(B0
s ⇥ J/⌥ f0(980)) (rad) 0.068 0.035 0.012 � 0.01
Asl(B0

s ) (10
�3) 2.8 1.4 0.5 0.03

Gluonic ⌃e⇥
s (B0

s ⇥ ⌃⌃) (rad) 0.15 0.10 0.018 0.02
penguin ⌃e⇥

s (B0
s ⇥ K⇥0K̄⇥0) (rad) 0.19 0.13 0.023 < 0.02

2�e⇥(B0 ⇥ ⌃K0
S) (rad) 0.30 0.20 0.036 0.02

Right-handed ⌃e⇥
s (B0

s ⇥ ⌃⇥) (rad) 0.20 0.13 0.025 < 0.01
currents ⇧ e⇥(B0

s ⇥ ⌃⇥)/⇧B0
s

5% 3.2% 0.6% 0.2%
Electroweak S3(B0 ⇥ K⇥0µ+µ�; 1 < q2 < 6GeV2/c4) 0.04 0.020 0.007 0.02
penguin q20 AFB(B0 ⇥ K⇥0µ+µ�) 10% 5% 1.9% � 7%

AI(Kµ+µ�; 1 < q2 < 6GeV2/c4) 0.09 0.05 0.017 � 0.02
B(B+ ⇥ ⌅+µ+µ�)/B(B+ ⇥ K+µ+µ�) 14% 7% 2.4% � 10%

Higgs B(B0
s ⇥ µ+µ�) (10�9) 1.0 0.5 0.19 0.3

penguin B(B0 ⇥ µ+µ�)/B(B0
s ⇥ µ+µ�) 220% 110% 40% � 5%

Unitarity ⇥(B ⇥ D(⇥)K(⇥)) 7⇧ 4⇧ 0.9� negligible
triangle ⇥(B0

s ⇥ D⌅
s K

±) 17⇧ 11⇧ 2.0� negligible
angles �(B0 ⇥ J/⌥K0

S) 1.7⇧ 0.8⇧ 0.31� negligible
Charm A�(D0 ⇥ K+K�) (10�4) 3.4 2.2 0.4 –

CP violation �ACP (10�3) 0.8 0.5 0.1 –
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[LHCb-PUB-2014-040]

n.b.: LHCb making key contributions (Bs leptonic, Λb, …)

LHCb Run 2 + upgrade projections



QCD

1 + Nf + 1 free parameters:

LQCD = � 1

2g2
tr [Fµ⌫F

µ⌫ ] +

NfX

q=1

 ̄q

⇥
i /D �mq

⇤
 q+

i✓

32⇡2
✏µ⌫⇢�tr [Fµ⌫F⇢�]

| {z }
/CP

↵s,mq fixed by hadron masses/decay constants

✓ = 0 fixed by neutron EDM

once the Lagrangian parameters are fixed, everything else is a prediction

calculations in the hadronic regime are challenging: low-energy QCD is 
strongly non-perturbative



towards a fully relativistic b

Topological charge

Topological charge shows dramatic slow down.
Already in pure gauge theory.
How does this match with 1/a expectation for HMC?

SOMMER, VIROTTA, ST.S’10
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Stefan Schaefer Open boundary conditions 3 / 22

crucial issue: strong lattice space dependence of autocorrelations

[Del Debbio, Panagopoulos, Vicari 2002]
[Schaefer, Sommer, Virotta 2010]

[MILC Nf=2+1 ensembles]

[Lüscher, Schaefer 2011; CLS Nf=2+1 obc 
programme]
[Mages et al. 2015; Laio et al. 2015; 
Brower et al. 2015; Detmold, Endres 2016]



approaches to B physics

what one would like to do

⇤/mq

a

b

c

ci



⇤/mq

a

b

c

interp/ratio
⇤/mq

a

b

c

npHQET

⇤/mq

a

b

c

NRQCD
⇤/mq

a

b

c

RHQ

(perturbatively) tuned RG 
trajectory for good scaling

effective theory used differently, different pros/cons balance: crosschecks crucial

ratios cancel systematics, 
lead to known static point

scaling window expected

non-perturbative QCD-
HQET matching at mb

approaches to B physics
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the discretization. See Appendix A.4 for a brief description
of the different variants in use and some useful references.
Finally, χPT can also be used to estimate the size of finite-
volume effects measured in units of the inverse pion mass,
thus providing information on the systematic error due to
finite-volume effects in addition to that obtained by compar-
ing simulations at different volumes.

Critical slowing down:
The lattice spacings reached in recent simulations go down
to 0.05 fm or even smaller. In this regime, long autocor-
relation times slow down the sampling of the configura-
tions [66– 75]. Many groups check for autocorrelations in a
number of observables, including the topological charge, for
which a rapid growth of the autocorrelation time is observed
with decreasing lattice spacing. This is often referred to as
topological freezing. A solution to the problem consists in
using open boundary conditions in time, instead of the more
common antiperiodic ones [76]. More recently two other
approaches have been proposed, one based on a multiscale
thermalization algorithm [77] and another based on defin-
ing QCD on a nonorientable manifold [78]. The problem
is also touched upon in Sect. 9.2, where it is stressed that
attention must be paid to this issue. While large-scale simula-
tions with open boundary conditions are already far advanced
[79], unfortunately so far no results reviewed here have been
obtained with any of the above methods. It is usually assumed
that the continuum limit can be reached by extrapolation from
the existing simulations and that potential systematic errors
due to the long autocorrelation times have been adequately
controlled.

Simulation algorithms and numerical errors:
Most of the modern lattice-QCD simulations use exact algo-
rithms such as those of Refs. [80,81], which do not produce
any systematic errors when exact arithmetic is available. In
reality, one uses numerical calculations at double (or in some
cases even single) precision, and some errors are unavoid-
able. More importantly, the inversion of the Dirac operator is
carried out iteratively and it is truncated once some accuracy
is reached, which is another source of potential systematic
error. In most cases, these errors have been confirmed to
be much less than the statistical errors. In the following we
assume that this source of error is negligible. Some of the
most recent simulations use an inexact algorithm in order to
speed-up the computation, though it may produce systematic
effects. Currently available tests indicate that errors from the
use of inexact algorithms are under control.

2 Quality criteria, averaging and error estimation

The essential characteristics of our approach to the problem
of rating and averaging lattice quantities have been outlined

in our first publication [1]. Our aim is to help the reader assess
the reliability of a particular lattice result without necessarily
studying the original article in depth. This is a delicate issue,
since the ratings may make things appear simpler than they
are. Nevertheless, it safeguards against the common prac-
tice of using lattice results, and drawing physics conclusions
from them, without a critical assessment of the quality of the
various calculations. We believe that, despite the risks, it is
important to provide some compact information as regards
the quality of a calculation. We stress, however, the impor-
tance of the accompanying detailed discussion of the results
presented in the various sections of the present review.

2.1 Systematic errors and colour code

The major sources of systematic error are common to most
lattice calculations. These include, as discussed in detail
below, the chiral, continuum and infinite-volume extrapo-
lations. To each such source of error for which systematic
improvement is possible we assign one of three coloured
symbols: green star, unfilled green circle (which replaced in
Ref. [2] the amber disk used in the original FLAG review [1])
or red square. These correspond to the following ratings:

⋆ the parameter values and ranges used to generate the
datasets allow for a satisfactory control of the system-
atic uncertainties;

◦ the parameter values and ranges used to generate the
datasets allow for a reasonable attempt at estimat-
ing systematic uncertainties, which, however, could be
improved;

! the parameter values and ranges used to generate the
datasets are unlikely to allow for a reasonable control
of systematic uncertainties.

The appearance of a red tag, even in a single source of sys-
tematic error of a given lattice result, disqualifies it from
inclusion in the global average.

The attentive reader will notice that these criteria differ
from those used in Refs. [1,2]. In the previous FLAG edi-
tions we used the three symbols in order to rate the relia-
bility of the systematic errors attributed to a given result by
the paper’s authors. This sometimes proved to be a daunt-
ing task, as the methods used by some collaborations for
estimating their systematics are not always explained in
full detail. Moreover, it is sometimes difficult to disentan-
gle and rate different uncertainties, since they are inter-
woven in the error analysis. Thus, in the present edition
we have opted for a different approach: the three sym-
bols rate the quality of a particular simulation, based on
the values and range of the chosen parameters, and its
aptness to obtain well-controlled systematic uncertainties.
They do not rate the quality of the analysis performed
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studying the original article in depth. This is a delicate issue,
since the ratings may make things appear simpler than they
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from them, without a critical assessment of the quality of the
various calculations. We believe that, despite the risks, it is
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Ref. [2] the amber disk used in the original FLAG review [1])
or red square. These correspond to the following ratings:

⋆ the parameter values and ranges used to generate the
datasets allow for a satisfactory control of the system-
atic uncertainties;
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datasets allow for a reasonable attempt at estimat-
ing systematic uncertainties, which, however, could be
improved;

! the parameter values and ranges used to generate the
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tematic error of a given lattice result, disqualifies it from
inclusion in the global average.

The attentive reader will notice that these criteria differ
from those used in Refs. [1,2]. In the previous FLAG edi-
tions we used the three symbols in order to rate the relia-
bility of the systematic errors attributed to a given result by
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of the different variants in use and some useful references.
Finally, χPT can also be used to estimate the size of finite-
volume effects measured in units of the inverse pion mass,
thus providing information on the systematic error due to
finite-volume effects in addition to that obtained by compar-
ing simulations at different volumes.

Critical slowing down:
The lattice spacings reached in recent simulations go down
to 0.05 fm or even smaller. In this regime, long autocor-
relation times slow down the sampling of the configura-
tions [66– 75]. Many groups check for autocorrelations in a
number of observables, including the topological charge, for
which a rapid growth of the autocorrelation time is observed
with decreasing lattice spacing. This is often referred to as
topological freezing. A solution to the problem consists in
using open boundary conditions in time, instead of the more
common antiperiodic ones [76]. More recently two other
approaches have been proposed, one based on a multiscale
thermalization algorithm [77] and another based on defin-
ing QCD on a nonorientable manifold [78]. The problem
is also touched upon in Sect. 9.2, where it is stressed that
attention must be paid to this issue. While large-scale simula-
tions with open boundary conditions are already far advanced
[79], unfortunately so far no results reviewed here have been
obtained with any of the above methods. It is usually assumed
that the continuum limit can be reached by extrapolation from
the existing simulations and that potential systematic errors
due to the long autocorrelation times have been adequately
controlled.

Simulation algorithms and numerical errors:
Most of the modern lattice-QCD simulations use exact algo-
rithms such as those of Refs. [80,81], which do not produce
any systematic errors when exact arithmetic is available. In
reality, one uses numerical calculations at double (or in some
cases even single) precision, and some errors are unavoid-
able. More importantly, the inversion of the Dirac operator is
carried out iteratively and it is truncated once some accuracy
is reached, which is another source of potential systematic
error. In most cases, these errors have been confirmed to
be much less than the statistical errors. In the following we
assume that this source of error is negligible. Some of the
most recent simulations use an inexact algorithm in order to
speed-up the computation, though it may produce systematic
effects. Currently available tests indicate that errors from the
use of inexact algorithms are under control.

2 Quality criteria, averaging and error estimation

The essential characteristics of our approach to the problem
of rating and averaging lattice quantities have been outlined

in our first publication [1]. Our aim is to help the reader assess
the reliability of a particular lattice result without necessarily
studying the original article in depth. This is a delicate issue,
since the ratings may make things appear simpler than they
are. Nevertheless, it safeguards against the common prac-
tice of using lattice results, and drawing physics conclusions
from them, without a critical assessment of the quality of the
various calculations. We believe that, despite the risks, it is
important to provide some compact information as regards
the quality of a calculation. We stress, however, the impor-
tance of the accompanying detailed discussion of the results
presented in the various sections of the present review.

2.1 Systematic errors and colour code

The major sources of systematic error are common to most
lattice calculations. These include, as discussed in detail
below, the chiral, continuum and infinite-volume extrapo-
lations. To each such source of error for which systematic
improvement is possible we assign one of three coloured
symbols: green star, unfilled green circle (which replaced in
Ref. [2] the amber disk used in the original FLAG review [1])
or red square. These correspond to the following ratings:

⋆ the parameter values and ranges used to generate the
datasets allow for a satisfactory control of the system-
atic uncertainties;

◦ the parameter values and ranges used to generate the
datasets allow for a reasonable attempt at estimat-
ing systematic uncertainties, which, however, could be
improved;

! the parameter values and ranges used to generate the
datasets are unlikely to allow for a reasonable control
of systematic uncertainties.

The appearance of a red tag, even in a single source of sys-
tematic error of a given lattice result, disqualifies it from
inclusion in the global average.

The attentive reader will notice that these criteria differ
from those used in Refs. [1,2]. In the previous FLAG edi-
tions we used the three symbols in order to rate the relia-
bility of the systematic errors attributed to a given result by
the paper’s authors. This sometimes proved to be a daunt-
ing task, as the methods used by some collaborations for
estimating their systematics are not always explained in
full detail. Moreover, it is sometimes difficult to disentan-
gle and rate different uncertainties, since they are inter-
woven in the error analysis. Thus, in the present edition
we have opted for a different approach: the three sym-
bols rate the quality of a particular simulation, based on
the values and range of the chosen parameters, and its
aptness to obtain well-controlled systematic uncertainties.
They do not rate the quality of the analysis performed
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Table 33 Ratios of decay constants of the B and Bs mesons (for details see Table 32)

Collaboration Refs. Nf Publication
status

Continuum
extrapolation

Chiral
extrapolation

Finite
volume

Renormalization/
matching

Heavy-quark
treatment

fBs / fB+ fBs / fB0 fBs / fB

ETM 13E [456] 2 + 1 + 1 C ⋆ ◦ ◦ ◦ " − − 1.201(25)

HPQCD 13 [52] 2 + 1 + 1 A ⋆ ⋆ ⋆ ◦ " 1.217(8) 1.194(7) 1.205(7)

RBC/UKQCD 14 [53] 2 + 1 A ◦ ◦ ◦ ◦ " 1.223(71) 1.197(50) −
RBC/UKQCD 14A [54] 2 + 1 A ◦ ◦ ◦ ◦ " − − 1.193(48)

RBC/UKQCD 13A [457] 2 + 1 C ◦ ◦ ◦ ◦ " − − 1.20(2)stat
a

HPQCD 12 [55] 2 + 1 A ◦ ◦ ◦ ◦ " − − 1.188(18)

FNAL/MILC 11 [48] 2 + 1 A ◦ ◦ ⋆ ◦ " 1.229(26) − −
RBC/UKQCD 10C [464] 2 + 1 A # # # ◦ " − − 1.15(12)

HPQCD 09 [59] 2 + 1 A ◦ ◦ ◦ ◦ " − − 1.226(26)

ALPHA 14 [57] 2 A ⋆ ⋆ ⋆ ⋆ " − − 1.203(65)

ALPHA 13 [458] 2 C ⋆ ⋆ ⋆ ⋆ " − − 1.195(61)(20)

ETM 13B, 13Cb [20,58] 2 A ⋆ ◦ ⋆ ◦ " − − 1.206(24)

ALPHA 12A [459] 2 C ⋆ ⋆ ⋆ ⋆ " − − 1.13(6)

ETM 12B [460] 2 C ⋆ ◦ ⋆ ◦ " − − 1.19(5)

ETM 11A [182] 2 A ◦ ◦ ⋆ ◦ " − − 1.19(5)

a Statistical errors only
b Update of ETM 11A and 12B
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fore we have established separate criteria forαs results, which
will be discussed in Sect. 9.2.

2.1.2 Heavy-quark actions

In most cases, and in particular for the b quark, the dis-
cretization of the heavy-quark action follows a very different
approach to that used for light flavours. There are several
different methods for treating heavy quarks on the lattice,
each with their own issues and considerations. All of these
methods use Effective Field Theory (EFT) at some point in
the computation, either via direct simulation of the EFT, or
by using EFT as a tool to estimate the size of cutoff errors, or
by using EFT to extrapolate from the simulated lattice quark
masses up to the physical b-quark mass. Because of the use
of an EFT, truncation errors must be considered together with
discretization errors.

The charm quark lies at an intermediate point between the
heavy and light quarks. In our previous review, the bulk of the
calculations involving charm quarks treated it using one of
the approaches adopted for the b quark. Many recent calcu-
lations, however, simulate the charm quark using light-quark
actions, in particular the N f = 2 + 1 + 1 calculations. This
has become possible thanks to the increasing availability of
dynamical gauge field ensembles with fine lattice spacings.
But clearly, when charm quarks are treated relativistically,
discretization errors are more severe than those of the corre-
sponding light-quark quantities.

In order to address these complications, we add a new
heavy-quark treatment category to the rating system. The
purpose of this criterion is to provide a guideline for the level
of action and operator improvement needed in each approach
to make reliable calculations possible, in principle.

A description of the different approaches to treating heavy
quarks on the lattice is given in Appendix A.1.3, includ-
ing a discussion of the associated discretization, truncation,
and matching errors. For truncation errors we use HQET
power counting throughout, since this review is focussed on
heavy-quark quantities involving B and D mesons rather than
bottomonium or charmonium quantities. Here we describe
the criteria for how each approach must be implemented
in order to receive an acceptable (!) rating for both the
heavy-quark actions and the weak operators. Heavy-quark
implementations without the level of improvement described
below are rated not acceptable ( !). The matching is evalu-
ated together with renormalization, using the renormaliza-
tion criteria described in Sect. 2.1.1. We emphasize that
the heavy-quark implementations rated as acceptable and
described below have been validated in a variety of ways,
such as via phenomenological agreement with experimental
measurements, consistency between independent lattice cal-
culations, and numerical studies of truncation errors. These
tests are summarized in Sect. 8.

Relativistic heavy-quark actions:
! at least tree-level O(a) improved action and weak opera-
tors.
This is similar to the requirements for light-quark actions. All
current implementations of relativistic heavy-quark actions
satisfy this criterion.
NRQCD
! tree-level matched through O(1/mh) and improved
through O(a2).
The current implementations of NRQCD satisfy this crite-
rion, and also include tree-level corrections of O(1/m2

h) in
the action.
HQET
! tree-level matched through O(1/mh) with discretization
errors starting at O(a2).
The current implementation of HQET by the ALPHA Col-
laboration satisfies this criterion, since both action and weak
operators are matched nonperturbatively through O(1/mh).
Calculations that exclusively use a static-limit action do not
satisfy this criterion, since the static-limit action, by defini-
tion, does not include 1/mh terms. We therefore consider
static computations in our final estimates only if truncation
errors (in 1/mh) are discussed and included in the systematic
uncertainties.

Light-quark actions for heavy quarks
! discretization errors starting at O(a2) or higher.
This applies to calculations that use the tmWilson action,
a nonperturbatively improved Wilson action, or the HISQ
action for charm-quark quantities. It also applies to calcula-
tions that use these light-quark actions in the charm region
and above together with either the static limit or with an
HQET inspired extrapolation to obtain results at the physical
b quark mass. In these cases, the continuum extrapolation
criteria described earlier must be applied to the entire range
of heavy-quark masses used in the calculation.

2.1.3 Conventions for the figures

For a coherent assessment of the present situation, the quality
of the data plays a key role, but the colour coding cannot be
carried over to the figures. On the other hand, simply showing
all data on equal footing would give the misleading impres-
sion that the overall consistency of the information available
on the lattice is questionable. Therefore, in the figures we
indicate the quality of the data in a rudimentary way, using
the following symbols:

" corresponds to results included in the average or estimate
(i.e. results that contribute to the black square below);

"# corresponds to results that are not included in the average
but pass all quality criteria;

# corresponds to all other results;
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Fig. 20 Decay constants of the B and Bs mesons. The values are taken from Table 32 (the fB entry for FNAL/MILC 11 represents fB+ ). The
significance of the colours is explained in Sect. 2. The black squares and grey bands indicate our averages in Eqs. (152), (153) and (154)

Fig. 21 Ratio of the decay constants of the B and Bs mesons. The
values are taken from Table 33 (the fB entry for FNAL/MILC 11 repre-
sents fB+ ). The significance of the colours is explained in Sect. 2. The
black squares and grey bands indicate our averages in Eqs. (152), (153)
and (154)

tuned nonperturbatively in Ref. [476] by requiring that the
spin-averaged Bs-meson mass, MBs = (MBs + 3MB∗

s
)/4,

and the hyperfine splitting, !MBs
= MB∗

s
− MBs equal the

PDG values, and that the lattice rest and kinetic meson masses
are equal. Statistical uncertainties in the tuned parameters are
propagated to the decay constants via jackknife resampling.
Simulations with different values of the RHQ parameters are
used to estimate the remaining uncertainties in the decay con-
stants from the tuning procedure. Regarding valence light-
and strange-quarks, the authors of RBC/UKQCD 14 adopt
exactly the same domain-wall discretization as that in the sea-

quark sector. For each lattice spacing, such valence domain-
wall fermion propagators at six choices of the mass parameter
are generated. These six values straddle between the lightest
and strange sea-quark masses in the gauge-field ensembles,
and several of them correspond to the unitary points. With the
above lattice setting, the heavy-meson-decay constants are
obtained, employing an axial current that is O(a)-improved
to one-loop level. The renormalization of the axial current
is carried out with a mostly nonperturbative procedure pro-
posed in Ref. [477]. Linear interpolations for the heavy-quark
action parameters, as well as the valence strange-quark mass
are then performed on these heavy-meson-decay constants.
As for the chiral extrapolation for the light-quark mass, it
is implemented together with the continuum extrapolation
(linear in a2) adopting SU (2)-HMχPT at NLO.37 The decay
constants, fB+ and fB0 , are determined by chirally extrap-
olating to the physical u- and d-quark masses, respectively,
and their isospin-averaged counterpart, fB , is not reported.
Notice that only the unitary points in the light-quark mass
are used in the central procedure for the chiral extrapola-
tion. This extrapolation serves as the method to confirm that
finite-size effects are at the subpercentage level by comparing
with the prediction of finite-volume HMχPT [469]. Further-
more, since there is no observed sea-quark dependence in
fBs , it is extrapolated to the continuum limit straight after
the interpolation of the valence strange-quark mass. The

37 The authors of RBC/UKQCD 14 claim that using the NLO SU (3)-
HMχPT extrapolation formulae, acceptable fits for the decay constants
can be found. On the other hand, no reasonable fit for the ratio, fBs / fB ,
can result from this procedure, because this ratio has smaller statistical
errors. The NLO SU (3)-HMχPT predictions are then used as a means
to estimate the systematic effects arising from the chiral-continuum
extrapolation.
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Figure 1: Mass distribution of the selected B0
(s) ! µ+µ� candidates (black dots) with BDT > 0.5.

The result of the fit is overlaid, and the di↵erent components are detailed.

of 4.6% and 10.9%, respectively. The dependence is approximately linear in the physically
allowed Aµ+µ�

�� range.
For the B0

s ! µ+µ� lifetime determination, the data are background-subtracted with
the sPlot technique [41], using a fit to the dimuon mass distribution to disentangle signal
and background components statistically. Subsequently, a fit to the signal decay-time
distribution is made with an exponential function multiplied by the acceptance function
of the detector. The B0

s candidates are selected using criteria similar to those applied
in the branching fraction analysis, the main di↵erences being a reduced dimuon mass
window, [5320, 6000]MeV/c2, and looser particle identification requirements on the muon
candidates. The former change allows the fit model for the B0

s ! µ+µ� signal to be
simplified by removing most of the B0 ! µ+µ� and exclusive background decays that
populate the lower dimuon mass region, while the latter increases the signal selection
e�ciency. Furthermore, instead of performing a fit in bins of BDT, a requirement of BDT
> 0.55 is imposed. All these changes minimise the statistical uncertainty on the measured
e↵ective lifetime. This selection results in a final sample of 42 candidates.

The mass fit includes the B0
s ! µ+µ� and combinatorial background components.

The parameterisations of the mass shapes are the same as used in the branching fraction
analysis. The correlation between the mass and the reconstructed decay time of the
selected candidates is less than 3%.

The variation of the trigger and selection e�ciency with decay time is corrected for in
the fit by introducing an acceptance function, determined from simulated signal events
that are weighted to match the properties of the events seen in data. The use of simulated
events to determine the decay-time acceptance function is validated by measuring the
e↵ective lifetime of B0 ! K+⇡� decays selected in data. The measured e↵ective lifetime
is 1.52 ± 0.03 ps, where the uncertainty is statistical only, consistent with the world
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[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]

VII. SUMMARY OF THE SENSITIVITY FOR SELECTED OBSERVABLES

TABLE XXXVIII: Expected errors on several selected observables with an integrated
luminosity of 5 ab�1 and 50 ab�1 of Belle II data. The current results (from Belle) are also
given. Ls denotes the approximate integrated luminosity at which the statistical precision
of a given observable will match its systematic uncertainty. Errors given in % represent

relative errors.

Observables Belle Belle II Ls

(2014) 5 ab�1 50 ab�1 [ab�1]
sin 2⇥ 0.667± 0.023± 0.012 ±0.012 ±0.008 6
� ±2⇤ ±1⇤

⇤ ±14⇤ ±6⇤ ±1.5⇤

S(B ⌅ ↵K0) 0.90+0.09
�0.19 ±0.053 ±0.018 >50

S(B ⌅ ⌅⌅K0) 0.68± 0.07± 0.03 ±0.028 ±0.011 >50
S(B ⌅ K0

SK0
SK0

S) 0.30± 0.32± 0.08 ±0.100 ±0.033 44
|Vcb| incl. ±2.4% ±1.0% < 1
|Vcb| excl. ±3.6% ±1.8% ±1.4% < 1
|Vub| incl. ±6.5% ±3.4% ±3.0% 2
|Vub| excl. (had. tag.) ±10.8% ±4.7% ±2.4% 20
|Vub| excl. (untag.) ±9.4% ±4.2% ±2.2% 3
B(B ⌅ ⌦⌃) [10�6] 96± 26 ±10% ±5% 46
B(B ⌅ µ⌃) [10�6] < 1.7 5 >> 5 >50
R(B ⌅ D⌦⌃) ±16.5% ±5.6% ±3.4% 4
R(B ⌅ D⇥⌦⌃) ±9.0% ±3.2% ±2.1% 3
B(B ⌅ K⇥+⌃⌃) [10�6] < 40 ±30% >50
B(B ⌅ K+⌃⌃) [10�6] < 55 ±30% >50
B(B ⌅ Xs⇤) [10�6] ±13% ±7% ±6% < 1
ACP (B ⌅ Xs⇤) ±0.01 ±0.005 8
S(B ⌅ K0

S⌥
0⇤) �0.10± 0.31± 0.07 ±0.11 ±0.035 > 50

S(B ⌅ �⇤) �0.83± 0.65± 0.18 ±0.23 ±0.07 > 50
C7/C9 (B ⌅ Xs⇡⇡) ⇤20% 10% 5%
B(Bs ⌅ ⇤⇤) [10�6] < 8.7 ±0.3
B(Bs ⌅ ⌦+⌦�) [10�3] < 2

52

TABLE XXXIX: Continued from previous page.

Observables Belle Belle II Ls

(2014) 5 ab�1 50 ab�1 [ab�1]
B(Ds ⌅ µ⇤) 5.31⇥ 10�3(1± 0.053± 0.038) ±2.9% ±(0.9%-1.3%) > 50
B(Ds ⌅ ⌅⇤) 5.70⇥ 10�3(1± 0.037± 0.054) ±(3.5%-4.3%) ±(2.3%-3.6%) 3-5
yCP [10�2] 1.11± 0.22± 0.11 ±(0.11-0.13) ±(0.05-0.08) 5-8
A� [10�2] �0.03± 0.20± 0.08 ±0.10 ±(0.03-0.05) 7 - 9
AK+K�

CP [10�2] �0.32± 0.21± 0.09 ±0.11 ±0.06 15
A⇥+⇥�

CP [10�2] 0.55± 0.36± 0.09 ±0.17 ± 0.06 > 50
A⇤�

CP [10�2] ± 5.6 ±2.5 ±0.8 > 50
xKS⇥+⇥� [10�2] 0.56± 0.19± 0.07

0.13 ±0.14 ±0.11 3
yKS⇥+⇥� [10�2] 0.30± 0.15± 0.05

0.08 ±0.08 ±0.05 15
|q/p|KS⇥+⇥� 0.90± 0.16

0.15 ±
0.08
0.06 ±0.10 ±0.07 5-6

⇧KS⇥+⇥� [⇥] �6± 11± 4
5 ±6 ±4 10

A⇥0⇥0

CP [10�2] �0.03± 0.64± 0.10 ±0.29 ±0.09 > 50

A
K0

S⇥0

CP [10�2] �0.10± 0.16± 0.09 ±0.08 ±0.03 > 50
Br(D0 ⌅ ��) [10�6] < 1.5 ±30% ±25% 2

⌅ ⌅ µ� [10�9] < 45 < 14.7 < 4.7
⌅ ⌅ e� [10�9] < 120 < 39 < 12

⌅ ⌅ µµµ [10�9] < 21.0 < 3.0 < 0.3
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Table 33 Ratios of decay constants of the B and Bs mesons (for details see Table 32)

Collaboration Refs. Nf Publication
status

Continuum
extrapolation

Chiral
extrapolation

Finite
volume

Renormalization/
matching

Heavy-quark
treatment

fBs / fB+ fBs / fB0 fBs / fB

ETM 13E [456] 2 + 1 + 1 C ⋆ ◦ ◦ ◦ " − − 1.201(25)

HPQCD 13 [52] 2 + 1 + 1 A ⋆ ⋆ ⋆ ◦ " 1.217(8) 1.194(7) 1.205(7)

RBC/UKQCD 14 [53] 2 + 1 A ◦ ◦ ◦ ◦ " 1.223(71) 1.197(50) −
RBC/UKQCD 14A [54] 2 + 1 A ◦ ◦ ◦ ◦ " − − 1.193(48)

RBC/UKQCD 13A [457] 2 + 1 C ◦ ◦ ◦ ◦ " − − 1.20(2)stat
a

HPQCD 12 [55] 2 + 1 A ◦ ◦ ◦ ◦ " − − 1.188(18)

FNAL/MILC 11 [48] 2 + 1 A ◦ ◦ ⋆ ◦ " 1.229(26) − −
RBC/UKQCD 10C [464] 2 + 1 A # # # ◦ " − − 1.15(12)

HPQCD 09 [59] 2 + 1 A ◦ ◦ ◦ ◦ " − − 1.226(26)

ALPHA 14 [57] 2 A ⋆ ⋆ ⋆ ⋆ " − − 1.203(65)

ALPHA 13 [458] 2 C ⋆ ⋆ ⋆ ⋆ " − − 1.195(61)(20)

ETM 13B, 13Cb [20,58] 2 A ⋆ ◦ ⋆ ◦ " − − 1.206(24)

ALPHA 12A [459] 2 C ⋆ ⋆ ⋆ ⋆ " − − 1.13(6)

ETM 12B [460] 2 C ⋆ ◦ ⋆ ◦ " − − 1.19(5)

ETM 11A [182] 2 A ◦ ◦ ⋆ ◦ " − − 1.19(5)

a Statistical errors only
b Update of ETM 11A and 12B
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2 188(7) 227(7) 1.206(23)
2+1 192.0(4.3) 228.4(3.7) 1.201(16)
2+1+1 186(4) 224(5) 1.205(7)

Nf fB [MeV] fBs [MeV] fBs/fB
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Fig. 20 Decay constants of the B and Bs mesons. The values are taken from Table 32 (the fB entry for FNAL/MILC 11 represents fB+ ). The
significance of the colours is explained in Sect. 2. The black squares and grey bands indicate our averages in Eqs. (152), (153) and (154)

Fig. 21 Ratio of the decay constants of the B and Bs mesons. The
values are taken from Table 33 (the fB entry for FNAL/MILC 11 repre-
sents fB+ ). The significance of the colours is explained in Sect. 2. The
black squares and grey bands indicate our averages in Eqs. (152), (153)
and (154)

tuned nonperturbatively in Ref. [476] by requiring that the
spin-averaged Bs-meson mass, MBs = (MBs + 3MB∗

s
)/4,

and the hyperfine splitting, !MBs
= MB∗

s
− MBs equal the

PDG values, and that the lattice rest and kinetic meson masses
are equal. Statistical uncertainties in the tuned parameters are
propagated to the decay constants via jackknife resampling.
Simulations with different values of the RHQ parameters are
used to estimate the remaining uncertainties in the decay con-
stants from the tuning procedure. Regarding valence light-
and strange-quarks, the authors of RBC/UKQCD 14 adopt
exactly the same domain-wall discretization as that in the sea-

quark sector. For each lattice spacing, such valence domain-
wall fermion propagators at six choices of the mass parameter
are generated. These six values straddle between the lightest
and strange sea-quark masses in the gauge-field ensembles,
and several of them correspond to the unitary points. With the
above lattice setting, the heavy-meson-decay constants are
obtained, employing an axial current that is O(a)-improved
to one-loop level. The renormalization of the axial current
is carried out with a mostly nonperturbative procedure pro-
posed in Ref. [477]. Linear interpolations for the heavy-quark
action parameters, as well as the valence strange-quark mass
are then performed on these heavy-meson-decay constants.
As for the chiral extrapolation for the light-quark mass, it
is implemented together with the continuum extrapolation
(linear in a2) adopting SU (2)-HMχPT at NLO.37 The decay
constants, fB+ and fB0 , are determined by chirally extrap-
olating to the physical u- and d-quark masses, respectively,
and their isospin-averaged counterpart, fB , is not reported.
Notice that only the unitary points in the light-quark mass
are used in the central procedure for the chiral extrapola-
tion. This extrapolation serves as the method to confirm that
finite-size effects are at the subpercentage level by comparing
with the prediction of finite-volume HMχPT [469]. Further-
more, since there is no observed sea-quark dependence in
fBs , it is extrapolated to the continuum limit straight after
the interpolation of the valence strange-quark mass. The

37 The authors of RBC/UKQCD 14 claim that using the NLO SU (3)-
HMχPT extrapolation formulae, acceptable fits for the decay constants
can be found. On the other hand, no reasonable fit for the ratio, fBs / fB ,
can result from this procedure, because this ratio has smaller statistical
errors. The NLO SU (3)-HMχPT predictions are then used as a means
to estimate the systematic effects arising from the chiral-continuum
extrapolation.
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VII. SUMMARY OF THE SENSITIVITY FOR SELECTED OBSERVABLES

TABLE XXXVIII: Expected errors on several selected observables with an integrated
luminosity of 5 ab�1 and 50 ab�1 of Belle II data. The current results (from Belle) are also
given. Ls denotes the approximate integrated luminosity at which the statistical precision
of a given observable will match its systematic uncertainty. Errors given in % represent

relative errors.

Observables Belle Belle II Ls

(2014) 5 ab�1 50 ab�1 [ab�1]
sin 2⇥ 0.667± 0.023± 0.012 ±0.012 ±0.008 6
� ±2⇤ ±1⇤

⇤ ±14⇤ ±6⇤ ±1.5⇤

S(B ⌅ ↵K0) 0.90+0.09
�0.19 ±0.053 ±0.018 >50

S(B ⌅ ⌅⌅K0) 0.68± 0.07± 0.03 ±0.028 ±0.011 >50
S(B ⌅ K0

SK0
SK0

S) 0.30± 0.32± 0.08 ±0.100 ±0.033 44
|Vcb| incl. ±2.4% ±1.0% < 1
|Vcb| excl. ±3.6% ±1.8% ±1.4% < 1
|Vub| incl. ±6.5% ±3.4% ±3.0% 2
|Vub| excl. (had. tag.) ±10.8% ±4.7% ±2.4% 20
|Vub| excl. (untag.) ±9.4% ±4.2% ±2.2% 3
B(B ⌅ ⌦⌃) [10�6] 96± 26 ±10% ±5% 46
B(B ⌅ µ⌃) [10�6] < 1.7 5 >> 5 >50
R(B ⌅ D⌦⌃) ±16.5% ±5.6% ±3.4% 4
R(B ⌅ D⇥⌦⌃) ±9.0% ±3.2% ±2.1% 3
B(B ⌅ K⇥+⌃⌃) [10�6] < 40 ±30% >50
B(B ⌅ K+⌃⌃) [10�6] < 55 ±30% >50
B(B ⌅ Xs⇤) [10�6] ±13% ±7% ±6% < 1
ACP (B ⌅ Xs⇤) ±0.01 ±0.005 8
S(B ⌅ K0

S⌥
0⇤) �0.10± 0.31± 0.07 ±0.11 ±0.035 > 50

S(B ⌅ �⇤) �0.83± 0.65± 0.18 ±0.23 ±0.07 > 50
C7/C9 (B ⌅ Xs⇡⇡) ⇤20% 10% 5%
B(Bs ⌅ ⇤⇤) [10�6] < 8.7 ±0.3
B(Bs ⌅ ⌦+⌦�) [10�3] < 2

52

TABLE XXXIX: Continued from previous page.

Observables Belle Belle II Ls

(2014) 5 ab�1 50 ab�1 [ab�1]
B(Ds ⌅ µ⇤) 5.31⇥ 10�3(1± 0.053± 0.038) ±2.9% ±(0.9%-1.3%) > 50
B(Ds ⌅ ⌅⇤) 5.70⇥ 10�3(1± 0.037± 0.054) ±(3.5%-4.3%) ±(2.3%-3.6%) 3-5
yCP [10�2] 1.11± 0.22± 0.11 ±(0.11-0.13) ±(0.05-0.08) 5-8
A� [10�2] �0.03± 0.20± 0.08 ±0.10 ±(0.03-0.05) 7 - 9
AK+K�

CP [10�2] �0.32± 0.21± 0.09 ±0.11 ±0.06 15
A⇥+⇥�

CP [10�2] 0.55± 0.36± 0.09 ±0.17 ± 0.06 > 50
A⇤�

CP [10�2] ± 5.6 ±2.5 ±0.8 > 50
xKS⇥+⇥� [10�2] 0.56± 0.19± 0.07

0.13 ±0.14 ±0.11 3
yKS⇥+⇥� [10�2] 0.30± 0.15± 0.05

0.08 ±0.08 ±0.05 15
|q/p|KS⇥+⇥� 0.90± 0.16

0.15 ±
0.08
0.06 ±0.10 ±0.07 5-6

⇧KS⇥+⇥� [⇥] �6± 11± 4
5 ±6 ±4 10

A⇥0⇥0

CP [10�2] �0.03± 0.64± 0.10 ±0.29 ±0.09 > 50

A
K0

S⇥0

CP [10�2] �0.10± 0.16± 0.09 ±0.08 ±0.03 > 50
Br(D0 ⌅ ��) [10�6] < 1.5 ±30% ±25% 2

⌅ ⌅ µ� [10�9] < 45 < 14.7 < 4.7
⌅ ⌅ e� [10�9] < 120 < 39 < 12

⌅ ⌅ µµµ [10�9] < 21.0 < 3.0 < 0.3

53
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Table 36 Results for the B → πℓν semileptonic form factor. The quantity #ζ is defined in Eq. (173); the quoted values correspond to q1 = 4 GeV, q2 = qmax, and they are given in ps−1

Collaboration Refs. Nf Publication
status

Continuum
extrapolation

Chiral
extrapolation

Finite volume Renormalization Heavy-quark
treatment

z-Parameterization #ζ Bπ

FNAL/MILC 15 [504] 2 + 1 A ⋆ ◦ ⋆ ◦ " BCL n/a

RBC/UKQCD 15 [505] 2 + 1 A ◦ ◦ ◦ ◦ " BCL 1.77(34)

HPQCD 06 [503] 2 + 1 A ◦ ◦ ◦ ◦ " n/a 2.07(41)(39)
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Table 37 Results for the Bs → Kℓν semileptonic form factor

Collaboration Refs. Nf Publication
status

Continuum
extrapolation

Chiral
extrapolation

Finite
volume

Renormalization Heavy-quark
treatment

z-Parameterization

RBC/UKQCD 15 [505] 2 + 1 A ◦ ◦ ◦ ◦ ! BCL

HPQCD 14 [511] 2 + 1 A ◦ ◦ ◦ ◦ ! BCLa

a Results from modified z-expansion

fore, following the procedure we adopted for the B → π

case, we present a joint fit to the vector and scalar form
factors and implement explicitly the q2 = 0 constraint by
expressing the coefficient b0

N0−1 in terms of all others.
For the fits we employ a BCL ansatz with t+ = (MBs +

MK±)2 ≃34.35 GeV2 and t0 = (MBs + MK±)(
√
MBs −√

MK±)2 ≃15.27 GeV2. Our pole factors will contain a
single pole in both the vector and scalar channels, for which
we take the mass values MB∗ = 5.325 GeV and MB∗(0+) =
5.65 GeV.48

We quote as our preferred result the outcome of the N+ =
N 0 = 3 BCL fit:

Bs → K (N f = 2 + 1)

Central values Correlation matrix

a+0 0.360(14) 1 0.098 −0.216 0.730 0.345

a+1 −0.828(83) 0.098 1 0.459 0.365 0.839

a+2 1.11(55) −0.216 0.459 1 0.263 0.6526

a0
0 0.233(10) 0.730 0.365 0.263 1 0.506

a0
1 0.197(81) 0.345 0.839 0.652 0.506 1

where the uncertainties on a0 and a1 encompass the central
values obtained from O(z2) fits, and thus adequately reflect
the systematic uncertainty on those series coefficients.49

These can be used as the averaged FLAG results for the
lattice-computed form factors f+(q2) and f0(q2). The coef-
ficient a+3 can be obtained from the values for a+0 – a+2 using
Eq. (184). The fit is illustrated in Fig. 25.

8.3.4 Form factors for rare and radiative B-semileptonic
decays to light flavours

Lattice-QCD input is also available for some exclusive
semileptonic decay channels involving neutral-current b →

48 The values of the scalar resonance mass in Bπ scattering taken
by HPQCD and RBC/UKQCD are MB∗(0+) = 5.6794(10) GeV and
MB∗(0+) = 5.63 GeV, respectively. We use an average of the two
values, and have checked that changing it by ∼ 1% has a negligible
impact on the fit results.
49 In this case, O(z4) fits with just two degrees of freedom, are signifi-
cantly less stable. Still, the results for a+0 and a+1 are always compatible
with the ones at O(z2) and O(z3) within one standard deviation.

Fig. 25 The form factors (1 − q2/m2
B∗ ) f+(q2) and (1 −

q2/m2
B∗(0+)) f0(q

2) for Bs → Kℓν plotted versus z. (See text for a
discussion of the datasets.) The grey and orange bands display our pre-
ferred N+ = N 0 = 3 BCL fit (five parameters) to the plotted data with
errors

q transitions at the quark level, where q = d, s. Being for-
bidden at tree level in the SM, these processes allow for
stringent tests of potential new physics; simple examples are
B → K ∗γ , B → K (∗)ℓ+ℓ−, or B → πℓ+ℓ−where the B
meson (and therefore the light meson in the final state) can
be either neutral or charged.

The corresponding SM effective weak Hamiltonian is
considerably more complicated than the one for the tree-
level processes discussed above: after neglecting top-quark
effects, as many as ten dimension-six operators formed by
the product of two hadronic currents or one hadronic and one
leptonic current appear.50 Three of the latter, coming from
penguin and box diagrams, dominate at short distances and
have matrix elements that, up to small QED corrections, are
given entirely in terms of B → (π, K , K ∗) form factors.
The matrix elements of the remaining seven operators can be
expressed, up to power corrections whose size is still unclear,
in terms of form factors, decay constants and light-cone dis-
tribution amplitudes (for the π , K , K ∗ and B mesons) by
employing OPE arguments (at large di-lepton invariant mass)
and results from Soft Collinear Effective Theory (at small
di-lepton invariant mass). In conclusion, the most important
contributions to all of these decays are expected to come
from matrix elements of current operators (vector, tensor,

50 See, e.g., Ref. [513] and references therein.
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BaBar, PRL109,101802(2012)
Belle, PRD92,072014(2015)
LHCb, PRL115,111803(2015)
Belle, PRD94,072007(2016)
Belle, arXiv:1612.00529
Average

SM Predictions

 = 1.0 contours2χΔ

R(D)=0.300(8) HPQCD (2015)
R(D)=0.299(11) FNAL/MILC (2015)
R(D*)=0.252(3) S. Fajfer et al. (2012)

HFAG

Moriond 2017

) = 67.4%2χP(

HFAG
Moriond EW 2017

b→c semileptonic

R(D*)
0.2 0.3 0.4

BaBar had. tag
 0.02± 0.02 ±0.33 

Belle had. tag
 0.01± 0.04 ±0.29 

LHCb
 0.03± 0.03 ±0.34 

Belle sl.tag
 0.01± 0.03 ±0.30 

Belle (hadronic tau)
 0.027± 0.035 ±0.270 

Average 
 0.008± 0.015 ±0.310 

S.Fajfer et al. (2012) 
 0.003±0.252 

HFAG
MoriondEW 2017

/dof = 0.4/ 1 (CL = 52.00 %)2χ

R(D)
0.2 0.4 0.6

BaBar had. tag
 0.04± 0.06 ±0.44 

Belle had. tag
 0.03± 0.06 ±0.38 

Average 
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FNAL/MILC (2015)
 0.011±0.299 

HPQCD (2015) 
 0.008±0.300 

HFAG
MoriondEW 2016

/dof = 0.4/ 1 (CL = 52.00 %)2χ
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VII. SUMMARY OF THE SENSITIVITY FOR SELECTED OBSERVABLES

TABLE XXXVIII: Expected errors on several selected observables with an integrated
luminosity of 5 ab�1 and 50 ab�1 of Belle II data. The current results (from Belle) are also
given. Ls denotes the approximate integrated luminosity at which the statistical precision
of a given observable will match its systematic uncertainty. Errors given in % represent

relative errors.

Observables Belle Belle II Ls

(2014) 5 ab�1 50 ab�1 [ab�1]
sin 2⇥ 0.667± 0.023± 0.012 ±0.012 ±0.008 6
� ±2⇤ ±1⇤

⇤ ±14⇤ ±6⇤ ±1.5⇤

S(B ⌅ ↵K0) 0.90+0.09
�0.19 ±0.053 ±0.018 >50

S(B ⌅ ⌅⌅K0) 0.68± 0.07± 0.03 ±0.028 ±0.011 >50
S(B ⌅ K0

SK0
SK0

S) 0.30± 0.32± 0.08 ±0.100 ±0.033 44
|Vcb| incl. ±2.4% ±1.0% < 1
|Vcb| excl. ±3.6% ±1.8% ±1.4% < 1
|Vub| incl. ±6.5% ±3.4% ±3.0% 2
|Vub| excl. (had. tag.) ±10.8% ±4.7% ±2.4% 20
|Vub| excl. (untag.) ±9.4% ±4.2% ±2.2% 3
B(B ⌅ ⌦⌃) [10�6] 96± 26 ±10% ±5% 46
B(B ⌅ µ⌃) [10�6] < 1.7 5 >> 5 >50
R(B ⌅ D⌦⌃) ±16.5% ±5.6% ±3.4% 4
R(B ⌅ D⇥⌦⌃) ±9.0% ±3.2% ±2.1% 3
B(B ⌅ K⇥+⌃⌃) [10�6] < 40 ±30% >50
B(B ⌅ K+⌃⌃) [10�6] < 55 ±30% >50
B(B ⌅ Xs⇤) [10�6] ±13% ±7% ±6% < 1
ACP (B ⌅ Xs⇤) ±0.01 ±0.005 8
S(B ⌅ K0

S⌥
0⇤) �0.10± 0.31± 0.07 ±0.11 ±0.035 > 50

S(B ⌅ �⇤) �0.83± 0.65± 0.18 ±0.23 ±0.07 > 50
C7/C9 (B ⌅ Xs⇡⇡) ⇤20% 10% 5%
B(Bs ⌅ ⇤⇤) [10�6] < 8.7 ±0.3
B(Bs ⌅ ⌦+⌦�) [10�3] < 2
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TABLE XXXIX: Continued from previous page.

Observables Belle Belle II Ls

(2014) 5 ab�1 50 ab�1 [ab�1]
B(Ds ⌅ µ⇤) 5.31⇥ 10�3(1± 0.053± 0.038) ±2.9% ±(0.9%-1.3%) > 50
B(Ds ⌅ ⌅⇤) 5.70⇥ 10�3(1± 0.037± 0.054) ±(3.5%-4.3%) ±(2.3%-3.6%) 3-5
yCP [10�2] 1.11± 0.22± 0.11 ±(0.11-0.13) ±(0.05-0.08) 5-8
A� [10�2] �0.03± 0.20± 0.08 ±0.10 ±(0.03-0.05) 7 - 9
AK+K�

CP [10�2] �0.32± 0.21± 0.09 ±0.11 ±0.06 15
A⇥+⇥�

CP [10�2] 0.55± 0.36± 0.09 ±0.17 ± 0.06 > 50
A⇤�

CP [10�2] ± 5.6 ±2.5 ±0.8 > 50
xKS⇥+⇥� [10�2] 0.56± 0.19± 0.07

0.13 ±0.14 ±0.11 3
yKS⇥+⇥� [10�2] 0.30± 0.15± 0.05

0.08 ±0.08 ±0.05 15
|q/p|KS⇥+⇥� 0.90± 0.16

0.15 ±
0.08
0.06 ±0.10 ±0.07 5-6

⇧KS⇥+⇥� [⇥] �6± 11± 4
5 ±6 ±4 10

A⇥0⇥0

CP [10�2] �0.03± 0.64± 0.10 ±0.29 ±0.09 > 50

A
K0

S⇥0

CP [10�2] �0.10± 0.16± 0.09 ±0.08 ±0.03 > 50
Br(D0 ⌅ ��) [10�6] < 1.5 ±30% ±25% 2

⌅ ⌅ µ� [10�9] < 45 < 14.7 < 4.7
⌅ ⌅ e� [10�9] < 120 < 39 < 12

⌅ ⌅ µµµ [10�9] < 21.0 < 3.0 < 0.3
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Table 39 Lattice results for the B → D∗ℓν, B → Dℓν, and Bs → Dsℓν semileptonic form factors and R(D)

Collaboration Refs. Nf Publication
status

Continuum
extrapolation

Chiral
extrapolation

Finite volume Renormalization Heavy-quark
treatment

w = 1 form factor/ratio

FNAL/MILC 14 [539] 2 + 1 A ⋆ ◦ ⋆ ◦ " F B→D∗
(1) 0.906(4)(12)

HPQCD 15 [541] 2 + 1 A ◦ ◦ ◦ ◦ " GB→D(1) 1.035(40)

FNAL/MILC 15C [540] 2 + 1 A ⋆ ◦ ⋆ ◦ " GB→D(1) 1.054(4)(8)

HPQCD 15 [541] 2 + 1 A ◦ ◦ ◦ ◦ " R(D) 0.300(8)

FNAL/MILC 15C [540] 2 + 1 A ⋆ ◦ ⋆ ◦ " R(D) 0.299(11)

Atoui 13 [537] 2 A ⋆ ◦ ⋆ – " GB→D(1) 1.033(95)

Atoui 13 [537] 2 A ⋆ ◦ ⋆ – " GBs→Ds (1) 1.052(46)
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Table 41 Results for |Vcb|. When two errors are quoted in our averages,
the first one comes from the lattice form factor, and the second from
the experimental measurement. The HFAG inclusive average obtained
in the kinetic scheme from Ref. [197] is shown for comparison

From |Vcb| × 103

Our average for N f = 2 + 1 B → D∗ℓν 39.27(56)(49)

Our average for N f = 2 + 1 B → Dℓν 40.1(1.0)

Our average for N f = 2 B → Dℓν 41.0(3.8)(1.5)

HFAG inclusive average B → Xcℓν 42.46(88)

Fig. 29 Lattice and experimental data for f B→D
+ (q2) and f B→D

0 (q2)
versus z. Green symbols denote lattice-QCD points included in the fit,
while blue and indigo points show experimental data divided by the
value of |Vcb| obtained from the fit. The grey and orange bands display
the preferred N+ = N 0 = 3 BCL fit (six parameters) to the lattice-QCD
and experimental data with errors

9 The strong coupling αs

9.1 Introduction

The strong coupling ḡ(µ) defined at scale µ, plays a key role
in the understanding of QCD and in its application for col-
lider physics. For example, the parametric uncertainty from
αs is one of the dominant sources of uncertainty in the Stan-
dard Model prediction for the H → bb̄ partial width, and
the largest source of uncertainty for H → gg. Thus higher
precision determinations of αs are needed to maximize the
potential of experimental measurements at the LHC, and for
high-precision Higgs studies at future colliders [556– 558].
The value of αs also yields one of the essential boundary
conditions for completions of the standard model at high
energies.

In order to determine the running coupling at scale µ

αs(µ) =
ḡ2(µ)

4π
, (215)

we should first “measure” a short-distance quantityQ at scale
µ either experimentally or by lattice calculations and then
match it with a perturbative expansion in terms of a running
coupling, conventionally taken as αMS(µ),

Q(µ) = c1αMS(µ)+ c2αMS(µ)
2 + · · · . (216)

The essential difference between continuum determinations
of αs and lattice determinations is the origin of the values of
Q in Eq. (216).

The basis of continuum determinations are experimen-
tally measurable cross sections from which Q is defined.
These cross sections have to be sufficiently inclusive and at

Fig. 30 Left Summary of |Vub| determined using: (i) the B-meson lep-
tonic decay branching fraction, B(B− → τ − ν̄), measured at the Belle
and BaBar experiments, and our averages for fB from lattice QCD; and
(ii) the various measurements of the B → πℓν decay rates by Belle

and BaBar, and our averages for lattice determinations of the relevant
vector form factor f+(q2).Right Same for determinations of |Vcb| using
semileptonic decays. The HFAG inclusive results are from Ref. [197]
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Table 40 Experimental measurements for B(B− → τ−ν̄). The first
error on each result is statistical, while the second error is systematic

Collaboration Tagging method B(B− → τ−ν̄) × 104

Belle [550] Hadronic 0.72+0.27
−0.25 ± 0.11

Belle [452] Semileptonic 1.25 ± 0.28 ± 0.27

BaBar [451] Hadronic 1.83+0.53
−0.49 ± 0.24

BaBar [551] Semileptonic 1.7 ± 0.8 ± 0.2

similar to R(D) (cf. Sect. 8.4) between the τ and light lepton
channels are also available.

8.6 Determination of |Vub|

We now use the lattice-determined Standard Model tran-
sition amplitudes for leptonic (Sect. 8.1) and semileptonic
(Sect. 8.3) B-meson decays to obtain exclusive determi-
nations of the CKM matrix element |Vub|. In this sec-
tion, we describe the aspect of our work that involves
experimental input for the relevant charged-current exclu-
sive decay processes. The relevant formulae are Eqs. (147)
and (172). Among leptonic channels the only input comes
from B → τντ , since the rates for decays to e and µ

have not yet been measured. In the semileptonic case we
only consider B → πℓν transitions (experimentally mea-
sured for ℓ = e, µ). As discussed in Sects. 8.3 and 8.5,
there are now lattice predictions for the rates of the decays
Bs → Kℓν and %b → p ℓν; however, in the former
case the process has not been experimentally measured yet,
while in the latter case the only existing lattice computation
does not meet FLAG requirements for controlled systemat-
ics.

We first investigate the determination of |Vub| through
the B → τντ transition. This is the only experimen-
tally measured leptonic decay channel of the charged B-
meson. After the publication of the previous FLAG report [2]
in 2013, the experimental measurements of the branching
fraction of this channel, B(B− → τ−ν̄), were updated.
While the results from the BaBar Collaboration remain
the same as those reported before the end of 2013, the
Belle Collaboration reanalysed the data and reported that
the value of B(B− → τ−ν̄) obtained with semilep-
tonic tags changed from 1.54+0.380.29

−0.37−0.31 × 10−4 to 1.25 ±
0.28 ± 0.27 × 10−4 [452]. Table 40 summarizes the cur-
rent status of experimental results for this branching frac-
tion.

It is obvious that all the measurements listed in Table 40
have significance less than 5σ , and the uncertainties are
dominated by statistical errors. These measurements lead to
the averages of experimental measurements for B(B− →
τ ν̄) [451,452],

B(B− → τ ν̄) = 0.91 ± 0.22 from Belle,

= 1.79 ± 0.48 from BaBar. (207)

We notice that minor tension between results from the two
collaborations can be observed, even in the presence of large
errors. Despite this situation, in Ref. [184] the Particle Data
Group performed a global average of B(B− → τ ν̄) employ-
ing all the information in Table 40. Here we choose to proceed
with the strategy of quoting different values of |Vub| as deter-
mined using inputs from the Belle and the BaBar experiments
shown in Eq. (207), respectively.

Combining the results in Eq. (207) with the experimental
measurements of the mass of the τ -lepton and the B-meson
lifetime and mass, the Particle Data Group presented [184]

|Vub| fB = 0.72 ± 0.09 MeV from Belle,

= 1.01 ± 0.14 MeV from BaBar, (208)

which can be used to extract |Vub|.
N f = 2 Belle B → τντ : |Vub| = 3.83(48)(15) × 10−3,

N f = 2 + 1 Belle B → τντ : |Vub| = 3.75(47)(9) × 10−3,

N f = 2 + 1 + 1 Belle B → τντ : |Vub| = 3.87(48)(9) × 10−3;
N f = 2 Babar B → τντ : |Vub| = 5.37(74)(21) × 10−3,

N f = 2 + 1 Babar B → τντ : |Vub| = 5.26(73)(12) × 10−3,

N f = 2 + 1 + 1 Babar B → τντ : |Vub| = 5.43(75)(12) × 10−3.

(209)

where the first error comes from experiment and the second
comes from the uncertainty in fB .

Let us now turn our attention to semileptonic decays. The
experimental value of |Vub| f+(q 2) can be extracted from
the measured branching fractions for B0 → π ± ℓν and/or
B± → π0ℓν applying Eq. (172);57 |Vub| can then be deter-
mined by performing fits to the constrained BCL z parame-
terization of the form factor f+(q 2) given in Eq. (185). This
can be done in two ways: one option is to perform sepa-
rate fits to lattice and experimental results, and extract the
value of |Vub| from the ratio of the respective a0 coeffi-
cients; a second option is to perform a simultaneous fit to
lattice and experimental data, leaving their relative normal-
ization |Vub| as a free parameter. We adopt the second strat-
egy, because it combines the lattice and experimental input
in a more efficient way, leading to a smaller uncertainty on
|Vub|.

The available state-of-the-art experimental input, as em-
ployed, e.g., by HFAG, consists of five datasets: three
untagged measurements by BaBar (6-bin [552] and 12-
bin [439]) and Belle [438], all of which assume isospin sym-
metry and provide combined B0 → π− and B+ → π0

data; and the two tagged Belle measurements of B̄0 → π+

57 Since ℓ = e, µ the contribution from the scalar form factor in
Eq. (172) is negligible.
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(13-bin) and B− → π0 (7-bin ) [553]. In the previous
version of the FLAG review [2] we only used the 13-
bin Belle and 12-bin BaBar datasets, and performed sep-
arate fits to them due to the lack of information on sys-
tematic correlations between them. Now, however, we will
follow established practice and perform a combined fit to
all the experimental data. This is based on the existence
of new information as regards cross-correlations, which
allows us to obtain a meaningful final error estimate.58

The lattice input dataset will be the same as discussed in
Sect. 8.3.

We perform a constrained BCL fit of the vector and scalar
form factors (this is necessary in order to take into account
the f+(q 2 = 0) = f0(q 2) constraint) together with the com-
bined experimental datasets. We find that the error on Vub
stabilizes for (N+ = N 0 = 3). The result of the combined
fit is

B → πℓν (N f = 2 + 1)

Central values Correlation matrix

Vub × 103 3.73 (14) 1 0.852 0.345 −0.374 0.211 0.247

a+0 0.414 (12) 0.852 1 0.154 −0.456 0.259 0.144

a+1 −0.494 (44) 0.345 0.154 1 −0.797 −0.0995 0.223

a+2 −0.31 (16) −0.374 −0.456 −0.797 1 0.0160 −0.0994

a0
0 0.499 (19) 0.211 0.259 −0.0995 0.0160 1 −0.467

a0
1 −1.426 (46) 0.247 0.144 0.223 −0.0994 −0.467 1

Figure 28 shows both the lattice and the experimental data
for (1 − q 2/m2

B∗) f+(q 2) as a function of z(q 2), together
with our preferred fit; experimental data have been rescaled
by the resulting value for |Vub|2. It is worth noting the good
consistency between the form factor shapes from lattice and
experimental data. This can be quantified, e.g., by com-
puting the ratio of the two leading coefficients in the con-
strained BCL parameterization: the fit to lattice form fac-
tors yields a+1 /a+0 = −1.67(12) (cf. the results presented
in Sect. 8.3.2), while the above lattice+experiment fit yields
a+1 /a+0 = −1.193(16).

We plot the values of |Vub| we have obtained in Fig. 30,
where the determination through inclusive decays by the
Heavy Flavour Averaging Group (HFAG) [197], yielding
|Vub| = 4.62(20)(29) × 10−3, is also shown for compar-
ison. In this plot the tension between the BaBar and the
Belle measurements of B(B− → τ−ν̄) is manifest. As dis-
cussed above, it is for this reason that we do not extract |Vub|
through the average of results for this branching fraction from
these two collaborations. In fact this means that a reliable
determination of |Vub| using information from leptonic B-
meson decays is still absent; the situation will only clearly

58 See, e.g., Sect. V.D of [504] for a detailed discussion.

Fig. 28 Lattice and experimental data for (1−q 2/m2
B∗ ) f B→π

+ (q 2) and
f B→π
0 (q 2) versus z.Green symbols denote lattice-QCD points included

in the fit, while blue and indigo points show experimental data divided
by the value of |Vub| obtained from the fit. The grey and orange bands
display the preferred N+ = N 0 = 3 BCL fit (six parameters) to the
lattice-QCD and experimental data with errors

improve with the more precise experimental data expected
from Belle II. The value for |Vub| obtained from semileptonic
B decays for N f = 2 + 1, on the other hand, is significantly
more precise than both the leptonic and the inclusive deter-
minations, and exhibits the well-known ∼ 3σ tension with
the latter.

8.7 Determination of |Vcb|

We will now use the lattice QCD results for the B → D(∗)ℓν
form factors in order to obtain determinations of the CKM
matrix element |Vcb| in the Standard Model. The relevant
formulae are given in Eq. (189).

Let us summarize the lattice input that satisfies FLAG
requirements for the control of systematic uncertainties, dis-
cussed in Sect. 8.4. In the (experimentally more precise)
B → D∗ℓν channel, there is only one N f = 2 + 1 lat-
tice computation of the relevant form factor F B→D∗

at zero
recoil. Concerning the B → Dℓν channel, for N f = 2 there
is one determination of the relevant form factorGB→D at zero
recoil;59 while for N f = 2 + 1 there are two determinations

59 The same work provides GBs→Ds , for which there are, however, no
experimental data.
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q2 dependence of form factors

[from H Ma’s talk on behalf of BESIII at CHARM 2015]

13

Extracted Parameters of Form Factors

D0�K-e+v D0��-e+v

fK
+(0)|Vcs| 0.7209�0.0022�0.0033 f�+(0)|Vcd| 0.1475�0.0014�0.0005

Simple Pole
Mpole 1.9207�0.0103�0.0069 Mpole 1.9114�0.0118�0.0038

fK
+(0)|Vcs| 0.7163�0.0024�0.0034 f�+(0)|Vcd| 0.1437�0.0017�0.0008

Mod. Pole
� 0.3088�0.0195�0.0129 � 0.2794�0.0345�0.0113

fK
+(0)|Vcs| 0.7139�0.0023�0.0034 f�+(0)|Vcd| 0.1415�0.0016�0.0006

ISGW2
rISGW2 1.6000�0.0141�0.0091 rISGW2 2.0688�0.0394�0.0124

fK
+(0)|Vcs| 0.7172�0.0025�0.0035 f�+(0)|Vcd| 0.1435�0.0018�0.0009

Series.2.Par
r1 -2.2278�0.0864�0.0575 r1 -2.0365�0.0807�0.0260

fK
+(0)|Vcs| 0.7196�0.0035�0.0041 f�+(0)|Vcd| 0.1420�0.0024�0.0010

r1 -2.3331�0.1587�0.0804 r1 -1.8434�0.2212�0.0690Series.3.Par

r2 3.4223�3.9090�2.4092 r2 -1.3871�1.4615�0.4677

D0��-e+vD0�K-e+v



various parametrisations based on pole dominance: Bećirević-Kaidalov, 
Ball-Zwicky, Hill, ... difficult to systematically improve precision

z-parametrisations proposed to solve this issue (almost) rigourously by 
exploiting unitarity and crossing symmetry

[Bečirević, Kaidalov PLB 478 (2000) 417]
[Ball, Zwicky PRD 71 (2005) 014015]

[Hill PRD 73 (2006) 014012]

[Okubo PRD 3 (1971) 2807, 4 (1971) 725]
[Bourrely, Machet, de Rafael NPB 189 (1981) 157]

[Boyd, Grinstein, Lebed PRL 74 (1995) 4603]
[Lellouch NPB 479 (1996) 353]

[Bourrely, Caprini, Micu EJPC 27 (2003) 439]
[Arnesen, Grinstein, Rothstein, Stewart PRL 95 (2005) 071802]

[Becher, Hill PLB 633 (2006) 61]
[Flynn, Nieves PRD 75 (2007) 013008]

[Bourrely, Caprini, Lellouch PRD 79 (2009) 013008]

a benchmark case: f+(B ! ⇥l�)
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[Boyd, Grinstein, Lebed PRL 74 (1995) 4603]

[Bourrely, Caprini, Lellouch PRD 79 (2009) 013008]
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crucial for optimal use:
- all sub-threshold poles included in Blaschke factor 
- fixed kinematics (coefficients implicitly depend on quark masses)

(recommended by FLAG)

a benchmark case: f+(B ! ⇥l�)



does the unitarity bound apply?

• using a z-parametrisation as part of a global fit including a, mq, ...
(modified z-expansion) tricky 
- poles can cross threshold as quark masses change 
- complicated entanglement of (mq,a) dependence (complete form 

factor vs. z-parametrisation coefficient) 

• pole structure not always well-known (scalar channels, D decay), 
or complicated (Λb decay) 

• missing sub-threshold poles may imply convergence breakdown 
(proton charge radius analysis by Hill, Paz et al, D semileptonic 
decay data by Bećirević et al)

[Hill, Paz PRD 82 (2010) 113005]
[Bhattacharya, Hill, Paz PRD 84 (2011) 073006]

[Epstein, Paz, Roy PRD 90 (2014) 074027]
[Bećirević et al arXiv:1407.1019]
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Fig. 17 Decay constants of the D and Ds mesons [values in Table 28] and Eqs. 127–129]. The significance of the colours is explained in Sect. 2.
The black squares and grey bands indicate our averages

dition Lmπ ≥ 4 is always met. Chiral/continuum extrapo-
lations are performed adopting either a fit ansatz linear in
m2

π and a2 or, for fD , by using a fit form inspired by par-
tially quenched Heavy Meson Chiral Perturbation Theory
(HMχPT). Together with the scale setting, these extrapola-
tions dominate the final systematic errors. As the scale is set
through another decay constant ( fK ), what is actually com-
puted is fD(s)/ fK and most of the uncertainty on the renor-
malization constant of the axial current drops out. Since the
results only appeared as a proceeding contribution to the Lat-
tice 2013 conference, they do not enter the final averages.

The TWQCD Collaboration reported in Ref. [424] about
the first computation of the masses and decay constants of
pseudoscalar D(s) mesons in two-flavour lattice QCD with
domain-wall fermions. This is a calculation performed at one
lattice spacing only (a ≈ 0.061fm) and in a rather small vol-
ume (243 × 48, with Mπ,minL ≈ 1.9). For these reasons the
quoted values of the decay constants do not qualify for the
averages and should be regarded as the result of a pilot study
in view of a longer and on-going effort, in which the remain-
ing systematics will be addressed through computations at
different volumes as well as several lattice spacings.

The N f = 2 averages therefore coincide with those in
the previous FLAG review and are given by the values in
ETM 13B, namely

fD = 208(7) MeV Ref. [20],

N f = 2 : fDs = 250(7) MeV Ref. [20], (127)

fDs/ fD = 1.20(2) Ref. [20].

The situation is quite similar for the N f = 2 + 1 case,
where only one new result, and for fDs only, appeared in
the last 2 years. The χQCD Collaboration used (valence)

overlap fermions on a sea of 2 + 1 flavours of domain-wall
fermions (corresponding to the gauge configurations gener-
ated by RBC/UKQCD and described in Ref. [144]) to com-
pute the charm- and the strange-quark masses as well as fDs .
The decay constant is obtained by combining the determina-
tions from either an exactly conserved PCAC Ward identity
or from the matrix element of the local axial current. The
latter needs to be renormalized and the corresponding renor-
malization constant has been determined nonperturbatively
in Ref. [425]. The computation of fDs has been performed
at two lattice spacings (a = 0.113 and a = 0.085 fm) with
the value of the bare charm-quark mass, in lattice units, rang-
ing between 0.3 and 0.75. Pion masses reach down to about
300 MeV and Mπ,minL is always larger than 4. The chi-
ral extrapolation and lattice artefacts are responsible for the
largest systematic uncertainties, both being estimated to be
around 1%, on top of a statistical error of about the same
size. The lattice spacing dependence is estimated by chang-
ing the functional form in the chiral/continuum extrapolation
by terms of O(a4). As the authors point out, it will be possi-
ble to make a more accurate assessment of the discretization
errors only once the planned ensembles at a finer lattice spac-
ing are available.

The RBC/UKQCD Collaboration presented intermediate
results for the D and Ds decay constants with 2+ 1 flavours
of Möbius domain-wall fermions in Ref. [426]. Since the
analysis has not been completed yet, no values for fD(s) are
quoted.

Summarizing the Nf = 2+1 case, the average for fD did
not change with respect to the last review and it is obtained
from the HPQCD 12A and the FNAL/MILC 11 determina-
tions, whereas for fDs the value changes in order to include
the result from the χQCD Collaboration (together with the

123
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Fig. 18 D → πℓν and D → Kℓν semileptonic form factors at q 2 =
0. The HPQCD result for f Dπ

+ (0) is from HPQCD 11, the one for
f DK
+ (0) represents HPQCD 10B (see Table 29)

we obtain the results for the CKM matrix elements |Vcd|
and |Vcs | in Table 30. For our preferred values we use the
averaged N f = 2 and N f = 2 + 1 results for fD and fDs in
Eqs. (127), (128) and (129). We obtain

leptonic decays, N f = 2 + 1 + 1 : |Vcd| = 0.2164(14)(49),

|Vcs | = 1.008(5)(16), (136)
leptonic decays, N f = 2 + 1 : |Vcd| = 0.2195(35)(50),

|Vcs | = 1.004(9)(16), (137)
leptonic decays, N f = 2 : |Vcd| = 0.2207(74)(50),

|Vcs | = 1.004(28)(16), (138)

where the errors shown are from the lattice calculation and
experiment (plus nonlattice theory), respectively. For the

N f = 2 + 1 and the N f = 2 + 1 + 1 determinations, the
uncertainties from the lattice-QCD calculations of the decay
constants are smaller than the experimental uncertainties in
the branching fractions. Although the results for |Vcs | are
slightly larger than one, they are consistent with unity within
errors.

The leptonic determinations of these CKM matrix ele-
ments have uncertainties that are reaching the few-percent
level. However, higher-order electroweak and hadronic cor-
rections to the rate have not been computed for the case of
D(s) mesons, whereas they have been estimated to be around
1–2% for pion and kaon decays [448]. It is therefore impor-
tant that such theoretical calculations are tackled soon, per-
haps directly on the lattice, as proposed in Ref. [449].

For the semileptonic decays, there is no update on the lat-
tice side from the previous version of our review. As experi-
mental input for the determination of |Vcb| we use the latest
experimental averages from the Heavy Flavour Averaging
Group [197]:

f Dπ
+ (0)|Vcd| = 0.1425(19), f DK

+ (0)|Vcs | = 0.728(5).

(139)

For each of f Dπ
+ (0) and f DK

+ (0), there is only a single N f =
2+1 lattice-QCD calculation that satisfies the FLAG criteria.
Using these results, which are given in Eq. (134), we obtain
our preferred values for |Vcd| and |Vcs |:
|Vcd| = 0.2140(93)(29), |Vcs | = 0.975(25)(7),

(semileptonic decays, N f = 2 + 1) (140)

where the errors shown are from the lattice calculation and
experiment (plus nonlattice theory), respectively. These val-
ues are compared with individual leptonic determinations in
Table 30.

Table 31 summarizes the results for |Vcd| and |Vcs | from
leptonic and semileptonic decays, and compares them to

Table 30 Determinations of
|Vcd| (upper panel) and |Vcs |
(lower panel) obtained from
lattice calculations of D-meson
leptonic decay constants and
semileptonic form factors. The
errors shown are from the lattice
calculation and experiment (plus
nonlattice theory), respectively

Collaboration Refs. Nf From |Vcd| or |Vcs |

FNAL/MILC 14A [14] 2 + 1 + 1 fD 0.2159(12)(49)

ETM 14E [27] 2 + 1 + 1 fD 0.2214(41)(51)

HPQCD 12A [47] 2 + 1 fD 0.2204(36)(50)

HPQCD 11 [50] 2 + 1 D → πℓν 0.2140(93)(29)

FNAL/MILC 11 [48] 2 + 1 fD 0.2097(108)(48)

ETM 13B [20] 2 fD 0.2207(74)(50)

FNAL/MILC 14A [14] 2 + 1 + 1 fDs 1.008(5)(16)

ETM 14E [27] 2 + 1 + 1 fDs 1.015(17)(16)

HPQCD 10A [49] 2 + 1 fDs 1.012(10)(16)

FNAL/MILC 11 [48] 2 + 1 fDs 0.965(40)(16)

HPQCD 10B [51] 2 + 1 D → Kℓν 0.975(25)(7)

χQCD 14 [17] 2 + 1 fDs 0.988(17)(16)

ETM 13B [20] 2 fDs 1.004(28)(16)

123

before 2017: very few computations, no q2 dependence
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Figure 8: Momentum dependencies of the Lorentz-invariant form factors f+(q2) (orange bands)
and f0(q2) (cyan bands), extrapolated to the physical pion mass and to the continuum and infinite
volume limits, for the D ! ⇡ (left panel) and D ! K (right panel) transitions, including their

total uncertainties. For comparison, the values of fD⇡(K)
+ (q2) determined by BELLE, BABAR,

CLEO and BESIII collaborations in Refs. [11, 12, 13, 14, 15] are shown. The bands correspond
to the total (statistical + systematic) uncertainty at one standard-deviation level.

6 Results from the global fit and comparison with experimental
data

The momentum dependencies of the physical Lorentz-invariant vector and scalar form factors,
extrapolated to the physical pion mass and to the continuum and infinite volume limits, are
shown in Fig. 8 for both the D ! ⇡ and D ! K transitions. Our results exhibit a remarkable
precision in the full range of values of q2 covered by the experiments (i.e., 0  q

2
 q

2
max =

(MD �M⇡(K))
2
' 3.0(1.9) GeV2). Our results for the vector form factors fD⇡

+ (q2) and f
DK
+ (q2)

can be compared with the corresponding values determined by BELLE, BABAR, CLEO and
BESIII collaborations in Refs. [11, 12, 13, 14, 15], where the partial decay rates have been
measured (see also Refs. [48, 49] for a summary of the experimental results). The agreement is
good except at high values of q2, where some deviations are visible.

In Fig. 9 our main results for the vector and scalar form factors are compared with those
obtained by choosing only the kinematical configurations corresponding to the D-meson rest
frame and by performing the extrapolations to the physical pion mass and to the continuum
and infinite volume limits without including the hypercubic terms (35) and (41). In other words,
the continuum extrapolation is based only on the discretization terms contained in Eqs. (46-47).
It can be seen that the neglect of hypercubic e↵ects in the analysis and the use of a limited subset
of data lead to some distortions of the extrapolated form factors, which are more pronounced
in the case of the scalar form factor. Such distortions are found to be comparable with present
global uncertainties within one standard-deviation. They may become more relevant as the
precision of the data will be increased in the future.

In Table 4 we provide a set of synthetic data points for the vector and scalar D ! ⇡ form
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Figure 5. Momentum dependencies of the Lorentz-invariant form factor fT (q2), calculated in this work, and

f+(q2), from Ref. [1], for the D ! ⇡ (left panel) and D ! K (right panel) transitions. Both form factors are

extrapolated to the physical pion mass and to the continuum and infinite volume limits. The bands correspond to

the total (statistical + systematic) uncertainty at the level of one standard deviation.
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5

for the lattice values of
⇥
I(q2i )

⇤LAT
has been constructed and combined with the experimental one.

The values of |Vcd| and |Vcs| are determined using a constant fit and adopting a correlated-�2 minimization pro-
cedure. The uncertainties on |Vcd| and |Vcs| do not depend on the value of �2, because they are obtained using the
bootstrap samplings of Ref. [14]. The results of the constant fit, including all q2-bins, are

|Vcd| = 0.2349 (72) , |Vcs| = 0.968 (34) . (2.4)

In order to check the stability of these results we have also performed a series of constant fits including only the
data below each given value of q2, i.e., the number of data included in the fitting procedure increases as q2 increases.
The solid lines and the orange bands in Fig. 1 illustrate the results of these fits for |Vcd| and |Vcs| as a function of
q2. It can clearly be seen that: i) the variations of |Vcd| and |Vcs| are always well within the uncertainties, and ii)
the uncertainties themselves do not change appreciably even when the data at the highest values of q2 are included.
This means that the deviations of the data from the constant fit visible at the highest values of q2 have a negligible
impact on the central values and errors given in Eq. (2.4), once all the data are included in the fitting procedure.

Our results (2.4) can be compared with those obtained in Ref. [14] using the values of the vector form factor at
q2 = 0 and the experimental results for |Vcd|fD!⇡

+ (0) and |Vcs|fD!K
+ (0) provided by HFAG [13], namely

|Vcd| = 0.2330 (137) , |Vcs| = 0.945 (38). (2.5)

It turns out that the uncertainty of |Vcd| in Eq. (2.4) is smaller by ⇡ 50% with respect to the corresponding uncertainty
in Eq. (2.5), while for |Vcs| the reduction of the uncertainty is marginal. This is partially due to the higher degree
of the correlations, found in Ref. [14], among the theoretical values of the vector form factor fDP

+ (q2) in the various
q2-bins in the case of the D ! K transition with respect to the D ! ⇡ one. We stress that the same theoretical

input from LQCD is used for describing the shape of the vector form factor fD⇡(K)
+ (q2) in all the experimental data,

obtaining in this way a consistent SM analysis. The impact of the above consistency might become more significant
as the precision of LQCD calculations of the semileptonic form factors will be improved in the future.

Thus, the theoretical information on fDP
+ (q2) in the full q2-range allows not only to guarantee a consistent extraction

of |Vcd| and |Vcs| within the SM, but also to get a more precise determination of |Vcd|.
Within present uncertainties our semileptonic results (2.4) are consistent with the determinations |Vcd| = 0.2221(68)

and |Vcs| = 1.014(25), obtained from the experimental D and Ds leptonic decay rates [19] adopting the ETMC
results [20] for the decay constants fD and fDs . In Fig. 2 the above results from leptonic and semileptonic D�meson
decays are reported as ellipses in the (|Vcd|, |Vcs|) plane corresponding to a 68% probability contour. The ellipses
corresponding also to the leptonic and semileptonic FLAG averages [3] for |Vcd| and |Vcs| are shown as well as the
constraint imposed by the second-row unitarity is indicated by a dotted line.

FIG. 2. Results for |Vcd| and |Vcs| obtained from leptonic and semileptonic D- and Ds-meson decays, represented respectively

by green and red ellipses corresponding to a 68% probability contour. The solid ellipses are the results of Ref. [20] and of this

work, obtained with Nf = 2 + 1 + 1 dynamical quarks. The striped ellipses correspond to the latest FLAG results [3], which

for the semileptonic decays are based on the LQCD results obtained in Refs. [21, 22] with Nf = 2 + 1 dynamical quarks. The

dashed line indicates the correlation between |Vcd| and |Vcs| that follows from the CKM unitarity.
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Figure 5. Left panel: global fit for f
DK

{+,0} reproduced from that for f
DK

{v,p}. For better visibility, we plot data at larger
ms as a function of q

2. The green, blue and red symbols show data at a
�1
⇠ 2.5, 3.6 and 4.5 GeV, respectively,

whereas the di↵erent symbols show data at di↵erent M⇡ values. The thick lines show the fit curve at the physical
point and a=0. We also plot the fit curves at simulation points by thin lines, which are however indistinguishable
at the scale of this figure due to the mild a and M⇡ dependence of f

DP

{+,0}. Right panel: comparison of form factor
shape between lattice (thick solid lines) and experimental (circles and squares) data.

The left panel of Fig. 5 shows the global fit for f
DK

{+,0}, which reproduces the data at simulation points
reasonably well.

From experimental data of the partial decay rate��i together with the CKM matrix element |Vcs(d)|,
we can estimate the vector form factor f+

DK(⇡) as

f+
DK(⇡)(q2

i
) =

1
|Vcs(d)|

s
24⇡3

G
2
F

1
p

3
i

��i

�q
2
i

, (17)

where GF is the Fermi constant, �q
2
i

is the size of the i-th q
2 bin, and pi is the light meson momentum

in the D rest frame for the i-th bin. Note that experimental data are available for the light lepton modes
D!P{e, µ}⌫, and hence have low sensitively to f

DP

0 , which is suppressed by the lepton mass squared
m

2
l
. We estimate f

DP

+ from the CLEO-c [8] and BESIII [21] data of ��i and the HFAG values of the
CKM matrix elements [14]. The right panel of Fig. 5 confirms good agreement in the form factor
shape between our lattice data and experimental data. This also suggests that we obtain the CKM
matrix elements close to their HFAG values when we determine them as a relative normalization
factor between the lattice and experimental data.

5 Conclusions

In this article, we update the status of our study of the D meson semileptonic decays. Form factors are
calculated on fine lattices with cuto↵s up to 4.5 GeV by using the Möbius domain-wall action for both
light and charm quarks. We observe good consistency of the normalization f+

DK(⇡)(0) with previous
lattice calculations and the form factor shape is nicely consistent with experiment.

Having observed small discretization errors at mc, it is important to extend our simulations to the B

meson decays. At this conference, we have reported our studies of the B!⇡`⌫ [17] and inclusive [22]
decays. Another interesting future direction is an extension to form factors to quantify new physics
contributions. Our analysis of the D meson tensor form factors are underway.

Figure 5. This plot shows the q2 dependence of the form factors f0(q2) and f+(q2) with q2 on all the lattice
ensembles we have used. These results come from an uncorrelated fit and so is only preliminary at this stage.
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any significant deviation and the relativistic dispersion relation holds within 1 � 2% statistical devia-
tion, which is within our expectation using the HISQ formalism. However the statistical uncertainties
increase in the fitted results for the kaon energies with non-zero momenta.

The scalar and vector form factors are extracted from the simultaneous fits of all data - including
two-point and three-point correlators for all q2 values on each ensemble. Generally the vector current
is noisier and hence the vector form factor f+(q2). The results for the form factors and their q2 depen-
dence is shown in Figure 5. These results come from an uncorrelated fit and so is only preliminary at
this stage.

The results we show here include u/d quarks with physical masses. We plan to extend the study
to heavier u/d masses, however, in order to map out the light quark mass dependence. This may also
improve our uncertainties somewhat since heavier u/d masses typically give smaller statistical errors.
We will then fit our results to a power series expansion in z-space (converting from q2 to z) following
[9]. Taking the coe�cients in the z-expansion to depend on lattice spacing and light quark mass allows
a smooth connection to the continuum physical point where we can compare to experiment, q2-bin by
q2-bin, to optimise the final uncertainty on Vcs.
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CONCLUSION

We have presented both a complete first-principles cal-
culation of the leading-order hadronic vacuum polariza-
tion contribution to the muon anomalous magnetic mo-
ment from lattice QCD+QED at physical pion mass as
well as a combination with R-ratio data. For the former
we find aHVP LO

µ = 715.4(16.3)(9.2) ⇥ 10�10, where the
first error is statistical and the second is systematic. For
the latter we find aHVP LO

µ = 692.5(1.4)(0.5)(0.7)(2.1) ⇥
10�10 with lattice statistical, lattice systematic, R-ratio
statistical, and R-ratio systematic errors given sepa-
rately. This is the currently most precise determination
of aHVP LO

µ corresponding to a 3.7� tension

aEXP
µ � aSMµ = 27.4(2.7)(2.6)(6.3) ⇥ 10�10 . (7)

The presented combination of lattice and R-ratio data
also serves to provide additional non-trivial cross-checks
between lattice and R-ratio data. The precision of this
computation will be improved in future work including
simulations at smaller lattice spacings and at larger vol-
umes.
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lation presented here, we only include diagram M. For
the meson masses this corresponds to neglecting the sea
quark mass correction, which we have previously [17] de-
termined to be an O(2%) and O(14%) e↵ect for the pi-
ons and kaons, respectively. This estimate is based on
the analytic fits of (H7) and (H9) of Ref. [17] with ratios
C

m⇡, K

2 /C
m⇡, K

1 given in Tab. XVII of the same reference.
For the hadronic vacuum polarization the contribution of
diagram R is negligible since �mup ⇡ ��mdown and di-
agram O is SU(3) and 1/Nc suppressed. We therefore
assign a corresponding 10% uncertainty to the SIB cor-
rection.

We also compute the O(↵) correction to the vector
current renormalization factor ZV used in C(0) [17, 18]
and find a small correction of approximately 0.05% for
the light quarks.

We perform the calculation of C(0) on the 48I and 64I
ensembles described in Ref. [17] for the up, down, and
strange quark-connected contributions. For the charm
contribution we also perform a global fit using additional
ensembles described in Ref. [22]. The quark-disconnected
contribution as well as QED and SIB corrections are com-
puted only on ensemble 48I.

For the noisy light quark connected contribution, we
employ a multi-step approximation scheme with low-
mode averaging [23] over the entire volume and two levels
of approximations in a truncated deflated solver (AMA)
[24–27] of randomly positioned point sources. The low-
mode space is generated using a new Lanczos method
working on multiple grids [28]. Our improved statisti-
cal estimator for the quark disconnected diagrams is de-
scribed in Ref. [29] and our strategy for the strange quark
is published in Ref. [30]. For diagram F, we re-use point-
source propagators generated in Ref. [31].

The correlator C(t) is related to the R-ratio data
[11] by C(t) = 1

12⇡2

R1
0 d(

p
s)R(s)se�

p
st with R(s) =

3s
4⇡↵2�(s, e+e� ! had). In Fig. 4 we compare a lattice
and R-ratio evaluation of wtC(t) and note that the R-
ratio data is most precise at very short and long dis-
tances, while the lattice data is most precise at interme-
diate distances. We are therefore led to also investigate
a position-space “window method” [11, 32] and write

aµ = aSDµ + aWµ + aLDµ (6)

with aSDµ =
P

t C(t)wt[1 � ⇥(t, t0,�)], aWµ =P
t C(t)wt[⇥(t, t0,�) � ⇥(t, t1,�)], and aLDµ =P
t C(t)wt⇥(t, t1,�), where each contribution is

accessible from both lattice and R-ratio data. We define
⇥(t, t0,�) = [1 + tanh [(t� t0)/�]] /2 which we find to
be helpful to control the e↵ect of discretization errors
by the smearing parameter �. We then take aSDµ and
aLDµ from the R-ratio data and aWµ from the lattice.
In this work we use � = 0.15 fm, which we find to
provide a su�ciently sharp transition without increasing
discretization errors noticeably. This method takes the
most precise regions of both datasets and therefore may
be a promising alternative to the proposal of Ref. [33].

ANALYSIS AND RESULTS

In Tab. I we show our results for the individual as well
as summed contributions to aµ for the window method
as well as a pure lattice determination. We quote sta-
tistical uncertainties for the lattice data (S) and the R-
ratio data (RST) separately. For the quark-connected
up, down, and strange contributions, the computation is
performed on two ensembles with inverse lattice spacing
a�1 = 1.730(4) GeV (48I) as well as a�1 = 2.359(7) GeV
(64I) and a continuum limit is taken. The discretization
error (C) is estimated by taking the maximum of the
squared measured O(a2) correction as well as a simple
(a⇤)4 estimate, where we take ⇤ = 400 MeV. We find
the results on the 48I ensemble to di↵er only a few per-
cent from the continuum limit. This holds for the full
lattice contribution as well as the window contributions
considered in this work. For the quark-connected charm
contribution additional ensembles described in Ref. [22]
are used and the maximum of the above and a (amc)4

estimate is taken as discretization error. The remain-
ing contributions are small and only computed on the
48I ensemble for which we take (a⇤)2 as estimate of dis-
cretization errors.

For the up and down quark-connected and discon-
nected contributions, we correct finite-volume e↵ects to
leading order in finite-volume position-space chiral per-
turbation theory [34]. Note that in our previous pub-
lication of the quark-disconnected contribution [29], we
added this finite-volume correction as an uncertainty but
did not shift the central value. We take the largest ratio
of p6 to p4 corrections of Tab. 1 of Ref. [35] as systematic
error estimate of neglected finite-volume errors (V). For
the SIB correction we also include the sizeable di↵erence
of the corresponding finite and infinite-volume chiral per-
turbation theory calculation as finite-volume uncertainty.
For the QED correction, we repeat the computation us-
ing an infinite-volume photon (QED1 [36]) and include
the di↵erence to the QEDL result as a finite-volume er-
ror. Further details of the QED1 procedure are provided
as supplementary material.

Calculation of the hadronic vacuum polarization contribution to the muon anomalous
magnetic moment

T. Blum,1 P.A. Boyle,2 V. Gülpers,3 T. Izubuchi,4, 5 L. Jin,1, 5
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We present a first-principles lattice QCD+QED calculation at physical pion mass of the leading-
order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The
total contribution of up, down, strange, and charm quarks including QED and strong isospin break-
ing e↵ects is found to be aHVP LO

µ = 715.4(16.3)(9.2) ⇥ 10�10, where the first error is statistical
and the second is systematic. By supplementing lattice data for very short and long distances with
experimental R-ratio data using the compilation of Ref. [1], we significantly improve the precision of
our calculation and find aHVP LO

µ = 692.5(1.4)(0.5)(0.7)(2.1) ⇥ 10�10 with lattice statistical, lattice
systematic, R-ratio statistical, and R-ratio systematic errors given separately. This is the currently
most precise determination of the leading-order hadronic vacuum polarization contribution to the
muon anomalous magnetic moment. In addition, we present the first lattice calculation of the
light-quark QED correction at physical pion mass.

PACS numbers: 12.38.Gc

INTRODUCTION

The anomalous magnetic moment of the muon aµ is de-
fined as the deviation of the Landé factor gµ from Dirac’s

relativistic quantum mechanics result, aµ = gµ�2
2 . It is

one of the most precisely determined quantities in parti-
cle physics and is currently known both experimentally
(BNL E821) [2] and from a standard model theory cal-
culation [3] to approximately 1/2 parts per million.

Interestingly, the standard model result aSMµ deviates
from the experimental measurement aEXP

µ at the 3–4
sigma level, depending on which determination of the
leading-order hadronic vacuum polarization aHVP LO

µ is
used. One finds

aEXP
µ � aSMµ = 25.0(4.3)(2.6)(6.3) ⇥ 10�10 [4] ,

31.8(4.1)(2.6)(6.3) ⇥ 10�10 [5] ,

26.8(3.4)(2.6)(6.3) ⇥ 10�10 [6] , (1)

where the quoted errors correspond to the uncertainty
in aHVP LO

µ , aSMµ � aHVP LO
µ , and aEXP

µ . This tension
may hint at new physics beyond the standard model of
particle physics such that a reduction of uncertainties in
Eq. (1) is highly desirable. New experiments at Fermilab
(E989) [7] and J-PARC (E34) [8] intend to decrease the
experimental uncertainty by a factor of four. First results
of the E989 experiment may be available before the end
of 2018 [9] such that a reduction in uncertainty of the
aHVP LO
µ contribution is of timely interest.
In the following, we perform a complete first-principles

calculation of aHVP LO
µ in lattice QCD+QED at physi-

cal pion mass with non-degenerate up and down quark
masses and present results for the up, down, strange, and
charm quark contributions. Our lattice calculation of the
light-quark QED correction to aHVP LO

µ is the first such
calculation performed at physical pion mass. In addition,
we replace lattice data at very short and long distances
by experimental e+e� scattering data using the compila-
tion of Ref. [1], which allows us to produce the currently
most precise determination of aHVP LO

µ .

COMPUTATIONAL METHOD

The general setup of our non-perturbative lattice com-
putation is described in Ref. [10]. We compute

aµ = 4↵2

Z 1

0
dq2f(q2)[⇧(q2) �⇧(q2 = 0)] , (2)

where f(q2) is a known analytic function [10] and ⇧(q2)
is defined as

P
x e

iqx
hJµ(x)J⌫(0)i = (�µ⌫q2 � qµq⌫)⇧(q2)

with sum over space-time coordinate x and Jµ(x) =
i
P

f Qf f (x)�µ f (x). The sum is over up, down,
strange, and charm quark flavors with QED charges
Qup, charm = 2/3 and Qdown, strange = �1/3. For
convenience we do not explicitly write the superscript
HVP LO. We compute ⇧(q2) using the kernel function
of Refs. [11, 12]

⇧(q2) �⇧(q2 = 0) =
X

t

✓
cos(qt) � 1

q2
+

1

2
t2
◆
C(t) (3)
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2. PDFs and Quasi-PDFs

Mi(⇣, P ) = hP | ̄(⇣)�i Pexp

✓
�ig

Z
⇣

0
d⌘A(⌘)

◆
 (0)|P i

light-cone PDF – ⇣ = (0, y�,~0?):

f(x, µ) =

Z
dy�

4⇡
e�i(xP+)y�

M
+(y�, P+)

quasi-PDF, time-independent quantity – ⇣ = (0, 0, 0, z):

q(x, µ,MN , Pz) =

Z
dz

4⇡
e�i(xPz)z M

z(z, Pz)
Pz!1
�! f(x, µ)
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From quasi-PDFs to PDFs

Extracting PDFs from lattice simulations:

• renormalization of the lattice operator
⇧ RI/MOM prescription
⇧ matching to MS
⇧ trace operators and power divergencies

• Euclidean to Minkowski space

• factorization theorem for the renormalized quasi-PDF

• gradient flow
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