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CNRS Luminy Case 907, 13288 Marseille cedex 09 - France

knecht@cpt.univ-mrs.fr

Getting to grips with QCD – Campus des Cordeliers, Paris, 4 - 6 April, 2018



OUTLINE

• Introduction

• Radiative corrections in pion and kaon decays: the low-energy EFT point of
view

• A case study: K00
e4 or radiative corrections in real life

• Radiative corrections to semileptonic decays in the SM

• Conclusion

(For the lattice point of view −→ cf. talk by F. Sanfilippo)



Introduction



Precision measurements of (semileptonic) decays of K , D, B mesons, or

hadronic decay modes of the τ lepton, allow to put constraints on physics beyond

the standard model (tests of lepton flavour universality or of CKM unitarity, CP

violation, admixture of right-handed currents,...)...

... but also provide information on low-energy strong interactions (e.g. decay

constants, structure of form factors, ππ scattering lengths,...), that allow to test

predictions or to determine non-perturbative parameters (low-energy constants in

the case of kaons) that occur also in other processes

Theoretical predictions are often made in a world where α = 0 (Mπ = Mπ0),

and even mu = md. One has to connect this “theoretician’s paradise” (J.

Gasser) to the real world, where α 6= 0 (which means in particular Mπ 6= Mπ0)

−→ quantitative control over radiative, or more generally, isospion-breaking (IB)

corrections has become mandatory



A lot of progress on the experimental side during the last decade or so on
“traditional” (i.e. non rare) kaon decay modes (ISTRA+ @ IHEP, KTeV @ FNAL,
KLOE and KLOE2 @ DAΦNE, NA48 and NA48/2 @ SPS), and more is to come,
e.g. NA62

Illustration with structure of Kℓ3 form factors... M. Antonelli et al., Eur Phys. J. C 69, 399 (2010)

D. Madigozhin [NA48/2 Coll.], PoS DIS2013, 135 (2013)



... or with K± → π+π−e±ν

- Geneva-Saclay high-statistics experiment: 3 · 104 events, a0 at 20%

L. Rosselet et al., Phys. Rev. D 15, 574 (1977)

- BNL-E865: 4 · 105 events

S. Pislak et al., Phys. Rev. 67, 072004 (2003) [Phys. Rev. 81, 119903 (2010)] [hep-ex/0301040]

- NA48/2: 1.1 · 106 events, a0 at 6%

J. R. Batley et al., Eur. Phys. J. C 70, 635 (2010)

The experimental values of the two S-wave scattering lengths

a0 = 0.222(14) a2 = −0.0432(97)

compare quite well with the prediction from two-loop chiral perturbation theory

a0 = 0.220(5) a2 = −0.0444(10)

G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001)

But taking isospin corrections (mu 6= md and Mπ 6= Mπ0) into account turns
out to be crucial in order to reach this agreement

J. Gasser, PoS KAON , 033 (2008), arXiv:0710.3048 [hep-ph]



Although it will not always be mentioned explicitly, only infrared finite

radiatively-corrected observables will be considered [in particular, amplitudes

include emission of one (soft) photon]

Radiative corrections to total decay rates are typically at the level of a few %

Γ = Γ0

[

1 + α
∆Γ

Γ0

]

α
∆Γ

Γ0
∼ ±(1− 3)%

Radiative corrections to differential decay rates can, locally, be more important,

e.g. ∼ ±10%

d2Γ

dxdy
=

d2Γ0

dxdy
[1 + αδ(x, y)] αδ(x, y) ∼ ±(1− 10)%

[cf. also situations where there are experimental cuts...]



Emission of soft photons can sometimes lift the helicity suppression:
for instance in B → µνµ

(
MB

mµ

)2

× α is not small...

D. Bećirević, B. Haas, E. Kou, Phys. Lett. B 681, 257 (2009)

Radiative corrections are often computed within a framework (ChPT, QED with

point-like mesons,...) where the quantities one wishes to measure (slopes of form

factors, scattering lengths,...) are actually fixed to their LO or NLO values

−→ can produce biases...

−→ one should provide a model-independent or input-free framework

Most of the time, radiative corrections are small, knowing them at 10% or even

20% precision is usually sufficient



Radiative corrections in pion and kaon decays:
the low-energy EFT point of view



Several theoretical tools available

Tool 1 : chiral lagrangian

At energies well below the electroweak scale, the weak interactions are
described by effective lagrangians involving four-fermion operators

• For the ∆S = 1 non-leptonic transitions:

L∆S=1
eff = −GF√

2
VudV

∗

us

∑

i

Ci(µ)Qi(µ)

- Ci(µ) −→ perturbative QCD corrections from MW down to µ <∼ mc

• For the semi-leptonic transitions:

LSL
eff = −GF√

2

[
ℓ̄γµ(1− γ5)νℓ

]
{Vud [ūγ

µ(1− γ5)d] + Vus [ūγ
µ(1− γ5)s]}+ h. c.

- No QCD corrections in LSLeff −→ factorized form, the description of
semi-leptonic decays amounts to the evaluation of the relevant form factors



For µ << Λhad ∼ 1GeV (where kaon physics takes place), the relevant
degrees of freedom are no longer quarks, but the lightest pseudoscalar mesons
that become the Goldstone bosons of the spontaneous breaking of chiral
symmetry in the limit of massless light quarks mu,d,s → 0
−→ construct an effective lagrangian that describes the interactions among
these pseudoscalar mesons in a systematic low-energy expansion

S. Weinberg, Physica A 96, 327 (1979)

J. Gasser, H. Leutwyler, Annals Phys. 158, 142 (1984); Nucl. Phys. B 250, 465 (1985)

• strong interactions among mesons at low-energies

Lstr = Lstr
2 (2) + Lstr

4 (10 + 0) + Lstr
6 (90 + 23) + · · ·

• ∆S = 1 transitions

L∆S=1
eff −→ L∆S=1

2 (1 + 1) + L∆S=1
4 (22 + 28) + · · ·

J. A. Cronin, Phys. Rev. 161, 1483 (1967)

J. Kambor, J. H. Missimer, D. Wyler, Nucl. Phys. B 346, 17 (1990)

G. Esposito-Farese, Z. Phys. C 50, 255 (1991)

G. Ecker, J. Kambor, D. Wyler, Nucl. Phys. B 394, 101 (1993)



Adding electromagnetic interactions requires to include the photon as a low-energy degree of

freedoms (loops involving virtual photons will produce their own divergences, which require

additional low-energy constants)...

Lstr;EM = Lstr;EM
2 (1) + Lstr;EM

4 (13 + 0) + · · ·

Lstr;EM
2 = e2C〈QU †QU〉 Lstr;EM

4 (13 + 0) =

13∑

i=1

KiOstr;EM
i

G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989)

R. Urech, Nucl. Phys. B 433, 234 (1995)

H. Neufeld, H. Rupertsberger, Z. Phys. C 71, 131 (1996)

L∆S=1;EM = L∆S=1;EM
2 (1) + L∆S=1;EM

4 (14+?) + · · ·

L∆S=1;EM
2 = e2G8F

6
0 gweak〈λ23U †QU〉 L∆S=1;EM

4 = e2G8F
4
0

14∑

i=1

ZiO∆S=1;EM
i

J. Bijnens, M. B. Wise, Phys. Lett. B 137, 245 (1984)

G. Ecker, G. Isidori, Müller, H. Neufeld, A. Pich, Nucl. Phys. 591, 1419 (2000)

... as well as the light leptons (for the description of radiative corrections to semi-leptonic decays)

Llept = Llept
2 (0) + Llept

4 (5) + · · · Llept
4 =

5∑

i=1

XiOlept
i

M. K., H. Neufeld, H. Rupertsberger, P. Talavera, Eur. Phys. J. C 12, 469 (2000)



Crucial issue: determination of low-energy constants

•Ki

- identify the corresponding QCD correlators (two-, three- and four-point functions), convoluted

with the free photon propagator

- study their short-distance behaviour

- write spectral sum rules

- saturate with lowest-lying narrow-width resonances

B. Moussallam, Nucl. Phys. B 504, 391 (1997) [hep-ph/9701400]

B. Ananthanarayan, B. Moussallam, JHEP06, 047 (2004) [hep-ph/0405206]

Analogous to the DGMLY sum-rule for C

C = − 1

16π2

3

2π

∫ ∞

0

ds s ln
s

µ2
[ρV V (s)− ρAA(s)]

T. Das, G. S. Guralnik, V. S. Mathur, F. E. Low and J. E. Young, Phys. Rev. Lett. 18, 759 (1967)

B. Moussallam, Eur. Phys. J. C 6, 681 (1999) [hep-ph/9804271]



Crucial issue: determination of low-energy constants

•Xi

- two-step matching procedure:

i) compute radiative corrections to q̄q′ → ℓν in the SM and in the four-fermion theory

ii) match the radiatively corrected four-fermion theory to the chiral lagrangian, by identifying the

QCD correlators (convoluted with the free photon propagator) that describe the Xi’s

Saturate the resulting spectral sum rules with lowest-lying resonance states

S. Descotes-Genon, B. Moussallam, Eur. Phys. J. C 42, 403 (2005) [hep-ph/0505077]

• gweak and Zi

Have been estimated in the large-Nc limit

V. Cirigliano, G. Ecker, H. Neufeld, A. Pich, Eur. Phys. J. C 33, 269 (2004)

For instance

(g8e
2gweak)

∞ = −
(〈ψ̄ψ〉

F 3
0

)2 [
3C8(µ) +

16

3
e2C6(µ)(K9 − 2K10)

]



Crucial issue: determination of low-energy constants

The dependence on the short-distance scale vanishes at leading-order in the

large-Nc limit. A scale dependence remains at subleading order in 1/Nc.

The (subleading order) contribution of Q7 can also be computed,

(g8e
2gweak)

1/Nc;Q7 = − 9

8π2
C7(µ)

M2
ρ

F 2
0

[
ln

µ2

M2
ρ

+
1

3
− 2 ln 2

]

M. K., S. Peris, E. de Rafael, Phys. Lett. B 457, 227 (1999)

but this does not completely remove the residual scale dependence



Applications to many examples (non-exhaustive list)

– π → ℓνℓ(γ) and K → ℓνℓ(γ) M. K., H. Neufeld, H. Rupertsberger, P. Talavera, Eur. Phys. J. C 12, 469 (2000)

V. Cirigliano, I. Rosell, JHEP 0710, 005 (2007)

J. Gasser, G. R. S. Zarnauskas, Phys. Lett. B 693, 122 (2010)

V. Cirigliano, H. Neufeld, Phys. Lett. B 700, 7 (2011)

– K → πℓνℓ(γ) V. Cirigliano, M. K., H. Neufeld, H. Rupertsberger and P. Talavera, Eur. Phys. J. C 23, 121 (2002)

A. Kastner, H. Neufeld, Eur. Phys. J. C 57, 541 (2008)

V. Cirigliano, M. Giannotti, H. Neufeld, JHEP 0811, 006 (2008)

J. Gasser, B. Kubis, N. Paver, M. Verbeni, Eur. Phys. J. C 40, 205 (2005)

– π+ → π0eνe V. Cirigliano, M. K., H. Neufeld, H. Pichl, Eur. Phys. J. C 27, 255 (2003)

– K+ → π+π−ℓνℓ V. Cuplov, PhD thesis (2004); V. Cuplov, A. Nehme, hep-ph/0311274

A. Nehme, Nucl. Phys. B 682, 289 (2004)

P. Stoffer, Eur. Phys. J. C 74, 2749 (2014)

– K → ππ V. Cirigliano, G. Ecker, H. Neufeld, A. Pich, Phys. Rev. Lett. 91, 162001 (2003)

V. Cirigliano, G. Ecker, H. Neufeld, A. Pich, Eur. Phys. J. C 33, 269 (2004)

V. Cirigliano, G. Ecker, A. Pich, Phys. Lett. B 679, 445 (2009)

– K → πππ J. Bijnens, F. Borg, Nucl Phys. B 697, 319 (2004); Eur. Phys. J. C 39, 347 (2005); C 40, 383 (2005)

– . . . V. Cirigliano, G. Ecker, H. Neufeld, A. Pich, J. Portolés, Rev. Mod. Phys. 84, 399 (2012)



Tool 2: non-relativistic effective field theory

K → ππ0π0: Important experimental feature: cusp at M00 = 2Mπ in the

invariant mass distribution of the two neutral pions

First observed by NA48/2 in a sample of 2.3 · 107 K± → π±π0π0

J. R. Batley et al., Phys. Lett. B 633, 176 (2006)

Correctly interpreted as a rescattering effect π+π− → π0π0 (Mπ 6= Mπ0),
corresponding to the combination a0 − a2 of S-wave scattering lengths

N. Cabibbo, Phys. Rev. Lett. 93, 121801 (2004)

But simple phenomenological parametrizations
N. Cabibbo and G. Isidori, JHEP0503, 021 (2005)

E. Gamiz, J. Prades and I. Scimemi, Eur. Phys. J. C 50, 405 (2007)

or one-loop ChPT calculations including isospin breaking
J. Bijnens, F. Borg, Nucl Phys. B 697, 319 (2004); Eur. Phys. J. C 39, 347 (2005); Eur. Phys. J. C 40, 383 (2005)

either do not give the correct analyticity properties or do not give a sufficiently
accurate description of the cusp



Tool 2: non-relativistic effective field theory

Better description obtained by combining a non relativistic EFT framework

|p|/Mπ ∼ O(ǫ)

and a systematic expansion in powers of the scattering lengths (treated as free

parameters), including orders ǫ2, aǫ3, a2ǫ2
G. Colangelo, J. Gasser, B. Kubis and A. Rusetsky, Phys. Lett. B 638, 187 (2006)

J. Gasser, B. Kubis and A. Rusetsky, Nucl. Phys. B 850, 96 (2011)

Radiative corrections were also included
M. Bissegger, A. Fuhrer, J. Gasser, B. Kubis and A. Rusetsky, Nucl. Phys. B 806, 178 (2009)

−→ a0 − a2 = 0.2571± 0.0056

J. R. Batley et al, Eur. Phys. J. C 64, 589 (2009)

Later also observed by KTeV in a sample of 6.8 · 107 KL → π0π0π0 events but the

rescattering effect is quite smaller

a0 − a2 = 0.215± 0.031

E. Abouzaid et al., Phys. Rev. D 78, 032009 (2008)



Tool 3: Dispersive constructions of amplitudes and form factors

Illustration: Mπ 6= Mπ0 effects in the phases of Kℓ4 form factors

Standard angular analysis of the K+−

e4 form factors provides information on low-energy ππ
scattering (Watson’s theorem) through the phase difference

[δS(s)− δP (s)]exp

N. Cabibbo, A. Maksymowicz, Phys. Rev. B 137, 438 (1965); Erratum-ibid 168, 1926 (1968)

F.A. Berends, A. Donnachie, G.C. Oades, Phys. Rev. 171, 1457(1968)

measurable in the interference of the F+− and G+− form factors.

Comparison with solutions of the Roy equations

[δS(s)− δP (s)]exp
= fRoy(s; a

0
0, a

2
0)

allows to extract the values of the ππ S-wave scattering lengths in the isospin channels I = 0, 2

fRoy(s; a
2
0, a

2
0) follows from:

• dispersion relations (analyticity, unitarity, crossing, Froissard bound)

• ππ data at energies
√
s ≥ 1 GeV

• isospin symmetry

S.M. Roy, Phys. Lett. B 36, 353 (1971)

Solutions can be constructed for (a00, a
2
0) ∈ Universal Band

B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rep. 353, 207 (2001)



Tool 3: Dispersive constructions of amplitudes and form factors

Once standard radiative corrections have been taken care of (more below), it is still important to

take isospin-breaking corrections due to Mπ 6= Mπ0 [also an O(α) effect!] into account before

analyzing data J. Gasser, PoS KAON, 033 (2008)

Evaluation of IB corrections in ChPT G. Colangelo, J. Gasser, A. Rusetsky, Eur. Phys. J. C 59, 777 (2009)

−→ a00 = 0.2220(128)stat(50)syst (37)th a20 = −0.0432(86)stat(34)syst(28)th

However, IB corrections were evaluated at fixed values of the scattering lengths

[δS(s)− δP (s)]exp
= fRoy(s; a

0
0, a

2
0) + δfIB(s; (a

0
0)

LO
ChPT, (a

2
0)

LO
ChPT)

Drawback shared by other studies devoted to isospin breaking in ChPT (QCD+QED)

V. Cuplov, PhD thesis (2004); V. Cuplov, A. Nehme, hep-ph/0311274

A. Nehme, Nucl. Phys. B 682, 289 (2004)

P. Stoffer, Eur. Phys. J. C 74, 2749 (2004)

Is it possible to obtain

[δS(s)− δP (s)]exp
= fRoy(s; a

0
0, a

2
0) + δfIB(s; a

0
0, a

2
0) ?

What is the quantitative effect in the determination of the scattering lengths?



Tool 3: Dispersive constructions of amplitudes and form factors

Adapt the approach (“reconstruction theorem”) described in

J. Stern, H. Sazdjian, N. H. Fuchs, Phys. Rev. D 47, 3814 (1993)

for the ππ scattering amplitude, and implemented in

M. Knecht, B. Moussallam, J. Stern, N.H. Fuchs, Nucl. Phys. B 457, 513 (1995)

Rests on very general principle

a) Relativistic invariance

b) Analyticity, unitarity, crossing

c) Chiral counting

Note: isospin symmetry not required

−→ δfIB(s; a
0
0, a

2
0) worked out at NLO

S. Descotes-Genon, M. K., Eur. Phys. J. C 72, 1962 (2012)

V. Bernard, S. Descotes-Genon, M. K., Eur. Phys. J. C 73, 2478 (2013)

Re-analysis of NA48/2 data

a00 = 0.221± 0.018 a20 = −0.0453± 0.0106

to be compared to

a00 = 0.2220(128)stat(50)syst (37)th a20 = −0.0432(86)stat(34)syst(28)th



A case study:

K00
e4 or radiative corrections in real life



NA48/2 has measured the two K±

e4 channels:

K+−
e4 [i.e. K± → π+π−e±νe], about 106 events

J. R. Batley et al. [NA48/2 Coll.], Phys. Lett. B 715, 105 (2012)

K00
e4 [i.e. K± → π0π0e±νe], about 6.5 · 104 events (unitarity cusp in Mπ0π0 seen)

J. R. Batley et al. [NA48/2 Coll.], JHEP 1408, 159 (2014)

The two matrix elements have a form factor (F+− = F 00) in common in the isospin limit

(1 + δEM )
fs[K

00
e4 ]

fs[K
+−
e4 ]

= 1.065± 0.010

Can one understand this 6.5% effect in terms of isospin breaking?

About two thirds of the effect can be ascribed to isospin breaking in the quark masses

fs[K
00
e4 ]

fs[K
+−
e4 ]

∣∣∣∣
LO

= 1.039± 0.002 [R =
ms −mud

md −mu
= 38.2(1.1)(0.8)(1.4)]

V. Cuplov, PhD Thesis (2004); A. Nehme, Nucl. Phys. B 682, 289 (2004)

Z. Fodor et al. [BMW Coll.], Phys. Rev. Lett. 117, 082001 (2016)

Radiative corrections? δEM ∼ 2.5%?

−→ need to understand how radiative corrections were treated in the K+−

e4 mode...



Treatment of radiative corrections in the data analyses:

K00
e4 : no radiative corrections whatsoever applied (hence the factor δEM!)

K+−

e4 :

– Sommerfeld-Gamow-Sakharov factors applied to each pair of charged legs

– Corrections induced by emission of real photons treated with PHOTOS

Z. Was et al., Comp. Phys. Comm. 79, 291 (1994); Eur. Phys. J. C 45, 97 (2006); C 51, 569 (2007); Chin. Phys. C 34, 889 (2010)

– PHOTOS also implements (1 loop QED) w.f.r. on the external charged legs [−→ no IR

divergences], based on

Y. M. Bystritskiy, S. R. Gevorkian, E. A. Kuraev, Eur. Phys. J. C 67, 47 (2009)

– All structure-dependent corrections are discarded (gauge invariant truncation)

– R+− form factor neglected (appears multiplied by m2
e in the differential decay rate), but there

is a contribution to ∆F+− of the type O(α)×R+− (i.e. me = 0 is not equivalent to

R+− = 0 in the presence of radiative corrections)

– UV divergences not treated



K

π0
π0

(e)

νe

e

K K

π0
π0

(f)

K
νe

e

K

π0
π0

(c)

K
νe

e

K

π0
π0

(d)

K
νe

e

νe

e

K

π0 π0

(b)

νe

e

K

π0 π0

(a)

Non factorizable radiative corrections

Besides w.f. factors of QED, only diagram (a) is considered in a PHOTOS-like treatment of

radiative corrections [diagrams (b), (c), and (d) vanish for me → 0]

Adding the diagrams for the emission of a soft photon, one obtains

Γtot = Γ(K00
e4 ) + Γ̄soft(K00

e4γ) = Γ0(K
00
e4 )× (1 + 2δEM )

with δEM = 0.018 −→ fs[K
00
e4 ]

fs[K
+−

e4
]
= 1.065± 0.010− 0.018 ∼

(
1 + 3

2R

)

V. Bernard, S. Descotes-Genon, M. K., Eur. Phys. J. C 75, 145 (2015)



Radiative corrections to semileptonic decays in
the SM



MOTIVATION

• Increasing precision on hadronic decays of the tau meson, and on semileptonic

decays of heavy-light mesons −→ cf. talk by C. Pena

- Low-energy effective theory is no longer the appropriate framework

- SM is the appropriate framework

A. Sirlin, Rev. Mod. Phys. 50 (1978)

S. Weinberg, Phys. Rev. D 8 (1973)

G. Preparata, W. I. Weisberger, Phys Rev. 175 (1968)

Abers et al., Phys. Rev. 167 (1968)



Tree level

A(0) = A(0)
(W ) + A(0)

(φ±)

A(0)
(W ) =

(−g√
2

)2

× i 〈F | Jµ
(W )(0) | I 〉QCD × (−i)

p2 −M2
W

× i L†
µ

A(0)
(φ±) =

( −g√
2MW

)2

× i 〈F | ∂ · J(W )(0) | I 〉QCD × i

p2 −M2
W

× i(pℓ − pνℓ
) · L†

L†
µ =

1

2
ūνℓ

(pνℓ
)γµ(1− γ5)vℓ(pℓ), p = PI − PF = pℓ + pνℓ

• of order O(GF ), p
2 ≪ M 2

W (Fermi theory)

• factorization between the leptonic and the hadronic part (form factors)



Including radiative corrections :

• factorization no longer holds

• all scales of the SM involved

me,mµ,mu,md ≪ ms ≪ ΛH ∼ 1GeV < mc,mτ < mb ≪MW ,MZ ,MH ,mt

The NLO amplitude receives contributionsO(αG F) , but also

O(αGF × m2
ℓ

M2
W,Z

) O(αGF × mqmq′

M2
W,Z

) O(αGF × Λ2
H

M2
W,Z

)

which are neglected, being ∼ O(G2
F )



Corrections to the hadronic matrix element

• loops of gauge bosons and scalars

• tadpoles and tadpole counterterms

• counterterms



The Z boson and photon exchange contributions

U(Z)(p) =

(
−i g√

2

)2

× (−i)
p2 −M2

W

× Lµ† ×
∫

d4q

(2π)4
(−i)

q2 −M2
Z

(−i)
(q − p)2 −M2

W

× (igcos θw)Vµνρ(q, p)× (−i)
√
g2 + g′2

2
T νρ
(Z)(q, p)

U(γ)(p) =

(
−i g√

2

)2

× (−i)
p2 −M2

W

× Lµ† ×
∫

d4q

(2π)4
(−i)
q2

(−i)
(q − p)2 −M2

W

× (igsin θw)Vµνρ(q, p)× (−i) g sin θw T νρ
(γ)(q, p)

Vµνρ(q, p) = (2q − p)µηνρ + (2p− q)νηµρ − (p+ q)ρηµν

T νρ
(Z,γ)(q, p) ∼

∫
d4xe−q·x〈F |T{J(Z,γ)J

µ
(W )(0) | I 〉QCD



The Z-boson box contribution

Aℓ-box

(Z) (p) =

(
− ig√

2

)2

×
(
− i
√
g2 + g′2

2

)2

×
∫

d4q

(2π)4
(−i)

q2 −M2
Z

(−i)
(q − p)2 −M2

W

× ūνℓ
(pνℓ

)γρ

(
1− γ5

2

)
i

6q− 6pℓ −mℓ
γν
[
T 3
ℓ (1− γ5) − 2Qℓ sin

2 θw
]
vℓ(pℓ) T νρ

(Z)(q, p)

Aνℓ-box

(Z) (p) =

(
− ig√

2

)2

×
(
− i
√
g2 + g′2

2

)2

×
∫

d4q

(2π)4
(−i)

q2 −M2
Z

(−i)
(q − p)2 −M2

W

× ūνℓ
(pνℓ

)γν T
3
νℓ
(1− γ5)

i

6pνℓ
− 6q γρ

(
1− γ5

2

)
vℓ(pℓ) T νρ

(Z)(q, p)



The photon box contribution

Abox

(γ)(p) =

(
− ig√

2

)2

× (−ie)× (−ieQℓ)×
∫

d4q

(2π)4
(−i)
q2

(−i)
(q − p)2 −M2

W

× ūνℓ
(pνℓ

)γρ

(
1− γ5

2

)
i

6q− 6pℓ −mℓ
γν vℓ(pℓ) T νρ

(γ)(q, p)



Other corrections

•W -propagator self-energy corrections

• Corrections from the Higgs sector

• Leptonic wave-function and vertex corrections

• Real photon emission



Putting it all together

Γ(P+ → ℓ+νℓ(γ)) = Γ(0)(P+ → ℓ+νℓ)×
{
1 +

(
α

2π

) [
δIB + δSD + δINT

+ δ(γ<) + δres. 3-pt.

(γ<) + δbox

(γ) + δw.f.

(γ<)

+ δdiv

(γ) + δfin

(γ) + δdiv

(Z) + δfin

(Z) + δbox

(Z) + δself + δvertex + δw.f. res.

]}
.

A similar formula can be established for the muon decay

Γ(µ+ → e+νℓν̄µ(γ)) = Γ(0)(µ+ → e+νℓν̄µ)

×
{
1 +

(
α

2π

) [
δ̃IB + δ̃(γ<) + δ̃res. 3-pt.

(γ<) + δ̃box

(γ) + δ̃w.f.

(γ<)

+ δ̃div

(γ) + δ̃fin

(γ) + δ̃div

(Z) + δ̃fin

(Z) + δ̃box

(Z) + δ̃self + δ̃vertex + δ̃w.f. res.

]}
.



The universality structure of the weak interactions induces a certain number of
relations among the corrections occuring in the two decays

δdiv

(γ) = δ̃div

(γ)

δdiv

(Z) = δ̃div

(Z)

δself = δ̃self

δvertex = δ̃vertex

δw.f. res. = δ̃w.f. res.

The fact that the divergent pieces are identical allows to define the same
renormalized weak coupling constant from both processes, and reflects the
renormalizability of the standard model. The presence of the strong interactions
induces αs dependent violations of universality in the finite pieces

δfin

(Z) = δ̃fin

(Z) +
1

2
cot2 θw ×∆(Z)(αs)

δfin

(γ) = δ̃fin

(γ) +
1

2
×∆(γ)(αs)



An additional difference in the Z-box contributions arises as a consequence of
the fact that the average charges in the quark and lepton multiplets do not
coincide

δbox

(Z) =
M2

W

M2
Z −M2

W

ln
M2

Z

M2
W

[(
2 +

1

2

)
cot2 θw + 3Qq tan

2 θw + ∆box

(Z)(αs)
]
, Qq = 1/6

δ̃box

(Z) =
M2

W

M2
Z −M2

W

ln
M2

Z

M2
W

[(
2 +

1

2

)
cot2 θw + 3Qℓ tan

2 θw

]
, Qℓ = −1/2

As far as the remaining contributions are concerned, one has (rℓ = m2
ℓ/M

2
P+

δIB + δpt

(γ<) + δres. 3-pt.

(γ<); pt
+ δbox

(γ); pt
+ δw.f.

(γ<) =
1

2
H(rℓ) +

7

2
− 3

2
ln

M2
P+

M2
W

H(z) =
23

2
− 3

1− z
+ 11 ln z − 2 ln z

1− z
− 3 ln z

(1− z)2

− 8 ln(1− z)− 4(1 + z)

1− z
ln z ln(1− z)− 8(1 + z)

1− z
Li2(1− z).

while in the muon case, the analogous combination

δ̃IB + δ̃(γ<) + δ̃res. 3-pt.

(γ<) + δ̃box

(γ) + δ̃w.f.

(γ<) =
25

4
− π2

reproduces the finite result of the local Fermi theory



Introducing a new coupling constant, defined as

Gµ =
g2

4
√
2M2

W

{
1 +

(
α

4π

) [
δ̃div

(γ) + δ̃fin

(γ) + δ̃div

(Z) + δ̃fin

(Z) + δ̃box

(Z) + δ̃self + δ̃vertex + δ̃w.f. res.
]}

gives

Γ(P+ → ℓ+νℓ(γ)) =
G2

µ|V ∗
CKM|2

4π
M3

P+F 2
P+rℓ(1− rℓ)

2

{
1 +

( α
2π

)[1
2
H(rℓ) +

7

2
− 3

2
ln
M2

P+

M2
W

+ δSD + δINT + δres

(γ<) + δres. 3-pt.

(γ<); res
+ δbox

(γ); res

+
M2

W

M2
Z −M2

W

ln
M2

Z

M2
W

[
3(Qq −Qℓ) tan

2 θw + ∆box

(Z)(αs)
]

+
1

2
cot2 θw ∆(Z)(αs) +

1

2
∆(γ)(αs)

]}



Conclusions



High precision reached by the data concerning non-leptonic and semi-leptonic decay modes of

the kaons has made the treatment of isospin-breaking effects (mu 6= md and α 6= 0)

unavoidable

A lot of activity has been going on, extending the scope of the low-energy EFT in order to meet

this necessity (inclusion of photons, leptons). Only a fraction of the many applications has been

mentioned here

The issue of additional low-energy constants has been dealt with in a rather satisfactory manner

(progress on estimates of the Zi’s would be welcome, though)

The effects due to Mπ 6= Mπ0 are important (especially for K → πππ and for Ke4).

ChPT at NLO is not always sufficient.

−→ This issue can be dealt with through more elaborate/adapted approaches, like NREFT,

dispersive representations,...

Watch out for possible biases if the radiative corrections to form factors and/or decay distributions

are given for fixed values of the parameters one actually wants to extract from data

−→ Not the case for δ0(s)− δ1(s) extracted from Ke4

Treatment of radiative corrections in Ke4 rather rudimentary, does not match the quality of the

data

−→ Improvements should be possible



SM provides a framework to compute radiative corrections to semileptonic
decays of mesons in situations where low-energy effective theory does not apply
(hadronic tau decays, semileptonic decays of B and D mesons)

Genuine O(αGF ) effects can be disantagled from O(G2
F ) contributions in a

systematic (and gauge invariant) manner)

Result is finite and involves three-current and two-current correlation functions of
QCD, whose evaluation requires nonperturbative approaches (lattice, large-NC )

In the case of light pseudoscalar mesons, alternative identification of the
low-energy constants in terms of these QCD correlators



Thanks for your attention!


