

High performance computing simulations

for multi-particle effects in the synchrotons

Content

- What is the HSC section doing?
- Physics basics
- PyHEADTAIL software
- Simulations of the PS
- Simulations of instabilities in the LHC

What is the HSC section doing?

HSC = Hadron Synchrotron Coherent effects

Simulate the way the particles move and how they interact with each other (multi-particle beam dynamics)

- \rightarrow Analyze instabilities to improve the machines
- → Simulate new accelerators (e.g. FCC) or upgrades (e.g. HL-LHC) to analyze whether the plans work

Necessary to set parameters:

- Number of particles per bunch (intensity)
- Beam size (emittance)

Physics basics

Closed orbit, different dimensions, Quadrupoles and Gaussian distribution

Closed Orbit

- = "perfect" path for the beam particles
- →Particles on the closed orbit pass through the same points every turn around the circular accelerator
- Almost none of the particles are injected on the closed orbit so they are **forced** to oscillate around it (like harmonic oscillator)
 - Transverse: by the quadrupole magnets
 - Longitudinal: by radio frequency cavities

Quadrupole Magnets

- → Quadrupoles focus in the one direction (e.g. vertically), but defocus in the other one (e.g. horizontally)
- → Next quadrupole magnet is rotated 90° so that the particles oscillate

Gaussian distribution of the beam

• Particles in the beam are Gaussian distributed in each direction

What is PyHEADTAIL?

- Python software developed by HSC section and used to simulate
 - the synchrotrons

```
machine = LHC(
    n_segments=1,
    machine_configuration=machine_configuration,
    **get_nonlinear_params(chroma=chroma, i_oct=i_oct))
```


What is PyHEADTAIL?

- Python software developed by HSC section and used to simulate
 - the synchrotrons
 - the beam

intensity = 1.1e11
epsn_x = 3.e-6
epsn_y = 3.e-6
sigma_z = 1.2e-9 * machine.beta*c/4

```
bunch = machine.generate_6D_Gaussian_bunch_matched(
    n_macroparticles, intensity, epsn_x, epsn_y, sigma_z=sigma_z)
```


What is PyHEADTAIL?

- Python software developed by HSC section and used to simulate
 - the synchrotrons
 - the beam
 - the beam's interaction with itself (e.g. via the vacuum pipes: wake fields)

machine.one_turn_map.append(wake_field)

What is PyHEADTAIL?

- Python software developed by HSC section and used to simulate
 - the synchrotrons
 - the beam
 - the beam's interaction with itself (e.g. via the vacuum pipes: wake fields)
 - runs over many turns

n_turns = 10000

for i in range(n_turns):

machine.track(bunch)

Simulations of the PS

5'253 turns, 1 segment per turn, 1000 macroparticles

5'253 turns, 1 segment per turn, 1000 macroparticles

ERN

1 turn, 200 segments per turn, 1000 macroparticles

- Q_x = number of oscillations in direction of x around closed orbit
- Q_y = number of oscillations in direction of y around the closed orbit

1 turn, 200 segments per turn, 1000 macroparticles

ERN

Simulations of instabilities in the LHC

Damper, chromaticity and octupoles

Without damper (10'000 turns, chroma=-15)

CÈRN

- Feedback system
- Kicker magnet in the ring which prevents the seen instabilities if their growth rate is slower than 50 turns

Damper's impact (10'000 turns, chroma=-15)

Without damper

With damper

Effect of "chromaticity"

Negative (till now)

• Only oscillations with mode = 0

Effect of "chromaticity"

Negative (till now)

• Only oscillations with mode = 0

Positive (from now)

- Only higher-order modes
- Default setting in CERN machines

With damper (10'000 turns, chroma=10)

With damper(1'000'000 turns, chroma=10)

Octupole magnets

- Can also fix instabilities of higher modes
- Bad for single particle physics, good for multi particle physics

Octupoles' impact (1'000'000 turns, chroma=10)

Without Octupoles

With Octupoles (I = 200A)

Real LHC Instability (02.04.2018) at chromaticity = 10, no octupoles

Time [~10min]

Tune Q_x

Summary

We learned and presented you:

- About accelerator physics
 - Magnets: Dipoles (closed orbit), quadrupoles (focusing and oscillations), sextupoles (adjust chromaticity), octupoles (damping instabilities)
 - Wake fields and how they drive instabilities
- Beam dynamics simulations

We also saw:

- Meetings
 - Scientific presentations
 - Language mixture
- Measurements of real beams in CCC

https://en.wikipedia.org/wiki/File:Magnetic_field_of_an_idealized_qua drupole_with_forces.svg https://cds.cern.ch/record/40918 https://cy.wikipedia.org/wiki/CERN#/media/File:CERN_logo2.svg https://cds.cern.ch/record/2298900/files/CERN-THESIS-2017-270.pdf http://slideplayer.com/slide/5966462

http://slideplayer.com/slide/10891714/

http://lin12.triumf.ca/text/Talks/TrainingImages/Octupole.jpg