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‘Heavy-ion physics’ 7

physics of the strong
interaction
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‘Heavy-ion physics’ 7

physics of the strong
interaction
1) What do we study?
2) QCD crash course
3) Heavy-ion collisions
4) What did we learn so far ?
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The 27th International Conference
on Ultrarelativistic
Nucleus-Nucleus Collisions

Palazzo del Cinema

Lido di Venezia

Redmer Alexander Bertens - July 17, 2018 Heavy-ion physics - slide 3 of 66



L/enez/a

T Quark Matter
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Chapter 1)

What do we study ?

"The history of the universe
in the lab’
(or just to learn about QCD)
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1st Stars o AT
about 400 million yrs.

Big Bang Expansion

13.7 billion years
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at very high temperatures and densities a phase transition to deconfined
matter occurs, where quarks and gluons are ‘free’
the Quark Gluon Plasma
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Heavy-ion physics

(re)create a quark gluon plasma
by colliding heavy ions

study QGP properties
governed by strong interaction
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Chapter 2)

Crash course QCD

running coupling?
deconfinement?

Redmer Alexander Bertens - July 17, 2018 Heavy-ion physics - slide 10 of 66



The strong interaction - quarks and gluons
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Amplitude is of order o.
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The strong interaction - quarks and gluons ~ TENNESSEE
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Amplitude is of order a.

Amplitude is of order o’.
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The strong interaction - quarks and gluons ~ TENNESSEE
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same INITIAL state
and FINAL state

Amplitude is of order o.

Amplitude is of order o®.

but a different diagram !
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The strong interaction - quarks and gluons ~ TENNESSEE
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same INITIAL state
and FINAL state

Amplitude is of order o.

Amplitude is of order OLN

7/
LR

but a different diagram !
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same INITIAL state
and FINAL state

but a different diagram !
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The strong interaction - quarks and gluons
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the name is Lagrange

Joseph-Louis Lagrange
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'screening’ | 'anti-screening'

a4 | o 1
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strong interaction: exchange of gluons that carry color charge
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gluons always carry two charged o005
as aresult, they can self-interact ! i
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QED-like at short distance r=<0.1 fm
Quarks are tightly bound as=0.2 .. 0.3
String tension -> Potential increases linearly

Quarks are confined into baryons (qqq) and mesons (qq)
collectively called hadrons, like in LHC

s 44 {
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at HIGH energies, as decreases asymptotically

and quarks and gluons become 'asymptotically free'
they form a Quark Gluon Plasma (QGP)
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The strong interaction - quarks and gluons
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now we know why at very high temperatures and densities a phase
transition to deconfined matter occurs, where quarks and gluons are ‘free’
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asymptotic freedom: quark
gluon plasma

anti-screening

screening
non-perturbative QCD

Strange Charm  Top
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Chapter 3)

Heavy-ion collisions in practice
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What do we need for a QGP?

dense matter : heavy ions
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What do we need for a QGP?

dense matter : heavy ions
high energy/temperature :
accelerators
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What do we need for a QGP?

dense matter : heavy ions
high energy/temperature :
accelerators
collisions : create a QGP
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What do we need for a QGP?

dense matter : heavy ions
high energy/temperature :
accelerators
collisions : create a QGP
detectors to ‘look’ at the collisions

Redmer Alexander Bertens - July 17, 2018 Heavy-ion physics - slide 35 of 66



final detected

Relativistic Heavy-Ion Collisions particle d
made by Chun Shen ] Kinetic
reeze-out

Hadronization

_'3 Initial energy

pre-.
equilibrium iscous hvdrodynamics
ynamics viscous hydrodynamic free streaming

collision evolution
T ~ 10 fm/c T ~ 101 fm/c

ion physic lide 36 of 66

t~0fm/c t~1fm/c
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Where do we get our ions from 7

m Solid lead-208 is heated until it vaporizes at ~
800 degrees Celsius (1472 Fahrenheit)

m Vapor is ionized

m lons are carried away by a EM field
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Where it all starts ... (LHC perspective) TENNESSEE
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Where do we get our ions from 7

m Solid lead-208 is heated until it vaporizes at ~
800 degrees Celsius (1472 Fahrenheit)

m Vapor is ionized

m lons are carried away by a EM field

The LHC accelerates lead ions for = 1 month per
year

m Billions of collisions

m Analysis for 1000s of physicists

m Costs ~ 5 grams of lead
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but true beauty is found on the
inside
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Chapter 4)

time for some actual
experimental physics
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QGP is a plasma
iscosity (‘internal friction’), density, temperature,
' EOS, etc ...




QGP is a plasma
a plasma has a certain viscosity ('internal friction'), density, temperature,
EQS, etc ...

QCD is (largely) non-perturbative, math doesn't help us
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QGP is a plasma
a plasma has a certain viscosity ('internal friction'), density, temperature,
EQS, etc ...

QCD is (largely) non-perturbative, math doesn't help us

brute force approach: what about shooting particles through the plasma
and seeing if they slow down 7
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Tomography
‘imaging through modification of penetrating wave’
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Tomography
‘imaging through modification of penetrating wave’

‘Hard probe means highly energetic particle
m Small «s, properties known from QCD
m Deduce QGP properties from modification of the probe by the QGP
m Similar to x-ray : modification of v wavelength by tissue

proton-proton collision  / lead-lead collision i
/.
quark
proton proton
quark
# after the collisons
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Nuclear modification factor Raa
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‘Simplest’ probe: (high-pr) particle production in vacuum vs. in plasma

d* N /dprdn

. QCD medium

Raa =

(Tan)- d?0pp/dprdn ~ QCD vacuum

(Taa) < {Neon) = no. of binary nucleon-nucleon collisions

Possible scenarios
m Raa > 1 (enhancement)
m Raa = 1 (no plasma effect)
m Raa < 1 (suppression)

Assumption
m partons lose energy in the plasma
m Raa <1
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lead-lead collision

proton-proton collision /

quark
proton proton

quark

| after the collisons
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Raa - from SPS to RHIC to LHC
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Results from LHC and RHIC are
qualitatively similar

B Raa < 1 points at energy
loss

Decrease of Raa with increasing
V/SNN
m Indicative of higher plasma

density at the LHC compared
to RHIC

Data (and models) suggest
decrease of relative e-loss at high

pT

so the Raa s a nice ‘educational’
tool
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Is it really the strong interaction ?

Ropb is expected to be sensitive to
initial state, but not final state
effects

Rppb is consistent with unity for
pr > 2 GeV/c

@ Small Cronin-like
enhancement visible at low pr

@ Consistent with Raa of
particles which are not
sensitive to QGP dynamics

(v, W*, 2%

Suppression of hadron production
in Pb—Pb collisions is final state
effect

THE UNIVERSITY OF
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T
® ht Pb-Pb
1.8 [ 4 h Pb-Pb (CMS)
b VS = 2.76 TeV, 0-5%

T T T T T T T
@ h* p-Pb {[S, = 5.02 TeV, NSD (ALIGE)

* Y. Pb-Pb {5 = 2.76 TeV, 0-10% (CMS)
& W Pb-Pb |5 = 2.76 TeV, 0-10% (CMS).
v Z°, Pb-Pb |5, = 2.76 TeV, 0-10% (CMS)

T
(ALICE)
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p, (GeV/c) or mass (GeV/c?)

PRL 110, 082302 (2013)
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Rana gives us an intuitive tomographic picture

m The energy of our probe is absorbed in the plasma (Raa
<1)

m With a bit of confidence we can say: ‘partons lose
energy in QGP, \/syn and density dependent’
But that statement is still not very precise ...

1 234 10 20
p, (GeVic)

100 200
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we're off to a good start ... TENNESSEE | |

Rana gives us an intuitive tomographic picture

m The energy of our probe is absorbed in the plasma (Raa w |
<1) L
m With a bit of confidence we can say: ‘partons lose ﬁ; /»«:”

energy in QGP, \/syn and density dependent’
But that statement is still not very precise ...

If we want to learn more, we need to

m Investigate the energy loss mechanisms that we can expect

m Perform calculations using these mechanisms

m Define a universal ‘interface’ (a plasma property) that we'll use to quantify the
energy loss
Make a systematic comparison of models to available data

Let’s look at all this in some more detail
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in the ‘classic’ (vs. AdS/CFT) QCD picture energy loss is either
collisional or (induced) radiative

Collisional Radiative
energy loss energy loss
E E-AE_

+ AE

|
|
| E-AE
|

X
(medium)
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How do ‘hard probes’ lose energy? TENNESSEE g §
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in the ‘classic’ (vs. AdS/CFT) QCD picture energy loss is either
collisional or (induced) radiative

Collisional Radiative
energy loss energy loss
E E-AE
AT E 99995/'/AE
| \
+.\E i E-AESN
|
X
(medium)

both mechanisms have an explicit dependence on the length of the
parton’s tracjectory through the QGP (L, L) and plasma density
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As a ‘back of the envelope' thought, ingredients for collisional energy loss

where w = EMitial _ pfinal io 4o neferred one can write
plasma density Aux 0 0
dE —N— P e dog&¥pP—&p
G — q
) \ﬁ/_/

cross section
sum over states
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Collisional energy loss - an incomplete picture TENNESSEE 4
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As a ‘back of the envelope' thought, ingredients for collisional energy loss

where w = EMitial _ pfinal io 4o neferred one can write
plasma density Aux 0 0
dE —N— P e dog&¥pP—&p
G — q
) \ﬁ/_/

cross section
sum over states

with a some trickery this can be integrated

dE 2 d3k ql?nax
(ZlZ:Was§Cp/kpp(k)ln( 2

9min

Aol T? N E
SR (A A I PR
3 6 asT

do not try to remember this !
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Radiative energy loss - an incompleter picture TENNESSEE |4

KNOXVILLE

The energy loss for radiative processes is directly connected to the energy
of the radiated gluon w

d?/
dwdz

@a:/w@w
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THE UNIVERSITY OF

Radiative energy loss - an incompleter picture TENNESSEE

KNOXVILLE
The energy loss for radiative processes is directly connected to the energy
of the radiated gluon w

d?/
dwdz

@a:/mww

The difficulty enters here: gluons have a finite formation time during
which the parent particle and gluon are still a coherent object

w

i
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Radiative energy loss - an incompleter picture TENNESSEE |4

KNOXVILLE
The energy loss for radiative processes is directly connected to the energy
of the radiated gluon w

d?/
dwdz

@a:/w@w

The difficulty enters here: gluons have a finite formation time during
which the parent particle and gluon are still a coherent object

w

i

if parent particle and gluon are still in a coherent state further radiation is
suppressed - this effect is known as LPM interference
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LPM interference in radiative processes TENNESSEE

KNOXVILLE

Because of the finite 7 the gluon spectrum has three distinct regimes
depending on mean free path A\ and screening mass p

Qs
7 w < WBH
2
dwdz \ w BH fact
«
TS Whaet < w < E

@ Low gluon energies: all constituents act as single sources of radiation

@ Intermediate energies: multiple constituents act as a coherent
scattering source (LPM interference)
© Highest energies: the entire plasma acts as one scattering center
2L2

(AE)(L) ~ craE + o
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remember that we can do these

calculations because our ‘hard
probe’ has large energy:
perturbation theory works

how do we relate it to a
macroscopic plasma property ?
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Transport coefficient § TENNESSEE g

KNOXVILLE

In the most general sense, a transport coefficient v measures how rapidly
a perturbed system returns to equilibrium ...

) = /0 (A(1)A(0))
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Transport coefficient § TENNESSEE [g §

KNOXVILLE i

In the most general sense, a transport coefficient v measures how rapidly
a perturbed system returns to equilibrium ...

y = /0 (A(1)A(0))

. but I (I don’'t do quantum mechanics every day ... ) know them best as
viscosity 7 or the transverse momentum diffusion coefficient §

AE ~ asgL?
"

g quantifies momentum diffusion between a probe particle and a given
material as the average squared momentum transfer <qi> per unit length
A, where | is perpendicular to the partons’ trajectory
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: nougE equations !
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enough equations !

rt

-
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enough equations !

land gluomradiation depend on QGP
) pperties

T

-
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enough equations !

idiation lead to energy loss of
obe particles

-—
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enough equations !

can be used to-probe the QGP via
robe-medium interactions

idiation lead to energy loss of
obe particles
oss-can be-measured

-—
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enough equations !

can be used to-probe the QGP via
robe-medium interactions

idiation lead to energy loss of
obe particles

oss can be-measured

e to express this in terms of §

-—
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enough equations !

can be used to-probe the QGP via
robe-medium interactions

and gluomradiation depend on QGP
pperties S5

idiation lead to energy loss of
obe particles

oss can be-measured
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The tuning process

0.8

T T T
PHENIX 0-5% 2012

T 0.8

CUJET2.0
(Amaxfe.fu)

T
CUJET2.0
(@maxfe.fu)

[1]oo

0.6
= =
< < o4
< E
@ 24
0.2
0
6 8 10 12 14 16 18 20 20 40 60 80 100
pr (GeVic) pr (GeVic)
e e s S
[o ALICE 0-5% B
0slk® fms 0-5% ) H
[ @, =29 GeV'/fm i
§ 0.6— —
o L 4
0.4 —
0.2|w —
ob——L o 1 . 1 . 1 . b v
0 20 40 60 80 100 10 20 30 40 50 60 70 80 90 100
Pr py (GeVic)
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. to arrive at a common g TENI\LI;OSX%FEE )
T MARTING T MeGiAMY] e w{ o S
6 =3 HT-BW | --- GLV-CUJET]
was HT-M ]
5 [ E AdS/CFT correspondence
[ compatible using CUJET as:
mb 4 ; | a
5, ? ] o5 = 2.27 - 3.64
2 C |
] 5 Au+Au at RHIC 1 For a 10 GeV/c quark jet
An/T D! Pb+Pb at LHC, |
o= . 1. ... GeV?
0 0.1 0.2 0.3 0.4 0.5 . 1.24+0.3 m at T=370 MeV
T (GeV) a= 2
1.9+ 0.7V 0t T—470 Mev

§ determined with ~ 35% certainty
combined effort of five theory groups, RHIC and LHC
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...S0 ... § = 2 ... doesn't sound too
impressive ...

but realize that this is 20 years or RHIC /
20 years of LHC / 20 years of theory and
a first ‘telescope’ to the very early
universe

that teaches us about temperature,
density, viscosity, EOS of the QGP



Afterglow Light
Pattern
380,000 yrs.

Inflatiol

Qual
Fluctuations

Dark Energy
Accelerated Expansion

Dark Ages

Development of
Galaxies, Planets, etc.

1st Stars o AT
about 400 million yrs.

Big Bang Expansion

13.7 billion years
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L/enez/a

T Quark Matter
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so in summary, Raa teaches us a lot - but it has it's
limitations because we look at hadronized particles, not
partons, and we don't know what ‘path’ the parton took
through the plasma
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so in summary, Raa teaches us a lot - but it has it's
limitations because we look at hadronized particles, not
partons, and we don't know what ‘path’ the parton took
through the plasma

to understand the nature of energy loss, experiments
must get as close to partons as possible, constrain the
trajectory and measure the shape of the e-loss
distribution
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Jets in heavy-ion collisions in a nutshell TENNESSEE | §

KNOXVILLE

Hard scattering (Q% > 1 (GeV/c)?)

m Parton travels through the QGP,
scattering and radiation of
quarks and gluons

m Hadronization into colorless
spray: ‘jet’

m Reconstructed jet: as close as
one can experimentally get to
original parton (the scattered
quark or gluon

m ‘Removes’ ill-understood
hadronization from modeling

But jet analysis is tricky!
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Jets are what we see.
Clearly(?) 2 jets here
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Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?



Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 10° events?



CMS Experiment at LHC, CERN

Data recorded: Sun Nov 14 19:31:39 2010 CEST
Run/Event: 151076 / 1328520
Lumi section: 249




so if time permits, two questions

are jets quenched?
can we determine the path of the
jet through the plasma?
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-of- iation: ' TENNESSEE
Out-of-cone radiation: Raa of jets
- <12
g ALICE {syy=2.76 TeV < ALICE Pb-Pb {5y= 276 TeV Antid; R=02 || <05 [=9">5 Gevie
[0
S o5k Antik; R=02 In | <05 T I
> é Ee=y P> 5 GeVie ¥ Data0-10% [JComelated unceriainy ¢ Data 10-30% []Comelated uncertainty
| 2 08l 1 Shape uncertainty || £ Shape uncertainty
g = — JEWEL +ees JEWEL
‘_‘25 107 F — — YaJEM - - YaJEM
~ = 06 s
-IF E=na
= rp 04l
10%F "4 0-10%PbPb Ee
¢ 10-30% Pb-Pb §+
|:| [ Correlated uncertainty 0.2
[ Shape uncertainty
10°F PR R R o)
0 50 100 0 50 100 50 100
Pr o (GeVIC) Py, (GeVio) Prjo(GEVEO)
ALICE, PLB 746 1-14 ALICE, PLB 746, 1-14 ! !
R d> N /dprdn QCD in medium
AA — ~ :
(Tan)- d?0pp/dprdy — QCD in vacuum

m Strong suppression in central and semi-central colisions

m Resonable model agreement (JEWEL', YaJEM®)
Indication of out-of-cone radiation

1 2
K.C.Zapp et al. JHEP 1303 080 T.Renk, PRC 78 034908
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what path did the jet take
through the plasma?

event-plane dependence of jet
production



ch jet THE UNIVERSITY OF

v, °: ‘selecting’ path lengths TENNESSEE

KNOXVILLE

v2Ch Jet, comparing short to long L at fixed

medium density

(Lin) =~ (Lout) ‘ 0 (L) < (Low)

vgh et ~ 07 v2Ch et 5 07

so this is not hydro flow! the contribution of

h jet
> vp to v5 ' has been removed
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ch jet

v, ° in semi-central collisions
o L T T T
/A
> 0.3 ﬁIb_IISbE\(E —276Tev ® v "30-50%, Stat unc.
NN = & |
= R=02antiky, In_|<07 L] Systunc.(shape) 1
QN et Syst unc. (correlated) |
> B ATLAS v 30.50%
0.2 g $  CMS v™'{|an|>3} 30-50%
52 ALICE v/*"{An[>2} 30-50%1
® -
0.1-@ —
L %y ]
] - ]
o ™ ]
of- i

(b) | P vas > 0.15 GeV/(‘: Pr e d >3 GeV/c ]

0 50 100 150

part jet G

, eV/c

PLB 753 (2016) 511-525 pT pT ( )

h
Non-zero v; et

THE UNIVERSITY OF =1

TENNESSEE |

KNOXVILLE i

<Lin> < <Lout>

ch jet
Vy >7?

over full pt range - strong path length dependence

Good agreement between measurements of ALICE, ATLAS, CMS
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Path-length dependence: di-jet systems TENNESSEE

KNOXVILLE

‘so to understand the nature of energy loss, we must get as close to partons as possible,
constrain the trajectory and measure the shape of the e-loss distribution’
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Path-length dependence: di-jet systems TENNESSEE

KNOXVILLE

‘so to understand the nature of energy loss, we must get as close to partons as possible,
constrain the trajectory and measure the shape of the e-loss distribution’

Di-jet system: 2 — 2 process A= pr1 — Pr2

m Jets traveling in opposite direction with equal pr1 -t pr2
initial transverse momentum pri = pr2 Xj = pr1/pr2

| | L1 ;é L2

» AE # AE ET1

m Final state pr is not equal pr1 # pr2 . '

Some caveats ... in all collision systems pr1 # pr2
m pp: recoil, out-of-cone radiation (vacuum
fluctuations)
m AA: energy loss fluctuations, different
path-lengths

Ero<Ery
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. a bit of history ... TENNESSEE
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CERN COURIER

Jan 25, 2011
ATLAS observes striking imbalance of jet
energies in heavy ion collisions

The ATLAS experiment has made .
the first observation of an =
unexpectedly large imbalance of ‘
energy in pairs of jets created in 2y oo
lead-ion collisions at the LHC (G Highly asymmetric dijet event
Aad et al. 2010). This striking

effect, which is not seen in proton—proton collisions, may be a sign
of strong interactions between jets and a hot, dense medium
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Di-jet imbalance x; = pr1/pr2 TENNESSEE

KNOXVILLE

Asymmetry quantified as

Bl Fwaecimen 0 10% 35" "Fatcas pramnary 1072099
=235 3 = 3.5F antik, A= 04 jets VSmu= 276 TeV
4PbiPb E " d L —
3 2015 o an 2007 Xj = p11/pT2
25;*
2= Fully unfolded
3 m Direct comparison to theory
L
ost = ... and (eventually) other
4 ] experiments
g
X
3l 4 j 10-80% =y 4
2 355 E = 355
3f E 3
==
2.5F E 25F
2F o
1.5 150
i+ Ia
0.5 0.5-
T IV VT 1T T TS POV T
B,2 03 04 0506 0.7 08 09 1 BQ 03 04 05 06 07 08 09 1
X, X
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Di-jet imbalance x; = pr1/pr2

e T
100 < p, < 126 GeV 0-10%

4Pb+PD

N '
=35 E
i3 f
2.5F E|
i3
1.5F
I
0.5F

T IV VT
B,Z 0.3 0.4 05 06 0.7 08 09 1

X

- 4 7
3ls EA]!LAS‘F'reHI;\maryI 0 2‘0%5
"|2 3-5;_ anti-k, A= 04 jets {5,=276TeV 3
F 2011 Po+Pbdata, 0.14nb" E|
35 2013 pp data, 4.0pb " B
25F 3
E ==
2= |
i E
0sE E
L. L I L L L Il L 3
8.2 03 04 0.5 06 0.7 08 0.9

8

1T T TS POV T
20304050607 0809 1

X
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Asymmetry quantified as

Xj = pr1/pt2

Fully unfolded
m Direct comparison to theory

m ... and (eventually) other
experiments

In pp

® most probable dijet
configuration: x; ~ 1
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Di-jet imbalance x; = pr1/pr2

4Pb+PD

T
100 < p, < 126 GeV

4
2|“"
sls

= 3.5F
af
2.5

o
15F
+
0.50

T IV VT
B,Z 0.3 0.4 05 06 0.7 08 09 1

X

- 4 7
] EA]ELAS‘F'reHI;HnaWI 10 zzJ%E
"|2 3-5;_ anti-k, A= 04 jets {5,=276TeV 3
F 2011 Po+Pbdata, 0.14nb" E|
3F 2013 pp data, 4.0pb " B
25F 3
E ==
2= |
i E
0sE E
L. L I L L L Il L 3
8.2 03 04 0.5 06 0.7 08 0.9

8

1T T TS POV T
20304050607 0809 1

X

Redmer Alexander Bertens - July 17, 2018

THE UNIVERSITY OF

TENNESSEE g §
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Asymmetry quantified as

Xj = pr1/pt2

Fully unfolded
m Direct comparison to theory

m ... and (eventually) other
experiments

In pp
® most probable dijet

configuration: x; ~ 1
In Pb—Pb

m most probable configuration:
subleading jet has half as
much energy as leading jet

Strong centrality dependence
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Di-jet imbalance x; = pr1/pr2 TENNESSEE
%Ig 4 0 10% | " ! |ﬂlﬂ<ptl<126IGeV
MR J. 1 Asymmetry: x; = pr1/pr2

I . m With increasing pr — x; goes towards 1

2.2 —— :

1.5

1 #ﬁm"’
0.5]

82 03 04 05 06 07 08 09 1

Xy

2 4 T T
1,-,|1= p,>200GeV

L L L L L 1
8.2 03 04 05 0.6 07 0.8 09 1
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Di-jet imbalance x; = pr1/pr2

ZI"
sks

=

ZI <
3k

= 35

3.

T T
0-10%

)
+op

#

T T T
100 < p, < 126 GeV

L
0.

3 0.

L 1 L L 1
4 05 06 07 08 09 1

Xy

T
p,>200GeV

L L L L L 1
.2 03 04 05 0.6 07 08 09 1

Xy
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Asymmetry: x;

pri/pr2

THE UNIVERSITY OF

TENNESSEE
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m With increasing pr — x; goes towards 1

Raa

T i
SPS 17.3 GeV (PbPb)
O x° WA9B (0-7%)

RHIC 200 GeV (AuAu)

% h' STAR (0-5%)
LHC 2.76 TeV (PbPb)

®  CMS (0-5%)

¢ ALICE (0-5%)

O n° PHENIX (0-10%)

mEaES —
GLV: dNydy = 400

GLV: dN/dy = 1400

GLV: dN/dy = 2000-4000
YaJEM-D

- elastic, small P,

-~ elastic, large P

r YaJEM

— ASW

PQM: <G> = 30 - 80 GeV¥/fm -|

Prog. Part. N

confirms sl. 6 ‘Relative loss decreases

p. (GeV/c)
ucl. Phys. 70 (77) 2014
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Di-jet imbalance x; = pr1/pr2 TENNESSEE
3
flz 3.5]

In summary
m Raa: moderate average energy loss
m di-jets: wide variation in possible energy loss

3
2.5
2|
1.5

So di-jet asymmetry very nicely illustrates
m centrality dependence hints on path length

0.

= i
%
o

0 . dependence
’ m e-loss is a distribution

= 35F
b

25

pa

1.5F

£

0.5F

L L L L L 1
.2 03 04 05 0.6 07 0.8 09 1
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Di-jet imbalance x; = pr1/pr2

le
sks

=

Zl <
3k

=

3.5
3
2.5

[N

1.5
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1]

1

Xy

0.3 04 05 068 07 0.8 09
T T
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1
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In summary
m Raa: moderate average energy loss
m di-jets: wide variation in possible energy loss

So di-jet asymmetry very nicely illustrates

m centrality dependence hints on path length
dependence

m e-loss is a distribution

But it doesn't tell what the balance is between

m per-jet energy loss fluctuations? (analogous to
fluctuations in vacuum radiation)

m average energy loss from kinematics, medium
compisition and geometry?
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‘to understand the nature of energy loss, experiments
must get as close to partons as possible, constrain the
trajectory and measure the shape of the e-loss
distribution’



‘to understand the nature of energy loss, experiments
must get as close to partons as possible, constrain the
trajectory and measure the shape of the e-loss
distribution’

so let's give that a go from both the experimental and
theory side
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How-to: constrain QGP properties ?
Which processes is dominant?
(radiative, elastic)

Where does radiated energy go ?
#questions > #answers



techniques

o
priGevs]
axf W g ¢ arTcioon ]
© o s
o1 1
g LT ,
Bos i tas
g + Mo
S g
'CMS Proiminary L, = 140 10"
3F=2010,0-30°%, Loading jt
= 2011,0-100%, Incusive et
25fEE
o
& 4
T4
£
|
osE
Jetp, >100GeVie

Fulljet reconstruction
measurements and comparison
totheory over a wide range of

collision and jet energies.

Precision RHIC data
are essential

Redmer Alexander Bertens - July 17, 2018

2000

2002

2004

2006

2008 [~

2010

2012

2014

developed

— x5 suppression in hadron R,
— Away-side disappearance

d+Au “NullExperiment’:
— Jet.quenching unambiguously
afinal-state/QGP effect

|_ Strong modification of an
away-side jet: “Mach-Cone’ ?

— No direct photon suppression

| Near-side modification:
“The Ridge”

Feasbility measurementsistudies|
of full jet reconstruction at RHIG

Ridge and Mach-Cone structure
— consistently explained by v,,
(initial state fluctuations)

LHC data: Increase of charged
[~ hadron R, at high momentum;
full jet measurements.

L Modification injet fragmentation/
jet structures at the LHC (QM12)
suggests radiative energy loss
picture at high jet energies

 reduce § uncertainties

+ determine §(T) dependence

 characterize quasi particle
nature over a wide range
injet energy

 constrain importance of

BES-Il and detector

collisional vs. radiative

Hl\ll\l I\Il\ll\l I\Il\ll\l TTT]
H 2 | 2000
g g
x a
g g
2 s
=§ 2 | 2002
3 H
& &
3 3
2004
2
S | 2006
g
g
g
5 | 2008
2
S
z
8
2 |2010
=
3
g
B | 2012
5
<
2014
S e

"RAA” “x+Jet”’

[ 1000
[ o orets| | DPets
‘Hadrons
Double
L b-tag
y+jets
L Z0+jets 4
{'e 100

= s RHIC tomorrow—| 10

— LHG tomorrow |

filiiFLHC today |

[C—JRHIC today

p;[GeV]

‘Hot and Dense QCD matter, Unraveling
the Mysteries of the Strongly Interacting

QGP’ & ‘The Hot QCD White Paper’
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