WLCG Update

Ian Bird LHCC Referee's meeting CERN, 11th September 2018

Data

CPU Delivered

New pledge year

New peak: ~242 M HS06-days/month ~ 780 k cores continuous

(From sites that pledge)

LHCC; 11 Sept. 2018

Preparation for HI run

- This week there will be a test of HI data taking; anticipate higher rates than we have seen before
 - From DAQ \rightarrow tape
 - All experiments participating
 - Generate data and send to Tier 0, check for bottlenecks and unforeseen problems
 - (although LHCb is running production)
- Aggregate data rates ~19 GB/s (ALICE 10 GB/s, 3x3-GB/s)
 - IT will add some internal data eventually, to check limits
- 2-days (13+14 Sep). If problems are found, no chance to re-test, have to be corrected for the run

2019 Pledge situation

2019 pledges wrt requests: As given in REBUS - Final updates due for October RRB

Run 3 running conditions – 1

- □ Following discussion with LHC operations
- □ Still many unknowns
 - E.g. experiment planned trigger rates are tbd
- Expected conditions:
 - 7 TeV per beam, gives small reduction in beam size
 - The main limitation is the heat load in the cryogenics
 - Expect BCMS filling scheme; 25ns
 - 2544/2556 bunches, $\beta^* = 27$ cm
 - 1.3 x10¹¹ protons/bunch
 - 2x10³⁴ (could be a bit higher) is the limit due to the inner triplet cooling
 - This will not change in LS2
 - This is a pile up of ~60

Planning for Run 3

Run 3 running conditions – 1

- Following discussion with LHC operations
- Still many unknowns
 - E.g. experiment planned trigger rates are tbd
- Expected conditions:
 - 7 TeV per beam, gives small reduction in beam size
 - The main limitation is the heat load in the cryogenics
 - Expect BCMS filling scheme; 25ns
 - 2544/2556 bunches, $\beta^* = 27$ cm
 - 1.3 x10¹¹ protons/bunch
 - 2x10³⁴ (could be a bit higher) is the limit due to the inner triplet cooling
 - This will not change in LS2
 - This is a pile up of ~60

Summary

- Run 3 is very hard to plan for ...
- 2018 is already at ~ nominal Run 3 conditions, but hints that LHC conditions will be pushed ... Parameter
- Many unknowns from expe likely trigger rates, sustaina
 - Demands continue to increa much more HI data than for
- 2021 is likely to be a short demanding on resources
 - We could reach limits of available
 - This seems likely at CERN
 - Strong hints remain that "co
- What happens when we hit LHCC; 11 Sept. 2018

- Not much change in understanding since last meeting
 - Best estimates:

- 2021 will be "light" commissioning year •
- $2022 \rightarrow 1.3 1.5 \times 2018$ depending on • trigger rates and levelling duration (and virtual luminosity)
- Still many unknowns:

BCMS pushed a bit

- Accelerator conditions •
- Trigger rates, pile-up, parked data, etc.
- ALCE and LHCb real needs above 2018

Nominal - pushed

Comments

Seems likely we will hit limits of "flat budgets"

And the second second second second second					
eriments – need some guidance	Energy [TeV]	7.0	7.0	7.0	
able pile-up, etc.	β* (1/2/5/8) [m]	0.3 / 10 / 0.3 / 3	0.3/ 10 / 0.3 / 3	0.3/ 10 / 0.3 / 3	Plus beta* levelling to 25 cm
ase – maximized trigger rates parked	Long-range separation [sigma] - assumed emittance	9.2 sigma - 2.5 um	9.2 sigma - 2.5 um	9.2 sigma - 2.5 um	
reseen,	Initial Half X-angle (1/2/5/8) [µrad]	-160 / 120 / 160 / -150	-160 / 120 / 160 / -150	-205 / 120 / 205 / -150	Anti-levelled to 130 urad
year, but 2022,23 could be very	Number of colliding bunches (1/5)	2592	2592	2748	BCMS - 240 bunches/injection from SPS
	Bunch population	1.3e11	1.4e11	1.7e11*	* ruled out, initialy at least, by e-cloud heat load
ailable budgets	Emittance into Stable Beams [µm]	2.5	2.6	3.0	
allable buuyets	Bunch length [ns] - 4 sigma	1.1	1.1	1.1	
	Virtual Luminosity (L0)	2.3e34	2.6e34	3.2e34	
onstant budget" is the only realistic sc	Levelling time (hours)	2.0	3.8	7.9	
t a resource limit?	Luminosity per 12 hour fill (burn only)	0.65	0.7	0.8	
	Luminosity lifetime (tauL) - end levelling	13 hours	14 hours	15 hours	Approx assuming burn only
lan Bird	Integrated/140 day year (fb-1)	65 - 70	70 - 75	85 - 90	NB Ballpark!

BCMS

Resource evolution

- 2010-2018 pledges
- 2021 assume 1.5 x 2018

HL-LHC progress

- Data (DOMA project): Activities ongoing in several areas:
 - Caching and data access
 - Third-party copy
 - Investigation of lower-level protocols (with SKA and GEANT)
 - Replacement of gridftp
- Software activities via HSF
 - Software Institute proposal being funded by NSF
 - HSF organizing for specific projects: first are simulation, reconstruction, analysis
- Compute Provisioning & Access
 - Not really started yet, but discussions with HPC providers (PRACE) being organized
- Authentication, Authorization working group
 - Converging on token-based models, looking at integration with services, etc.
 - In collaboration with international partners and projects
- System Performance and Cost Model working group
 - Active since last year

- Technology and Market Tracking
 - Has been long-term activity

wicg

HL-LHC Computing Upgrade R&D

Computing & software R&D

The background is given in the Community White Paper (and individual topic papers), and the WLCG Strategy documents above. These propose a number of	
R6D projects that will contribute to the development of the distributed computing environment for HL-LHC.	
Those BED projects are listed and linked below.	

CWP published	Run 4 starts
WLCG Strategy published	Computing TDRs
Projects & Activities	
 Data Organisation. Management. Access (DOMA) 	Authentication. Authorization Working Group
 Software performance improvements Organised by the HEP Software Foundation (HSF) 	 System refformance and Lost Podeling Working Group Technology and Market Tracking
Compute Provisioning and Access	

ESFRI Science Projects				
HL-LHC	SKA			
FAIR	СТА			
KM3Net	JIVE-ERIC			
ELT	EST			
EURO-VO	EGO-VIRG			
(LSST)	(CERN,ESO			

Goals:

Prototype an infrastructure for the EOSC that is adapted to the Exabyte-scale needs of the large ESFRI science projects.

Ensure that the science communities drive the development of the EOSC.

Task 2.1 Data transfer services

ESCAPE Project has been approved

Funded at the requested level

citizen

ess FAIR data management, long term 1, open access, open science, and 5 the EOSC catalogue of services.

Project likely to start in January 2019

Ian Bird

 Task 2.2 Content Delivering and Caching

 Task 2.2 Storage Orchestration Service

 Task 2.1 Storage Services

Cloud/

commercial

<u>ges</u>

- Infrastructure for Open Science -source scientific Software and Service Repository
- WP4 Connecting ESFRI projects to EOSC through VO framework
- WP5 ESFRI Science Analysis Platform

Data centres (funded in WP2) CERN, INFN, DESY, GSI, Nikhef, SURFSara, RUG, CCIN2P3, PIC, LAPP, INAF 10

Review of strategy

- Fairly urgent to converge on a date for the review
- WLCG-HSF workshop planned for w/b 18th March 2019
- Would like to be able to use that also as preparation for review
- Desire to be able to plan around a timetable

Summary

- Data taking very smooth no operational concerns,
 - 50 PB pp data so far, expect +25 during HI
- ESCAPE project approved will help fund data lake development and integration
- □ Run 3 conditions still uncertain
 - 30-50% resource increase compared to 2018 (for ATLAS and CMS), more for ALICE and LHCb
- □ Projects for HL-LHC starting in many areas
 - As set out in the strategy

