

ATLAS Software & Computing Status

Torre Wenaus (BNL), Davide Costanzo (Sheffield)

LHCC Meeting September 11 2018

Processing since May 1 (ev#s need update)

MC Simulation Fu

Group Produ

2,913,512,225 MC simu

Deriv

15%

36%

MC reco

Evgen

19%

22%

ration - 18.61%

- Smooth Tier-0 running on 23k cores
 - Bphysics stream spillover to grid commissioned early but physics validation took time, ultimately concluding differences are primarily due to chip differences between Tier-0 and grid resources (Intel variants, AMD)
 - Tier-0 is keeping up OK so we can live without spillover (until Run-3)
- Sustained production with smooth operations, ~300k cores
- HPCs relatively quiet; exhausted allocations and wait for more
- Moving >1 PB, >20 GB/s, 1.5-2M files per day

BROOKH*r*ven

Storage status

- Jagged primary (pinned) data plot tells the story of continuous management of our essentially full disk space
- Secondary (unpinned, deletable) should be ~25% of total for smooth ops, it is squeezed
- Several deletion and optimization campaigns in recent months
- Driven by the management mechanisms we have in place
 - Proactive resource management board monitoring usage, implementing deletion policies and scrutinizing space and exception requests
 - Lifetime model ascribing an enforced (with scrutinized exceptions) lifetime for each file
 - Obsolescence rules for data product versions
- With this close management, keeping up with the storage needs of data taking and ongoing MC16 simulation production

Heavy Ion datataking in 2018

- Plans in progress for the 2018 data taking
 - \circ Plan 10⁶ s of running and 10 different data streams
 - $\circ~$ 2.1B events expected, 2.5 PB for RAW and 1.5 for AOD
 - Use partial event build (only ID and forward detectors) for calibration streams to save disk space
 - Expect 2 kHz rate with 2.5 GB/s bandwidth
 - Plans still evolving
- Participation in the end-to-end test with CMS and ALICE
 - Expected bandwidth of 2.5 GB/s

October 2018 CRSG report

- Submitted August 30
- Resources needed in 2019 were agreed at April RRB
 - T0 flat; no datataking
 - T1+T2 below flat budget (11% CPU, 19% disk, 4% tape)
 - C-RSG noted ATLAS uses more disk than CMS and with faster growth rate
 - We've been working to improve, and the comments were impetus for further action
 - A new computing model study group mandated to achieve at least 30% storage reduction relative to the Run-2 model
- Initial request for 2020 assumes 60 fb⁻¹ with possible increase to 80fb⁻¹
- Summary of usage in 2018 and final request to be submitted in February

2020 request to C-RSG

	2018 Agreed @ Oct2017 RRB	2018 pledges	2019 Agreed @ April2018 RRB	2020 Request @ Oct 2018 RRB	Balance 2020 wrt 2019 request	No increase at t
						│ ~No increase in
TO CPU (kHSO6)	411	411	411	411	0%	
T1 CPU (kHS06)	949	969	1057	1079	2%	Some increase
T2 CPU (kHS06)	1160	1136	1292	1320	2%	resources
SUM CPU	2520	2516	2760	2810	2%	
TO DISK (PB)	26	27	27	27	0%	No increase in t
T1 DISK (PB)	72	80	88	96	9%	was adjusted as
T2 DISK (PB)	88	86	98	106	9%	under used)
SUM DISK (PB)	186	193	213	229	8%	
TO TAPE (PB)	94	105	94	94	0%	
T1 TAPE (PB)	195	196	221	221	0%	<u>Note</u> : These wil
SUM TAPE (PB)	289	251	315	315	0%	this winter base

the Tier0

CPU needs

in disk

ape (the model s it is currently

Il likely change d on actual uminosity

Assumptions made:

- Tier0 to be used for offline processing 0
- HLT farm partially available for MC 0
- Availability of HPC and extra CPU resources 0

Davide Costanzo

ATLAS submission to C-RSG

ATLAS Weekly 4-Sep-2018

Software

- Emphasis on stability paying off: continuing with Release 21 in 2018 contributes to rapid analysis turnaround and a consistent Run-2 dataset
- Still behind on AthenaMT migration milestones in the subsystems, but the concerted efforts to enlist more development effort are showing effects
 - Four subsystems moved to 'OK' column, effort levels up by ~3 FTEs
- Open sourcing the Athena software: we were on schedule to do so in June but decided it would be too disruptive to datataking, so postponed to the end of year stop
 - Cleaning up the repo entails creating a new repo, so everyone must re-fork
- Comprehensive I/O roadmap document towards Run-3 and (sketchily) Run-4 written and will be reviewed later this month, very useful in planning event I/O development
- Good progress on new workflows: new fast simu, fast chain, and MC pileup overlay appear to be on track for completing physics validation in 2019 (possibly 2018 for pileup overlay)

• Q1 2021: Start of Run 3

Common software, common projects

- An eventful period for common software and common projects
- ATLAS adopted the ACTS tracking software, a multi-experiment common project initiated by ATLAS
 - Thorough review process recommended incremental adoption
 - Contingent on ACTS readiness milestone this fall
- CMS joined the community of experiments adopting Rucio for data management -- welcome!
 - Bodes well for a coherent, efficient WLCG DDM infrastructure
- ATLAS's software infrastructure guru Emil Obreshkov joined the EP-SFT group, placing our expert where he can leverage and contribute to common work

Computing usage in LS2 and Run-3

- No plan to change our model for Run-2 analysis during LS2, but changes are coming for Run-3
- During LS2, computing will be dominated by
 - Completing MC16 simulation (statistical extensions, new generators)
 - Some reprocessing of specific samples (no full reprocessing anticipated)
 - Run-3 preparation (validation, samples preparation)
 - HL-LHC studies
- Preliminary expectations for Run-3
 - Datataking: leveling at mu ~65, trigger rate similar to Run-2, 6.5M seconds in 2021
 - Tier 0: prompt processing 1.5-2x Run-2 in CPU; spillover to grid may be essential
 - Big change for CPU: Greater use of fast simulation (FastCaloSim, FastChain)
 - Big change for Disk: New analysis model (study group underway)
 - AthenaMT in Release 22 and software optimisation (eg require more hits per track)
 - New, more efficient workflows: pileup overlay, less merging, more tape usage, more remote data access
 - Detector upgrades: New Small Wheels, Level-1 Calorimeter trigger, FTK
 - Resource needs in 2021: ~1.5x 2018, within flat budget

Towards HL-LHC

- Working on an update and revision of resource needs out to HL-LHC
 - Incorporating updates for coming model changes, e.g. more fast simulation and smaller analysis format disk footprint
 - Also making the move from spreadsheet to a model in python
 - Drawing in part on the generalization of the CMS model undertaken in the cost model WG's hackathon a few months ago
- Active on HL-LHC R&D initiated following the Naples WLCG-HSF meeting
 - DOMA R&D program coordinated by WLCG
 - DOMA caching subgroup
 - ATLAS tape carousel study, now involving most ATLAS Tier-1s
- Reengineering for new architectures and HPCs is seeing more attention: e.g. a dedicated workshop at BNL in July, a new 'HL-LHC Computing' activity area in US ATLAS
- Establishing an ATLAS computing strategy study group to write and evolve a strategy document complementing the WLCG strategy with ATLAS specifics
 - Start discussion at the next Software and Computing week (3 Oct)

T. Wenaus September 2018

Summary

- Smooth operations across Tier-0, grid and opportunistic resources with full utilization
- Managing tight disk space and working in several directions to reduce disk demands in the future, now also with a new computing model study group targeting 30% reduction
- AthenaMP migration-directed software effort levels continue to be tight but are improving, with more efforts underway, including support for new developers (when we find them)
- Common project successes: ACTS in ATLAS, Rucio in CMS
- Requesting a modest resource increase in 2020 with respect to 2019, and anticipating needs compatible with flat funding to Run-3
- A host of changes coming for Run-3 to use our resources more efficiently: more physics per unit resource
- Very active already in HL-LHC directed R&D, and planning an ATLAS strategy doc

Supplemental

T. Wenaus September 2018

Release 22 main technical deliverables

- Multithreaded Simulation, Digitization and Reconstruction using the athenaMT/GaudiHive infrastructure
- Common to both offline and online (HLT)
 - HLT with its hard deadlines is a major driver for timely completion of Release 22 core deliverables, and so far HLT's requirements are being met
- A new job configuration system, still python based, replacing the over-complicated current system (RecExCommon) with a more modular and maintainable one
- Simulation, Digitization and Reconstruction for upgraded detectors foreseen for Run-3 and beyond

Monte Carlo simulation for Run-2 (MC16)

• Current (July 18) status of MC16. Minimal set:

Sub-campaign	Data taking year	Luminosity (fb ⁻¹)	Events needs (2017 estimate)	Events needs (2018 estimate)	Status (July 2018)
MC16a	2015+2016	39.5	6.5 B	7.8 B	7.7 B
MC16c/d	2017	46.9	8.0 B	6.6 B	6.5 B
MC16e/f	2018	60 (80)	8.1 B	6.5 B (8.7 B)	3.7 B (Sim only)
TOTAL		146.4 (166.4)	22.5 B	20.9 B (23.1 B)	17.9 B

- Expect to complete by the end of the year
- Fewer simulated events per fb-1 as we progress in Run-2
 - Better understanding of MC use (better slicing, fewer systematic samples, ...)
- Number of simulated events in minimal set roughly similar to number of data events
 - Some analysis suffer from poor MC statistics

Davide Costanzo

BROOK

ATLAS submission to C-RSG

ATLAS Weekly 4-Sep-2018

Further MC simulations in 2019-20

• Statistical extensions of current samples:

Process	MC16 minimal #events	Extra Statistics factor	Extra Statistics #events
W/Z/ γ (+jets)	6.6 B	x2.5	16.5 B
Diboson	1716 M	None	0 M
Inclusive ttbar	900 M	x5	4.5 B
ttbar+V	74M	None	0 M
single top	80 M	x5	0.4B
Multijet (x2 generators)	175 M	x5	1.7 B
Total (extra stat)			23.1 B

- 6B events for new generator studies and 1B events new signal samples
 - Total increase to MC16 of 20.1B events (final MC/data ratio of ~2)
- 5B events for Run-3 preparation in 2020
 - Validation, initial samples preparation
- Reprocessing of Run-2 data with Release 22 not included

Davide Costanzo

BROOKH

ATLAS submission to C-RSG

ATLAS Weekly 4-Sep-2018

Computing model parameters

Event size (MB/Event)			Processing Time (HS06s/Event)			
Format	2018	2020	Processing	2018	2020	
RAW	1.0	1.0	Full Simulation	3500	3250 4	G4 static linking, geometry
Sim HITS	1.0	1.0	Fast Simulation	300	300	
Real AOD	0.31	0.28	Generators	980	980	
Sim AOD	0.41	0.37	Data Reconstruction	230	230	
			MC Digi+Reco	567	508	MC Overlay
LZMA compression scheme			Derivations	0.4	0.4	
			User Analysis	0.4	0.4	

Heavy Ion assumed to need ~10% of pp resources

Upgrade samples (HL-LHC) small contribution to the total

Davide Costanzo

ATLAS submission to C-RSG

ATLAS Weekly 4-Sep-2018

T. Wenaus September 2018

