
https://root.cern

TDataFrame:
a declarative, parallel interface

for ROOT’s data analyses
Enrico Guiraud for the ROOT Team

DIANA/HEP, 11 December 2017

https://root.cern

ROOT’s mission is to get physicists from
collision to publication quickly and correctly

➔ strive for a simple programming model

➔ allow to effectively write efficient code

➔ allow to easily express parallelism

Who needs new analysis interfaces?

Improving on current interfaces
TTreeReader reader(data);

TTreeReaderValue<A> x(reader,"x");

TTreeReaderValue y(reader,"y");

TTreeReaderValue<C> z(reader,"z");

while (reader.Next()) {

 if (IsGoodEntry(*x, *y, *z))

 h->Fill(*x);

}

what we
write

what we
mean

Improving on current interfaces

● full control over the event loop
● requires some boilerplate
● users implement common tasks again and again
● parallelisation is not trivial

TTreeReader reader(data);

TTreeReaderValue<A> x(reader,"x");

TTreeReaderValue y(reader,"y");

TTreeReaderValue<C> z(reader,"z");

while (reader.Next()) {

 if (IsGoodEntry(*x, *y, *z))

 h->Fill(*x);

}

what we
write

what we
mean

● full control over the analysis
● no boilerplate
● common tasks are already implemented
● parallelization is not trivial?

TDataFrame: declarative analyses

TDataFrame d(data);

auto h = d.Filter(IsGoodEntry, {"x","y","z"})

 .Histo1D("x");

✔

✔

?

TDataFrame: declarative analyses

● full control over the analysis
● no boilerplate
● common tasks are already implemented
● easy to parallelize event-loop over entries

✔

✔

✔

ROOT::EnableImplicitMT()

TDataFrame d(data);

auto h = d.Filter(IsGoodEntry, {"x","y","z"})

 .Histo1D("x");

TDataFrame: design goals

simple and powerful programming model

TDataFrame: design goals

simple and powerful programming model

provide high level features, e.g.
less typing, better expressivity, abstraction of complex operations

TDataFrame: design goals

simple and powerful programming model

allow transparent optimisations, e.g.
multi-thread parallelisation, lazy evaluation and caching

provide high level features, e.g.
less typing, better expressivity, abstraction of complex operations

TDataFrame: design goals

simple and powerful programming model

allow transparent optimisations, e.g.
multi-thread parallelisation, lazy evaluation and caching

Available since ROOT v6.10, many new features added in v6.12

the user guide can be found at root.cern.ch/doc/master

provide high level features, e.g.
less typing, better expressivity, abstraction of complex operations

https://github.com/root-project/root/blob/master/README/ReleaseNotes/v612/index.md#tdataframe
https://doi.org/10.5281/zenodo.260230
http://root.cern.ch/doc/master

TDataFrame:
an overview

Analyses as computation graphs

TDataFrame d("tree","file.root");

auto h2 = d.Filter("theta > 0").Histo1D("pt");

auto h1 = d.Define("r2","x*x + y*y").Histo1D("r2");

TDF: analyses as computation graphs

d

filter
theta > 0

histo
pt

histo
r2

TDataFrame d("tree","file.root");

auto h2 = d.Filter("theta > 0").Histo1D("pt");

auto h1 = d.Define("r2","x*x + y*y").Histo1D("r2");

leaf nodes produce a result:
histograms, profiles, sums, counts, ...

define
r2

transform the data: filters,
definition of new columns,
...

TDF: analyses as computation graphs

d

filter
theta > 0

histo
pt

histo
r2

leaf nodes produce a result:
histograms, profiles, sums, counts, ...

define
r2

transform the data: filters,
definition of new columns,
...

Graph is evaluated lazily,
upon first access to a result

One evaluation of the graph
corresponds to
one loop over the data.
It fills all pending results.

TDataFrame d("tree","file.root");

auto h2 = d.Filter("theta > 0").Histo1D("pt");

auto h1 = d.Define("r2","x*x + y*y").Histo1D("r2");

C++ -> JIT -> pyROOT

d.Filter([](double t) { return t > 0.; }, {"th"})

Pure C++

C++ -> JIT -> pyROOT

d.Filter([](double t) { return t > 0.; }, {"th"})

 .Snapshot<vector<float>>("t","f.root",{"pt_x"});

Pure C++

C++ -> JIT -> pyROOT

d.Filter([](double t) { return t > 0.; }, {"th"})

 .Snapshot<vector<float>>("t","f.root",{"pt_x"});

C++ and JIT-ing with CLING

Pure C++

d.Filter("th > 0").Snapshot("t","f.root","pt*");

C++ -> JIT -> pyROOT

d.Filter([](double t) { return t > 0.; }, {"th"})

 .Snapshot<vector<float>>("t","f.root",{"pt_x"});

d.Filter("th > 0").Snapshot("t","f.root","pt*");

C++ and JIT-ing with CLING

Pure C++

pyROOT

d.Filter("th > 0").Snapshot("t","f.root","pt*")

C++ -> JIT -> pyROOT

d.Filter([](double t) { return t > 0.; }, {"th”})

 .Snapshot<vector<float>>("t","f.root",{"pt_x"});

d.Filter("th > 0").Snapshot("t","f.root","pt*");

C++ and JIT-ing with CLING

Pure C++

pyROOT -- just leave out the ;

d.Filter("th > 0").Snapshot("t","f.root","pt*")

Transformations
return a new graph node

Transformations and actions

Count

Min

Max

Mean

Sum

Histo{1,2,3}D

Profile{1,2}D

Fill

Reduce

Foreach

Take

Snapshot

Accumulate

Graph

StdDev

Define

DefineSlot

DefineSlotEntry

Filter

Range

Actions
return a result proxy

Putting everything together

ROOT::EnableImplicitMT();

auto tdf = MakeCsvDataFrame("data.csv");

auto zHist = tdf.Histo1D("z");

tdf.Snapshot("outT", "out.root", {"x","y"});

Producing a skimmed, thinned TTree
and a histogram

in the same event loop
running on a CSV file
with multiple threads

Performance
and scaling

TDataFrame: performance

source: A quantitative review of data formats for HEP, Jakob Blomer, ACAT 2017

laptop, SSD, warm cache
4 cores w/ Hyper-Threading

https://indico.cern.ch/event/567550/contributions/2628878/

TDataFrame: does it scale?

TDF was benchmarked on a many-core KNL machine against the
same multi-thread analysis written in ROOT5:
Monte Carlo QCD Low-Pt events generation + analysis on the fly

source: Xavier Valls Pla, ROOT team

(n.b. the analysis generates data on-the-fly, does not perform I/O)

A few
more features

TDataSource: a format adaptor for TDF

User TDataFrame TDataSource

➔ TDataFrame can read data through TDataSource objects

queries readsuses
Data

TDataSource: a format adaptor for TDF

User TDataFrame TDataSource

➔ TDataFrame can read data through TDataSource objects

➔ third-parties can implement and seamlessly integrate
specific TDataSources for their format of choice

queries readsuses
Data

TDataSource: a format adaptor for TDF

User TDataFrame TDataSource

➔ TDataFrame can read data through TDataSource objects

➔ third-parties can implement and seamlessly integrate
specific TDataSources for their format of choice

➔ we currently support CSV through this mechanism:

➔ proof-of-concept implementations for ROOT and LHCb’s
binary MDF format

queries readsuses
Data

auto tdf = MakeCsvDataFrame("data.csv"); // use as usual

Event-loop callbacks

auto h = tdf.Histo1D("x");
TCanvas c;
auto drawH = [&c](TH1D &h_) {

c.cd();
h_.Draw();
c.Update();

};
// register callback
h.OnPartialResult(100, drawH);

Users can register callbacks to be executed every N entries,
in one thread or in all threads

Callbacks act on analysis results, e.g. a partially-filled histogram

Creating datasets with TDataFrame

ROOT::EnableImplicitMT();

TDataFrame d(100);

auto d2 = d.Define("x", []() { return rand(); })

 .Define("y", [](double x) { return x + noise(); }, {"x"})

 .Snapshot("tree", "newfile.root");

➔ this creates a TDF with 100 (empty) entries, defines some
columns, saves them to file -- in parallel

➔ easiest way to create a new TTree
➔ proof of concept: TDF has been used to

write events generated by Pythia8 to a TTree, in parallel

https://root-forum.cern.ch/t/error-in-ttree-branch-the-pointer-specified-for-event-is-not-of-a-class-known-to-root/26472/5

Cutflow reports

d.Filter("x > 0", "xcut")

 .Filter("y < 2", "ycut");

d.Report();

// output
xcut : pass=49 all=100 -- 49.000 %
ycut : pass=22 all=49 -- 44.898 %

➔ calling Report on the head node:
prints statistics for all filters with a name

➔ calling Report on other nodes,
prints statistics for all upstream filters with a name

Summary
ROOT provides a modern, declarative, type-safe, parallelised

interface for data analysis: TDataFrame

Summary
ROOT provides a modern, declarative, type-safe, parallelised

interface for data analysis: TDataFrame

TDataFrame is performant, scales to many-core architectures, and
aims to offer all HEP physicists need for their analyses

Summary
ROOT provides a modern, declarative, type-safe, parallelised

interface for data analysis: TDataFrame

TDataFrame is performant, scales to many-core architectures, and
aims to offer all HEP physicists need for their analyses

Use it in ROOT macros, compiled code, or in a notebook

Summary
ROOT provides a modern, declarative, type-safe, parallelised

interface for data analysis: TDataFrame

TDataFrame is performant, scales to many-core architectures, and
aims to offer all HEP physicists need for their analyses

Use it in ROOT macros, compiled code, or in a notebook

Future plans
➔ distributed execution
➔ more syntactic sugar for common operations on arrays
➔ a fast path for reading files containing simple data

structures (integrating bulk I/O?)
➔ low-level performance optimization (analysis @100 cores)

EOF

More details on Jakob’s data-set

source: A quantitative review of data formats for HEP, Jakob Blomer, ACAT 2017

https://indico.cern.ch/event/567550/contributions/2628878/

ROOT::EnableImplicitMT();

auto tdf = TDataFrame("tree","f*.root");

tdf.Filter(IsGood, {"x"})

 .Foreach(DoStuff, {"y","z"});

TDataFrame’s nuke bomb: Foreach

`Foreach` provides complete freedom of implementation
while TDataFrame still provides transparent parallelization

