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Machine Learning Uses

In Mature (and Maturing)
Technologies

medical diagnosis
language translation &
processing
recommendation systems

In Science
machine learning can and will increasingly be exploited at
“every stage of the scientific process”1

1Mjolsness and DeCoste, Science, 293(5537):20512055, 2001.
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What Does it Do? An Example
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In Science

Not limited to movies

Can be experimental data

transfer
function

Experimental
data

Experimental
parameters

mass

pendulum oscillations
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The (Supervised) Learning Part

transfer
function

Known
Input

Known
Output

data, feature list,
signal, etc

prediction,
classification, etc

Learning from training:

Using as many as possible, known Input→Output pairs,

automatically find transfer function that maps any input

to the best possible approximation of output
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“Automatically”
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In Tabletop Science

Interesting implications for observational or tabletop science

Pros

not explicitly programmed
can be effective
even when observed signal is
not understood

Cons

lack of understanding
why it does or does not work
uncertainty, accuracy &
precision not well defined

To be useful, it must be benchmarked!
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To benchmark,
we need an experiment we understand.

aluminum
clothesline

water bottle
pendulum bob

telephone with
accelerometer
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Pendulum on Flexible Structure

vary the mass of the pendulum by adding water to the bottle

via phone’s accelerometer observe |~a(t)|
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Data Acquisition

Accelerometer Meter App

buggy

phyphox App

http://phyphox.org/
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Experiment and Challenge

Hypothesis

Based on |~a(t)|, one can “predict” the ∆m added to the pendulum.

. . . physical understanding vs. black box. . .

. . . Pete vs. ML. . .

. . . human vs. machine . . .
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Classical Analysis

By Human (me)
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Acceleration Damping

Δm

Idea: determine ∆m based on damping rate
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Acceleration Damping

fit h + ae−t/λ to the peaks for each of n = 107 different ∆m

is there a good enough λ(∆m)?

error bars reflect 0.95
confidence in fit to peaks

linear fit weighted by
(error bar)−2
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Frequency Analysis

investigate peak position as a function of ∆m

principal oscillation

observed wobble

distinguishing signal
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Frequency Analysis

Procedure: eliminate one sample at random from the plot and
try to identify its ∆m

guess is = 23 ml
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Frequency Analysis

Result of frequency analysis (human)

Will compare this with result from Machine Learning
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Machine Learning Analysis

By Machine ( )
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Neural Net as the Black Box

mass

transfer
function i

ANN

Artificial Neural Network
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Input Data

classical
analysis

thin the data: red dots represent
averages over 0.2 s windows

ANN
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Input Data

Example of
thinning

Is there a
Pattern?
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Implementation: Structure

Mathematica version 11

label networks with lists describing structure: {8,Cos,4}
for the experts, these lists alternate
dimension of a linear layer, and
function applied to each element of a layer
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Implementation: Training
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Training and Evaluation Routine

withhold approximately 30 tests and use the rest to train ANN

all data,
 n = 107
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{    ,Δm} {    ,Δm} {    ,Δm}, ...,
randomly choose ~30 to withhold

use most of the
rest to train

evaluate ANN on these withheld tests

n = 107 is very small for machine learning applications,
so repeat thousands of times for

fixed set of withheld tests
fixed ANN structure
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Training and Evaluation Routine

{    ,Δm} {    ,Δm} {    ,Δm} ~ 30 withheld, ...,{    ,Δm}

evaluating with thousands of ANNs, all of same structure**

**nets differ in "trained" parameters

distribution mean for test i and fixed ANN, {withheld}:

< Zi >
∣∣
ANN,{withheld}
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Training and Evaluation Routine

{10,Ramp,5}

Δm = 5ml, with

distribution for test i depends on {withheld} set used for training
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Training and Evaluation Routine

average over over varying sets of {withheld} to get

< Zi >
∣∣
ANN

{10,Ramp,5}

do not average over various structures of ANN yet
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Constructing a Weighting Scheme

predictions depend heavily on net structure
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use predictions from different nets to weight the average
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Weighted Average for Final Result

weighted average, < Zi >, from Machine Learning

< Zi > compares favorably with human results
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The Champion

error distributions based on 107 tests

human average error: 9.4ml
machine average error: −0.2ml

measure of the span of the distribution

fraction of distribution in interval

Winner: machine
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The Mystery

Because of the averaging over 0.2 s windows,
the machine cannot use the signal I used.

principal oscillation

observed wobble

distinguishing signal

Nyquist frequency

Where's the signal?

What I saw in the frequency What the machine could see
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Discussion

Small n and noise are representative of tabletop science.

Hypothesis that many nets can be used in place of many data was
verified qualitatively.

Machine performance depends on input data (feature selection).
Window average worked well; many did not.

Machine seemed to handle uncertainty in the data better than did the
human, though I have not quantified this yet.

Training hundreds of thousands of nets requires several weeks but is
not labor intensive. The labor intensive classical analysis requires less
than a day.
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Future Work

Secure funding so I can negotiate more time with the equipment!
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Thank you!

And special thanks to

Yuri Lira, Maria Moura, Jaione Tirapu-Azpiroz,

Cicero Nogueira Dos Santos, Joel Lúıs Carbonera,

Mathias Steiner

Contact: pbryant@br.ibm.com
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