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Machine Learning Uses

e In Mature (and Maturing)
Technologies
e medical diagnosis
e language translation &
processing
e recommendation systems

Science:-

NETELIX

Congratulations! Movies we think You will ¥

@ In Science
machine learning can and will increasingly be exploited at
“every stage of the scientific process”?!

Mjolsness and DeCoste, Science, 293(5537):20512055, 2001.



What Does it Do? An Example
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to like




In Science

@ Not limited to movies

@ Can be experimental data

Experimental Experimental
data parameters
%
= 12
E 11 transfer
=10 function
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pendulum oscillations



The (Supervised) Learning Part

Known

Known

Input OQutput
{fzv 2 {3 {21,
21,22, - - Jo, {y1, 92, - - -2, - Zz’

. . function 3
@122, dos (U1, 920 Fns -} Z3}
data, feature list, prediction,

signal, etc classification, etc
@ Learning from training:

Using as many as possible, known Input—Qutput pairs,

automatically find transfer function that maps any input

to the best possible approximation of output



“Automatically”

TableCurve 3D — Model Complex Table USRI
Data Sets Fast and Easy et satece i okis

o e
S e R el et oo e L
Sound Absorption at 20C
Eqn 405 Chebyshev X,Y Bivariate Polynomial Order 6
13 DF Ad) 420.08797004' FItSIJENT=5 3053367 Fstat=237.043(

Rank 1
992402

Eliminate Tedious Data Analysis Chores with
TableCurve 3D

TableCurve 3D uses a selective subset procedure to fit 36,000 of its 453,697,387 built-in equations
from all disciplines to find the one that provides the ideal fit — instantly!

What once could take days of tedious work now takes minutes, with a much more powerful result.
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In Tabletop Science

Interesting implications for observational or tabletop science

@ Pros @ Cons

e not explicitly programmed

e can be effective
even when observed signal is
not understood

e lack of understanding
why it does or does not work
e uncertainty, accuracy &
precision not well defined

To be useful, it must be benchmarked!
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To benchmark,
we need an experiment we understand.

telephone with

water bottle
accelerometer

pendulum bob

[AMl [m/s?

aluminum
clothesline 0 2 4 6 8 10
t[s]
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Pendulum on Flexible Structure

@ vary the mass of the pendulum by adding water to the bottle

@ via phone's accelerometer observe |a(t)]
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Data Acquisition

¥=10.04 m/s

B Get raw data from the gyroscope.
Light

BN Get raw data from the light sensor.
Location (GPS)

T —

Magnetometer
[P ——
Pressure
[P —

Audio Amplitude
Get the amplitude of sounds.
Audio Autocorrelation

Audio Scope

w recorded audio data,

Audio Spectrum
, iency spectrum of an audio signal.

hifts of the Doppler

Freauency history

Auto-Scale

@ Accelerometer Meter App @ phyphox App
o buggy e http://phyphox.org/



Experiment and Challenge

Based on |a(t)

, one can “predict” the Am added to the pendulum.

... physical understanding vs. black box. ..

... Pete vs. ML. ..

... human vs. machine ...
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Classical Analysis

By Human (me)
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Acceleration Damping

12.0

\)

11.5
(\E 11.0§
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9.0
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[

— 224 ml added
— 0 ml added

Am

0 10 20 30 40 50
t[s]

60 70

Idea: determine Am based on damping rate
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Acceleration Damping m

o fit h+ ae /" to the peaks for each of n = 107 different Am
13
11
9

M [m/s?]

1

@ error bars reflect 0.95
confidence in fit to peaks

@ linear fit weighted by
(error bar)™2

0 50 100 150 200 250
Am [ml]
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Frequency Analysis

FFT

4
2
ol

0 5 10 15 20 25

frequency [hz]

@ investigate peak position as a function of Am
8

distinguishing signal -

(o2}

P

frequency [hz]

N

principal oscillation

® eent el cenm’s 0 mear et %00 5080 Wom shemes selemedenclen S0 0% o 8

- -°--".0-.-‘------¢\ DRCE DT R Do ey L AT T P B YO B . . ~:
observed wobble
0 50 100 150 200
Am [ml]
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Frequency Analysis

@ Procedure: eliminate one sample at random from the plot and

frequency [hz]

0

try
20

to identify its Am

40 60 80 100 120 140 160 180 200 220

(22}
T

A

guess is Am = 23 ml

0
.. et
3

AP TRNS TN LLL R

L4 . ® o e
O N

N

OSSP Pemt PV 0OV IE PN sP s Tsmss selemedesole s So o0 o

e R B P eV TN S W ITT A Vel TN NR ¥

40 60 80 100 120 140

Am [mi]

160

180 200 220
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Frequency Analysis

@ Result of frequency analysis (human)

250¢

200¢

150¢

100¢

predicted [ml]

50r

0, i
0 50 100 150 200 250
target [ml]

@ Will compare this with result from Machine Learning
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Machine Learning Analysis

By Machine ( &)
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Neural Net as the Black Box

t f
{{xl,xg,...},—,{yl,yg,...}i,...} {ZI}

12
11
10
9
0 2 4 6 8 10

t[s]

[m/s?]

El]

Artificial Neural Network
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Input Data

'/ thin the data: red dots represent
averages over 0.2 s windows

classical
analysis
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Input Data E

***** full data @ Example of
—— thinned L
thinning
0 200 400 600 800 1000
time step

—Am=8ml
@ Is there a —Am=111ml
Pattern? —Am=117ml

time step
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Implementation: Structure

@ Mathematica version 11

ann = NetChain[{8, Cos, 4, SummationLayer[]}, "Input" -» 60] (+ define net «)

Input vector (size: 60)
1 LinearLayer vector (size: 8)
2 Cos vector (size: 8)
NetChain 3 LinearLayer vector (size: 4)
4 SummationLayer real
Output real

(uninitialized)

@ label networks with lists describing structure: {8,Cos,4}

o for the experts, these lists alternate
dimension of a linear layer, and
function applied to each element of a layer
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Implementation: Training

NetTrain[ann, trainingData] (+ to train «)
trainingData[[12 ;; 14] (* input data for three of the 107 tests «)

{{1.14562, -0.207284, -0.466552, 1.01765, 0.18692, -0.917693, 0.496379, 0.840023,
-0.846064, -0.330171, 0.95813, -0.148744, -0.466055, 0.826876, 0.184943, -0.862647,
©.243687, 0.658004, -0.512469, -0.074549, 0.788917, -0.376339, -0.616019,

0.486098, 0.286579, -0.555809, 0.22177, 0.5065, -0.655119, -0.417777, 0.597801,
-0.00837573, -0.410878, 0.452254, 0.120329, -0.792143, -0.0763571, 0.551581,
-0.291638, -0.174894, 0.482475, -0.244652, -0.592974, 0.427831, 0.269625, -0.621387,
-0.153248, 0.39723, -0.261063, -0.236525, 0.352168, -0.188027, -0.523538,
0.236691, 0.167431, -0.607959, -0.188227, 0.335691, -0.205893, -0.208135} —» 224,
{1.10862, 0.509886, -0.708956, 0.664948, 0.770939, -0.931129, -0.176914, 1.14216,
-0.22917, -0.528597, 0.942038, 0.136561, -0.965027, 0.437942, 0.782123, -0.638582,
-0.0454665, 0.834143, -0.452232, -0.569118, 0.816586, 0.162004, -0.776123,
0.304396, 0.474985, -0.604444, -0.0142264, 0.724935, -0.415539, -0.572572,
0.501186, 0.0681227, -0.549794, 0.317755, 0.341629, -0.631694, -0.191605, 0.468102,
-0.312153, -0.35029, 0.456545, -0.0491232, -0.591027, 0.125816, 0.205136, -0.495011,
-0.0751806, 0.397468, -0.34284, -0.389028, 0.272049, -0.121962, -0.486495,
0.172175, 0.172165, -0.47167, -0.161412, 0.195697, -0.358447, -0.300288} - [ 6,
(0.652449, 0.953987, -0.651745, 0.156728, 1.05708, -0.525574, -0.565353, 1.11061,
0.163903, -0.921972, 0.43355, 0.593627, -0.637385, 0.120172, 0.876946, -0.517878,
-0.644989, 0.73621, 0.157167, -0.549981, 0.485022, 0.3859, -0.818013, -0.115633,
©.71834, -0.30111, -0.373566, 0.615491, -0.0440685, -0.630154, 0.327604, 0.321961,
-0.604172, -0.0416889, 0.557419, -0.332296, -0.339326, 0.454639, -0.136797,
-0.550573, 0.307234, 0.251552, -0.53006, -0.0991151, 0.304945, -0.379797,
-0.256908, 0.421445, -0.111945, -0.530935, 0.0768261, 0.0964023, -0.375272,
0.0271001, 0.257772, -0.421114, -0.3975, 0.188928, -0.0910437, -0.315047} - 83}
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Training and Evaluation Routine

@ withhold approximately 30 tests and use the rest to train ANN

all data,
n=107
{3 {}{} {}{} (}.{}
0O {}(} \\ {}

g Toooo? w,
g Uy 0n o oy
oo ooy Bo
4 oh po O

{@,‘:‘J:JJ,wxvm’ Am} {W.\wv»«:u’ Am} - {W,\w,\w1 Am}

randomly choose ~30 to withhold

use most of the
rest to train

@ evaluate ANN on these withheld tests

@ n =107 is very small for machine learning applications,
so repeat thousands of times for
o fixed set of withheld tests
o fixed ANN structure
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Training and Evaluation Routine

{osoe, A} L, AM} {lser, AM} . {io, AM}  ~ 30 withheld

B D N

evaluating with thousands of ANNSs, all of same structure**

012 A4
0.10

0.08

0.06

0.04

002

o

Q a

015
0.10

c5ml 50

o .
o o4
0.10 0.10]
0.08 008
0.06 0.06
036 mloo A{H hlh\ 0134 ml 0l
0.02] 0.02]
0

100

™ 0 s
error [ml]

error [ml]

o
-20 -10 0 10 20 30 ~70 -60 -50 -40 -30 -20

00

=0 sy
error [ml] error [ml]

o051 ml

**nets differ in "trained" parameters

o distribution mean for test i and fixed ANN, {withheld}:

<Zi> }ANN,{withheld}

30/40



Training and Evaluation Routine

0.15

0.107

0.05¢

0.00

{10,Ramp,5}

-200 -100 0 100 200 300
error [ml]

Am = 5ml, with
0 {withheld} {
B {withheld},
B {withheld}

e distribution for test i depends on {withheld} set used for training
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Training and Evaluation Routine

@ average over over varying sets of {withheld} to get

<Zi> |
‘ \ ‘ L]
200 {10,Ramp,5} :
]
—_ °
£ 200 )
©
L 100
Qo - distribution average
8 0 « average over {withheld} sets
o
-100
0 50 100 150 200 250
target [ml]

@ do not average over various structures of ANN yet
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Constructing a Weighting Scheme

predicted [ml]

predicted [ml]

@ predictions depend heavily on net structure

{4, Ramp, 4, Ramp, 2} {40, Ramp, 5}
200 = 200
E
150 5 150
2
100, £ 100
<
50 2 50

predicted [ml]

{5, Cos, 5}

0 50 100 150 200 250 0 50 100 150 200 250
target [ml] target [ml]

100 150 200 250
target [ml]

250

{20, Cos, 10} {10, Ramp, 5}

200 = 200
E

150 5 150
2

100 £ 100
o

50| 2 50

predicted [ml]

{4, Tanh, 4, Tanh, 2}

0 50 100 150 200 250 0 50 100 150 200 250
target [ml] target [ml]

50

100 150 200 250
target [ml]

@ use predictions from different nets to weight the average
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Weighted Average for Final Result

o weighted average, < Z; >, from Machine Learning

250}
200
150

» human
» machine

100

predicted [ml]

50

0

0 50 100 150 200 250
target [ml]

@ < Z; > compares favorably with human results
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The Champion

@ error distributions based on 107 tests

0.4
0.3
02 « humen human average error: 9.4ml
o1 = machine machine average error: —0.2ml
0.0
-100 -50 O 50 100 150
error [ml]
@ measure of the span of the distribution
_250 250
£ 200 200
e
g 150 150
= 100 100 — human
g — machine
< 50 50
o
]
0 0

0.0 0.2 0.4 0.6 0.8
fraction of distribution in interval

Winner: machine
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The Mystery

@ Because of the averaging over 0.2s windows,
the machine cannot use the signal | used.

8 8
distinguishing signal .
6 .
Sk - Where's the signal?
<
34 . 4
c
g Nyquist frequency
o - -
0 principal oscillation 2
e com el sennts @SSV o et ors © § ree b counte & Gi VP T OTP IO WEITHRS ST e 8
0 50 100 150 200 0 100 150 200
Am [ml] Am [ml]
What | saw in the frequency What the machine could see
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Discussion

@ Small n and noise are representative of tabletop science.

@ Hypothesis that many nets can be used in place of many data was
verified qualitatively.

@ Machine performance depends on input data (feature selection).
Window average worked well; many did not.

@ Machine seemed to handle uncertainty in the data better than did the
human, though | have not quantified this yet.

@ Training hundreds of thousands of nets requires several weeks but is
not labor intensive. The labor intensive classical analysis requires less
than a day.
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Future Work

@ Secure funding so | can

negotiate more time with the equipment!
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Thank you!

And special thanks to

Yuri Lira, Maria Moura, Jaione Tirapu-Azpiroz,
Cicero Nogueira Dos Santos, Joel Luis Carbonera,
Mathias Steiner

Contact: pbryant@br.ibm.com
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