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Introduction

The UA(1) problem is well known, one solution for this was was
offered by ’t Hooft by means of instanton calculus, but another way to
understand the anomalous η′ mass was, independently, worked out
by Veneziano and Witten,

m2
η′ =

4Nf

f 2
π

χ4
θ=0,Nf =0 = O(1/N) (1)

where θ is the vacuum angle, fπ the pion decay constant and χ is the
topological susceptibility.

The relation (1) thus explains the relatively large η′ mass, given that
χ4
θ=0,Nf =0 ≡ χ4 is sufficiently large. Filling in the numbers requires
χ4 ∼ (200 MeV)4, not far from the lattice SU(3) estimates.
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Motivation

In a recent paper1, an explicit relationship between the Veneziano
ghost and color confinement was proposed, via the dynamics of this
Veneziano ghost (so topological susceptibility) and Gribov copies.
However, this analysis is incompatible with BRST symmetry.

1D. E. Kharzeev and E. M.Levin, Phys. Rev. Lett. 114 (2015) 242001.
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Goal

The better attempt is to investigate the topological susceptibility, χ4,
in SU(3) and SU(2) Euclidean Yang-Mills theory using an
appropriate Padé approximation tool and a non-perturbative gluon
propagator, within a BRST invariant framework and by taking into
account Gribov copies in a general linear covariant gauge.
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Kharzeev and Levin’s procedure

Why does Kharzeev and Levin’s procedure break the BRST
symmetry?
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Kharzeev and Levin’s procedure

Before to answer this question, it is good to refresh our memory about
the Gribov copies, BRST symmetry and topological susceptibility....
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Gribov problem

I Gribov2 showed that the Faddeev-Popov construction is not valid
at the non-perturbative level.

2V. N. Gribov, Nucl. Phys. B 139 (1978) 1.
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Gribov problem

Consequently, Gribov copies imply that:

I we are overcounting equivalent gauge configurations, since we
have more than one configuration for each gauge orbit,

I the Faddeev-Popov measure is ill-defined, since there are
zero-modes of the Faddeev-Popov operator when considering
the infinitesimal copies (det M = 0).
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Gribov region

The main idea of the Gribov method is to restrict the functional
integral to a certain region Ω in field space, called the Gribov region,
which is defined as

Ω = {Aa
µ; ∂µAa

µ = 0, Mab(A) = −∂µDab
µ (A) > 0}. (2)

I Landau gauge, ∂µAa
µ = 0,

I Hermitian Faddeev-Popov operator,

Mab(A) = −δab∂2 + gf abc(A)c
µ∂µ, (3)

is positive. Inside the Gribov region, there are no infinitesimal
copies, sinceMab(A) > 0;

I it is convex, bounded and intersected by each gauge orbit3

I Its boundary, ∂Ω, is called the first Gribov horizon and there, the
first null eigenvalue ofMab(A) (i.e. the first zero-mode of
Faddeev-Popov operator) appears.

3G. Dell’Antonio and D. Zwanziger, Nucl. Phys. B 326 (1989) 333.
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Action

Ω + the formation of the dimension two condensates, 〈Aa
µAa

µ〉 and
〈ϕ̄ab
µ ϕ

ab
µ − ω̄ab

µ ω
ab
µ 〉 + extension to the linear covariant gauges, our

action is given by

S = SYM + SFP + SRGZ + Sτ , (4)

whereby

Sτ =

∫
d4x τa ∂µ(Ah)a

µ (5)

implements, through the Lagrange multiplier τ , the transversality of
the composite operator (Ah)a

µ, ∂µ(Ah)a
µ = 0; SYM is the Yang-Mills

action,

SYM =
1
4

∫
d4xF a

µνF a
µν , (6)

SFP is the Faddeev-Popov action,

SFP =

∫
d4x

(α
2

baba + iba ∂µAa
µ + c̄a∂µDab

µ (A)cb
)
, (7)
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Refined Gribov-Zwanziger (RGZ) action

The RGZ action is 4 5 6

SRGZ =

∫
d4x

[
ϕ̄ac
µ ∂νDab

ν ϕ
bc
µ − ω̄ac

µ ∂ν(Dab
ν ω

bc
µ )− g(∂ν ω̄

an
µ )f abcDbm

ν cmϕcn
µ

]
−γ2g

∫
d4x

[
f abc(Ah)a

µϕ
bc
µ + f abc(Ah)a

µϕ̄
bc
µ +

d
g

(N2
c − 1)γ2

]
+

m2

2

∫
d4x(Ah)a

µ(Ah)a
µ + M2

∫
d4x(ϕ̄ab

µ ϕ
ab
µ − ω̄ab

µ ω
ab
µ ). (8)

4D. Dudal, S. P. Sorella, N.Vandersickel and H. Verschelde, Phys. Rev. D 77 (2008) 071501.
5D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel and H. Verschelde, Phys. Rev. D 78 (2008) 065047.
6D. Dudal, S. P. Sorella and N. Vandersickel, Phys. Rev. D 84 (2011) 065039.
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The local gauge invariance of Ah
µ

So what is Ah
µ in SRGZ and Sτ =

∫
d4x τa ∂µ(Ah)a

µ?
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The local gauge invariance of Ah
µ

The configuration Ah
µ is a non-local power series in the gauge field,

obtained by minimizing the functional fA[u] along the gauge orbit of
Aµ7 8 9 , with

fA[u] ≡ min
{u}

Tr

∫
d4x Au

µAu
µ,

Au
µ = u†Aµu +

i
g

u†∂µu. (9)

One finds that a local minimum is given by

Ah
µ =

(
δµν −

∂µ∂ν
∂2

)
φν , ∂µAh

µ = 0 ,

φν = Aν − ig
[

1
∂2 ∂A,Aν

]
+

ig
2

[
1
∂2 ∂A, ∂ν

1
∂2 ∂A

]
+ O(A3). (10)

7G. Dell’Antonio and D. Zwanziger, Nucl. Phys. B 326 (1989) 333.
8P. van Baal, Nucl. Phys. B 369 (1992) 259.
9M. Lavelle and D. McMullan, Phys. Rept. 279 (1997) 1.
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The local gauge invariance of Ah
µ

To get a local theory, we introduce of an auxiliary localizing
Stueckelberg field ξa, whose role is to give, for each gauge field Aµ,
its corresponding configuration that minimizes the functional A2, i.e.,
Ah
µ. This is most naturally implemented by defining a field h which

effectively acts on Aµ as a gauge transformation would act, in order to
provide the minimizing configuration Ah, that is

Ah
µ = (Ah)a

µT a = h†Aµh +
i
g

h†∂µh, (11)

while
h = eig ξaT a

. (12)

The local gauge invariance of Ah
µ under a gauge transformation

v ∈ SU(N) with

h→ v†h , h† → h†v , Aµ → v†Aµv +
i
g

v†∂µv . (13)
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BRST (Becchi, Rouet, Stora and Tyutin) invari-
ance

Why does Kharzeev and Levin’s procedure break the BRST
symmetry?

Before to answer this question, it is good to refresh our memory about
the Gribov copies,

BRST symmetry and topological
susceptibility....
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BRST invariance

Why is BRST invariance important?
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BRST invariance

Why is BRST invariance important?

BRST symmetry is very important to quantize a gauge theory and to
construct a covariant canonical formulation.
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BRST (Becchi, Rouet, Stora and Tyutin) invari-
ance

The action S = SYM + SFP + SRGZ + Sτ enjoys an exact nilpotent
BRST invariance,sS = 0, if we define the following BRST
transformation rules to all fields,

sAa
µ = −Dab

µ cb , sca =
g
2

f abccbcc ,

sc̄a = iba , sba = 0 .
shij = −igca(T a)ik hkj

sϕab
µ = 0 , sωab

µ = 0 ,

sω̄ab
µ = 0 , sϕ̄ab

µ = 0 ,
sτa = 0. (14)

Caroline Felix | Accessing the topological susceptibility via the Gribov horizon



13

Gluon propagator

The general form of the gluon propagator, based on the BRST
invariance, is given by

Dµν(p) = D(p)Pµν(p) + L(p)
pµpν

p2 , (15)

with the transverse form factor D(p) (at tree level, this factor stems
from the quadratic part of the action S = SYM + SFP + SRGZ + Sτ ),

D(p) =
p2 + M2

p4 + (M2 + m2)p2 + M2m2 + λ4 . (16)

containing all non-trivial information, for the longitudinal part, we have

L(p) =
α

p2 , (17)

with
Pµν(p) = δµν −

pµpν
p2 , Lµν(p) =

pµpν
p2 (18)

the transversal and longitudinal projectors.
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Topological susceptibility

Why does Kharzeev and Levin’s procedure break the BRST
symmetry?

Before to answer this question, it is good to refresh our memory about
the Gribov copies, BRST symmetry and
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Topological susceptibility

The topological susceptibility χ4 measures fluctuations of the

topological charge in the QCD vacuum and it is defined by

χ4 = − lim
p2→0

pµpν 〈KµKν〉 ≥ 0. (19)

whereby Kµ is the topological Chern-Simons current,

Kµ =
g2

16π2 εµνρσAν,a
(
∂ρAσ,a +

g
3

f abcAρbAσc
)
. (20)

This current is related to the topological charge density,

Q(x) = ∂µKµ =
g2

32π2 Fµν F̃µν . (21)
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The “glost” of Kharzeev-Levin

Kharzeev and Levin interpreted the current correlator,

Kµν(p) = i
∫

d4x eipx 〈Kµ(x)Kν(0)〉 p2∼0∼ −
χ4

p2
gµν , (22)

as resulting from an effective interaction between the gluon (in Feynman gauge α = 1)
and the Veneziano ghost. An effective ghost-gluon-gluon vertex Γµ(q, p) was
postulated, and then they found that a dynamically corrected gluon propagator (the
“glost”),

Gµν(p2) =
p2

p4 + χ4 δµν , (23)

solves the Dyson-Schwinger equation, when using only this coupling10 in the
deep infrared. However, if we compare (23) and (15),

Dµν(p) = D(p)Pµν(p) + L(p)
pµpν

p2
,

we notice that there is an inconsistency between these equations, indicating
that the propagator (23) is incompatible with BRST symmetry.

10D. E. Kharzeev and E. M. Levin, Phys. Rev. Lett. 114 (2015) 24, 242001. & D. Dudal and M. S. Guimaraes, Phys. Rev. D 93 (2016)

no.8, 085010.
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Next question...

Can we obtain, by using Gribov type propagators, a reasonable
“semi-non-perturbative” estimate for the topological susceptibility χ4,
without the new effective vertices?

Caroline Felix | Accessing the topological susceptibility via the Gribov horizon



16

Källén-Lehmann spectral density and χ4

The topological susceptibility is given by

χ4 = − lim
p2→0

pµpν 〈KµKν〉 .

We may in general set, using the Källén-Lehmann spectral density,

〈Kµ(p)Kν(−p)〉 =

(
δµν −

pµpν

p2

)
K⊥(p2) +

pµpν

p2
K‖(p2)

≡
(
δµν −

pµpν

p2

)∫ ∞

0
dτ

ρ⊥(τ)

τ + p2
+

pµpν

p2

∫ ∞

0
dτ

ρ‖(τ)

τ + p2
, (24)

based on Euclidean invariance. So,

− χ4 = lim
p2→0

p2K‖(p2) = lim
p2→0

p2
∫ ∞

0
dτ

ρ‖(τ)

τ + p2 . (25)
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Källén-Lehmann spectral density and χ4

From dimensional analysis, we only need 2 subtractions (ρ‖(τ) ∼ τ
for τ →∞), so a finite result is guaranteed from

K‖(p2) = b0 + b1p2 + p4
∫ ∞

0
dτ

ρ‖(τ)

(τ + p2)τ2

and thus

− χ4 = lim
p2→0

p2
(

b0 + b1p2 + p4
∫ ∞

0
dτ

ρ‖(τ)

(τ + p2)τ2

)
, (26)

with b0,1 subtraction constants. Obviously, we can rewrite (26) as

− χ4 = lim
p2→0

p6
∫ ∞

0
dτ

ρ‖(τ)

(τ + p2)τ2 . (27)
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The spectral density associated with the Källén-
Lehmann representation
The RGZ gluon propagator can be rewritten as

D(p2) =
p2 + M2

1

p4 + M2
2 p2 + M4

3
, (28)

we obtain

ρ||(τ) = −2A+A−
g4(N2 − 1)

22d+5π7/2Γ( d−1
2 )

(
τ2 − 4b2 − 4aτ

)(d−1)/2

τd/2 , (29)

for τ ≥ τc = 2(a +
√

a2 + b2), where

a =
M2

2
2
, b =

√
4M4

3 −M4
2

2
. (30)

In MOM scheme:
D(p2 = µ2) =

1
µ2 . (31)
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g2(µ) in MOM scheme

The proper renormalization factor Z is thus given by, at scale µ,

D(p2) = Z
p2 + M2

1

p4 + M2
2 p2 + M4

3
, (32)

with

Z =
1
µ2

µ4 + M2
2µ

2 + M4
3

µ2 + M2
1

. (33)

The gluon propagator we will use is to be renormalized in MOM
scheme at scale µ, so the g2 becomes

g2(µ) =
1

β0 log
(

µ2

Λ2
MOM

) , β0 =
11
3

N
16π2 . (34)

We use ΛN=2
MOM ≈ 628 MeV and ΛN=3

MOM ≈ 425 MeV 11.

11P. Boucaud, F. De Soto, J. P. Leroy, A. Le Yaouanc, J. Micheli, O. Pene, J. Rodriguez-Quintero, Phys. Rev. D79 (2009) 014508.
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Padé approximation

I The MOM strong coupling expansion parameter is effectively
very small, an indication that a perturbative treatment makes
sense in the considered momentum region, after which we
“extrapolate” to the deep infrared using the described Padé
analysis.

I We approximated

p6
∫ ∞

0
dτ

ρ‖(τ)

(τ + p2)τ2 , (35)

with an [M+ 2,M] Padé rational function in variable p2, which
are the ones having the same large p2 behavior, viz. O(p4).

I We opted to do the Padé approximation around p2 = µ2.
I With this, we can study the function χ(µ2) using the previous

ingredients and search for optimal values, in the sense of
minimal dependence, on the scale µ2.
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The spectral density in MOM scheme in SU(3)

For N = 3, the spectral density is

ρ||(τ) = −2A+A−
g4(µ)Z 2

29π4

(
τ2 − 4b2 − 4aτ

)3/2

τ2 . (36)

Using the lattice obtained values M2
1 = 4.473± 0.021 GeV2;

M2
2 = 0.704± 0.029 GeV2; M4

3 = 0.3959± 0.0054 GeV4 12,we get

a = 0.352 GeV2 , b = 0.522 GeV2 , 2A+A− = 31.719. (37)

12O. Oliveira and P. J. Silva, Phys. Rev. D 86 (2012) 114513.
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The spectral density in MOM scheme in SU(3)

To get an error estimation from the uncertainty on ~x ≡ (M2
1 ,M

2
2 ,M

4
3 ),

we the followed relation:

σχ(µ2) =

√√√√∑
i

(
∂χ

∂xi

)2

σ2
xi
. (38)
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The spectral density in MOM scheme in SU(2)

For N = 2, the spectral density is

ρ||(τ) = −2A+A−
3g4(µ)Z 2(µ)

212π4

(
τ2 − 4b2 − 4aτ

)3/2

τ2 . (39)

Here, we used M2
1 = 2.508± 0.078 GeV2; M2

2 = 0.590± 0.026 GeV2;
M4

3 = 0.518± 0.013 GeV4 13 , yielding

a = 0.295 GeV2 , b = 0.657 GeV2 , 2A+A− = 6.176. (40)

13A. Cucchieri, D. Dudal, T. Mendes and N. Vandersickel, Phys. Rev. D 85 (2012) 094513
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Conclusion

I We have analyzed the topological susceptibility, χ4, in SU(2) and
SU(3) Euclidean Yang-Mills theory in a generic linear covariant
gauge taking into account the Gribov ambiguity.

I To get estimates for the χ4, we developed a particular Padé
rational function approximation based on the Källén-Lehmann
spectral integral representation of the topological current
correlation function.

I In order to improve upon this crude estimates, we plan to include
the next order correction in future work. Notice this will be
computationally challenging, thanks to the significantly enlarged
set of vertices in the now considered Gribov-Zwanziger action for
the linear covariant gauge.
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