

Martin Spousta for the ATLAS Collaboration

Charles University Prague

10th Exited QCD Conference March 11-15, 2018, Kopaonik, Serbia

Hot and dense **deconfined matter** is created in heavy ion collisions, called quark-gluon plasma (QGP). This matter allows to:

- Study non-perturbative aspects of QCD and collective phenomena connected with the strong interaction.
- Study the phase transition between quarks and gluons and hadrons.
- Study matter which is similar to the matter present in the early stages of the universe.

How to access the information? Measure different processes:

- hard processes (e.g. jets and quarkonia)
- soft processes (e.g. flow harmonics and the ridge)

- Centrality quantifies the degree of overlap of two colliding nuclei.
- More central collisions higher deposited energy.
- Centrality quantified by the energy measured in Forward Calorimeters.

Hard processes (jets & quarkonia)

Hard processes

Inclusive jet suppression in Pb+Pb collisions

The **nuclear modification factor**, R_{AA} , quantifies the magnitude of jet suppression, which arise mainly from final-state interactions with constituents of the medium.

- Central collisions (0-10%): R_{AA} ~ 0.6 up to TeV scale.
- Peripheral collisions (60-70%): still significant suppression.
- Measured also differentially in rapidity (more suppression in the forward region).

• Same magnitude of R_{AA} within systematic uncertainties observed at the two different center-of-mass energies.

 $126 < p_{T}^{\text{jet}} < 158 \,\text{GeV}$

Pb+Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, 0.49 nb⁻¹, 0-10%

 10^{-1}

pp, $\sqrt{s} = 5.02 \text{ TeV}$, 25 pb⁻¹

0.8

0.6

- Enhancement at low z and at high z, suppression at intermediate z
- Result fully corrected to particle level
- No √s dependence
- No *p*_{T,jet} dependence observed

Ζ

- γ -tagged jet fragmentation: **q/g dependence**. Unquenched γ kinematics!
- More peripheral bin: ratios similar between photon-tagged and inclusive.
- Central bin: ratios different between photon-tagged and inclusive.
- Result fully corrected to particle level.

Jet fragmentation in p+Pb at 5.02 TeV

•No modifications of jet internal structure seen in the p+Pb environment.

Dijet production in Pb+Pb at 2.76 TeV

- Strong suppression of quarkonia in Pb+Pb.
- Similar suppression of prompt and non-prompt J/ ψ , but different for prompt and non-prompt $\psi(2S)$ (not shown).
- Non-prompt fraction in Pb+Pb consistent with pp (not shown).

Quarkonia in **p+Pb**, 5.02 TeV

- J/ ψ R_{pPb} consistent with unity, ψ (2S) **suppressed** wrt J/ ψ (1 σ).
- Prompt and non-prompt J/ ψ , ψ (2S), cross-sections **consistent** with NRQCD and FONLL predictions, respectively (not shown).
- Significant modifications seen also for Y(1S,2S,3S) in p+Pb collisions.

Ultra-peripheral collisions

- Qualitatively different collisions compared to ordinary Pb+Pb collisions.
- EM interactions dominate **at large impact parameters (b)**, **photons of small virtuality** (Q²<1/R²=10⁻³GeV²).
- Photon density 45.10⁶ larger in Pb+Pb compared to p+p.
- Allowed to measure **light-by-light scattering** (Nature Physics 13 (2017) 852).
- May allow to access **beyond-SM** physics.
- Allows to restrict **nuclear parton distribution functions** at low *x*.

- Motivation: restrict nuclear parton distribution functions (nPDF) at low x
- nPDF exhibit non-trivial behavior:
 - suppression at low x called "shadowing"

Photo-nuclear dijet production

$$H_{\rm T} \equiv \sum_{i} p_{\rm T\,i} ~~Q$$
$$x_{\rm A} \equiv \frac{m_{\rm jets}}{\sqrt{s}} e^{-y_{\rm jets}} ~~x_{\rm pa}$$

- ~ *x* of struck parton in nucleus
- Not the same as $F_2(x,Q^2)$, e.g. still contains $1/Q^4$ dependence.
- MC close to data but matching is not expected.
- Measurement not-yet unfolded.
- Also measured other slices of cross-section.

Photo-nuclear dijet production: new inputs for nPDF

... allows to restrict nPDFs in the not-yet-explored subspace of x,Q² space

Soft processes (physics of ridge and azimuthal anisotropies)

Soft processes – azimuthal anisotropies

- Initial shape and its fluctuations lead to pressure gradients giving rise to azimuthal anisotropies in particle production.
- Quantified by Fourier decomposition:

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = N_0 \left(1 + 2\sum_{i=1}^{\infty} v_n \cos n(\phi - \Phi_n) \right)$$
$$v_n = \left\langle e^{in(\phi - \Phi_n)} \right\rangle = \left\langle \cos n(\phi - \Phi_n) \right\rangle$$

• Initial shape of the interaction region drives elliptic flow, v_2 .

- Initial **spatial fluctuations** of interacting nucleons dictate **higher** order flow, v_n .
- Expected in Pb+Pb. Non-zero v_n seen in *pp*, *p*+Pb !? ... How about non-flow contributions (di-jets, resonances,...)?

• Cumulant method: Fourier harmonics are obtained from **2k-particle azimuthal correlations.** Example:

- Cumulants remove lower order correlations from non-flow effects.
- But still sensitive to fluctuations of the non-flow component.

• Cumulant method: Fourier harmonics are obtained from **2k-particle azimuthal correlations.** Example:

$$\langle corr_n\{2k\} \rangle = \left\langle \left\langle e^{in(\phi_1 + \ldots + \phi_k - \phi_{k+1} - \ldots - \phi_{k+1} - \ldots$$

- Cumulants remove lower order correlations from non-flow effects.
- v₂ harmonics from cumulants larger for Pb+Pb then for p+Pb.

• $v_2{4} \approx v_2{6} \approx v_2{8}.$

Cumulants and sub-event cumulants – small systems

- Strong dependence on the definition of the event class.
- Still sensitive to fluctuations of nonflow component. Can we do better?
- Is there a collectivity in small systems or not?

Cumulants and sub-event cumulants – small systems

- Strong dependence on the definition of the event class.
- Still sensitive to fluctuations of nonflow component. Can we do better?
- Is there a collectivity in small systems or not?

• Sub-event cumulants – correlator calculated using particles from 2 or 3 subevents => removing non-flow contribution

$$v_n\{4\} = \sqrt[4]{-c_n\{4\}}$$

... direct evidence for collectivity in small systems

Ridge in small systems

- Two particle correlations in $\Delta\eta x \Delta \phi$ long range, **near side** and away side correlations = the ridge.
- Seen in Pb+Pb, but also in *p*+Pb, *pp* collisions.
- Template fitting method to suppress non-flow contribution.

- Two particle correlations in $\Delta\eta x \Delta \phi$ long range, **near side** and away side correlations = the ridge.
- Seen in Pb+Pb, but also in *p*+Pb, *pp* collisions.
- Template fitting method to suppress non-flow contribution.

Ridge in small systems: heavy flavor

- Ridge also present for heavy flavor:
 - muon-hadron correlations
 - D*-hadron correlations

ATLAS-CONF-2017-073

ATLAS-CONF-2017-006

- Selecting on high-Q² processes: **Z-tagged ridge.** May primarily select **smaller impact parameter** *pp* collisions.
- New method to measure the ridge in events with large pile-up.
- v_2 8% ± 6% larger in Z-tagged events compared to inclusive.

- Jets remain quenched up to a TeV scale.
- Jet **fragmentation** is modestly but significantly **modified**. Modifications are different for inclusive jets and gamma-tagged jets.
- •Quarkonia production is modestly modified in *p*+Pb and strongly modified in Pb+Pb wrt pp production. The modification in Pb+Pb is similar for prompt and non-prompt charmonia.
- **Ultra-peripheral collisions** allows e.g. for studying nuclear modifications to parton distribution functions.
- Strong evidence is seen for **flow in small systems** by sub-event cumulants, ridge also present for heavy flavor.

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

Backup slides

- **Prompt** ψ (2S) suppressed by a factor of ~2 more than prompt J/ ψ .
- Non-prompt $\psi(2S)$ exhibits similar suppression as non-prompt J/ ψ .

- Not yet unfolded for the detector response.
- Smaller suppression in peripheral collisions (not shown).

Not unfolded for the detector response

Quarkonia in **p+Pb**, 5.02 TeV

- Y(1S) suppressed at low-p_T.
- Y(2S), Y(3S) suppressed wrt Y(1S).

10th Excited QCD Conference

ATLAS-CONF-2017-073

- Forward-backward ratio, R_{FB} consistent with unity for both D⁰ and D*.
- Cross-sections **consistent with FONLL** predictions (not shown).

- Measured c_n {4} (n=1-4) allows to understand the nature of **flow fluctuations**.
- c_1 {4}: negative, constraints on **dipolar eccentricity fluctuations**.
- c_2 {4}: **non-gaussian** fluctuations of v_2 in **ultra-central collisions**.

- Measured c_n {4} (n=1-4) allows to understand the nature of **flow fluctuations**.
- c_1 {4}: negative, constraints on **dipolar eccentricity fluctuations**.
- c_2 {4}: **non-gaussian** fluctuations of v_2 in **ultra-central collisions**.
- c_4 {4}: non-linear contribution of v_2^2 to v_4 .

Electroweak bosons

Z in Pb+Pb, 5.02 TeV

- Studying rapidity and centrality dependence.
- Data consistent with POWHEG scaled to NNLO accuracy.
- No modifications seen in T_{AA}-scaled yields good understanding of geometry.
- No precision to **distinguish nPDF** effects yet.

W in Pb+Pb, 5.02 TeV

ATLAS-CONF-2017-067

- Studying rapidity and centrality dependence: **same conclusions** as for Z. Data consistent with POWHEG scaled to NNLO accuracy.
- **Isospin effect**: d-quark excess => ~10% larger W⁺ yield.
- Lepton charge asymmetry consistent with theory prediction (not shown).

Prompt photons in p+Pb, 8.16 TeV

- Measured up to $E_T = 500$ GeV.
- JETPHOX with CT14+EPPS16 underpredict data by ~ 20% (similar disagreement seen in pp, JHEP 08 (2016) 005).
- Evaluating ratios wrt to *pp* collisions:

$$R_{\rm pPb} = \frac{\frac{d\sigma^{\rm pPb}}{dE_{\rm T}^{\gamma}}}{A \times \frac{d\sigma^{pp}}{dE_{\rm T}^{\gamma}}}$$

... next slide

- Consistent with **unity** except in backward rapidity (isospin effects)
- Data compared to two nPDF sets: CT14+EPPS16, nCTEQ15 and initial state energy loss model (multiple scatterings in nuclear matter before hard process):
 - no ability to distinguish nPDF effects
 - no signs of initial state energy loss

Landscape of the suppression measurements

Three UPC measurements ...

ATLAS EXPERIMENT

Three UPC measurements ...

10th Excited QCD Conference

Measurement of high-mass dimuons

- Good **agreement with Starlight MC** but the higher order QED corrections needs to be implemented into the MC
- Verifies the Z^4 scaling of cross-section and photon flux
- Significant **kinematic extension** over previous measurement by ALICE (EPJC 73 (2013) 2617)

Evidence for light-by-light scattering

• Event selection: 2 photons: E_T >6 GeV, $|\eta|$ <2.37, $m_{\gamma\gamma}$ > 6 GeV,

 $p_{T_{YY}} < 2 \text{ GeV}$, Aco = $(1-\Delta\phi/\pi)<0.01$; no tracks

- •13 events seen in the data, expects: 7.3 signal, 2.6 background
- p-value for the background-only hypothesis: 5 x 10⁻⁶ <=> 4.4 sigma significance (3.8 sigma expected)

Search for light-by-light scattering

• Event selection: 2 photons: $E_T>6$ GeV, $|\eta|<2.37$, $m_{\gamma\gamma}>6$ GeV, $p_{T\gamma\gamma}<2$ GeV, Aco = $(1-\Delta\phi/\pi)<0.01$; no tracks

- •13 events seen in the data, expects: 7.3 signal, 2.6 background
- p-value for the background-only hypothesis: 5 x 10⁻⁶ <=> 4.4 sigma significance (3.8 sigma expected)

- •Measured cross-section: 70 ±20 (stat.) ±17 (syst.) nb
- SM predictions:
 - 45 ± 9 nb (PRL 111 (2013) 080405),
 - 49 ± 10 nb (PRC 93 (2016) no.4, 044907)

- Motivation: restrict nuclear parton distribution functions (nPDF) at low x
- nPDF exhibit non-trivial behavior:
 - suppression at low x called "shadowing"
 - enhancement at 1.4 EPPS16 larger x called 1.3 $\begin{array}{c} R_i^A(x,Q_0^2) \\ 1.1 \\ 1.1 \\ 1.1 \end{array}$ "anti-shadowing" antishadowing maximum suppression at the largest x1.0 called "EMC effect" 0.9 0.8 - small-x shadowing $f_i^{p/A}(x, Q^2) =$ = $R_i^A(x, Q^2) f_i^p(x, Q^2)$ 0.7**EMC** minimum 0.6 Eskola et al. EPJC 77 (2017) n3, 163 0.5(one of nPDFs groups) 0.4 10^{-3} 10^{-2} 10^{-1} 10^{-4} T

Photo-nuclear dijet production: observables

Photo-nuclear dijet production: new inputs for nPDF

10th Excited QCD Conference

Photo-nuclear dijet production: slices of x_A

- Not the same as $F_2(x,Q^2)$
 - still contains 1/Q⁴ and z_{γ} dependence
- MC close to data but matching is not expected
- -Also measured slices of $H_{\rm T}$ and $z_{\rm g}$

... more results

Internal structure of jets at 5.02 TeV ATLAS-CONF-2017-005

$\mathbf{\hat{Z}}_{1,i}^{(z)}$ ATLAS Preliminary |y _{jet} |<2.1 $126 < p_{T}^{\text{jet}} < 158 \text{ GeV}$ \blacklozenge 200 < p_{τ}^{jet} < 251 GeV ♣ 316 < p_{T}^{jet} < 398 GeV 0.8 Pb+Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, 0.49 nb⁻¹, 0-10% 0.6 pp, $\sqrt{s} = 5.02 \text{ TeV}$, 25 pb⁻¹ 10^{-1} Ζ

no jet p_T . . . dependence observed

10th Excited QCD Conference

Internal structure of jets at 5.02 TeV

ATLAS-CONF-2017-005

. 5.02 TeV measurement agrees with 2.76 TeV measurement at the comparable *z* domain

- Realistic jet simulations: NLO POWHEG+PYTHIA8 MC + minimum bias Pb+Pb data overlay.
- Good understanding of jet energy scale.
- Expected behavior of jet energy resolution.

Jet reconstruction performance in run 2

- ... Example of the improvement in the jet energy scale: implementing the higher order flow corrections.
- => Jet energy scale does not dependent on the orientation with respect to the reaction plane. See also post

See also poster by Akshat Puri

10th Excited QCD Conference

 Vertical-axis: ratio of *R*_{AA} in a given rapidity to the *R*_{AA} for jets with |y|<0.3.

ATLAS-CONF-2017-009

 With increasing jet p_T R_{AA} getting smaller in the forward region as compared to the midrapidity region (predicted in arXiv:1504.05169).