QCD phase diagram from the lattice via effective Polyakov line actions relative weights and mean field

arXiv:1708:08031

Roman Höllwiesera, Jeff Greensiteb

aDepartment of Physics, School of Mathematics and Natural Sciences, University of Wuppertal, Germany
bPhysics and Astronomy Dept., San Francisco State University, San Francisco, CA 94132, USA
Motivation - The QCD Phase Diagram
Effective Polyakov Line Action

- map LGT to Polyakov line action (SU(3) spin) model
Effective Polyakov Line Action

- map LGT to Polyakov line action (SU(3) spin) model
- fix Polyakov line holonomies $U_0(\vec{x}, 0) = P_x$ (temporal gauge) and integrate out all other d.o.f.
Effective Polyakov Line Action

- map LGT to Polyakov line action (SU(3) spin) model
- fix Polyakov line holonomies $U_0(\vec{x}, 0) = P_x$ (temporal gauge) and integrate out all other d.o.f.

$$e^{S_P(P_x)} = \int DU_0(\vec{x}, 0) DU_k D\psi \prod_x \delta[P_x - U_0(\vec{x}, 0)] e^{S_L}$$
Effective Polyakov Line Action

- map LGT to Polyakov line action (SU(3) spin) model
- fix Polyakov line holonomies \(U_0(\vec{x}, 0) = P_x \) (temporal gauge) and integrate out all other d.o.f.

\[
e^{S_P(P_x)} = \int DU_0(\vec{x}, 0) DU_k D\psi \prod_x \delta[P_x - U_0(\vec{x}, 0)] e^{S_L}
\]

- derive \(S_P \) at \(\mu = 0 \), for \(\mu > 0 \) we have (true to all orders of strong coupling/hopping parameter expansion)
Effective Polyakov Line Action

- map LGT to Polyakov line action (SU(3) spin) model
- fix Polyakov line holonomies $U_0(\vec{x}, 0) = P_x$ (temporal gauge) and integrate out all other d.o.f.

$$e^{S_P(P_x)} = \int DU_0(\vec{x}, 0) DU_k D\psi \prod_x \delta[P_x - U_0(\vec{x}, 0)] e^{S_L}$$

- derive S_P at $\mu = 0$, for $\mu > 0$ we have (true to all orders of strong coupling/hopping parameter expansion)

$$S_{P}^{\mu}(P_x, P_x^\dagger) = S_{P}^{\mu=0}[e^{N_t \mu} P_x, e^{-N_t \mu} P_x^\dagger]$$
Effective Polyakov Line Action

- map LGT to Polyakov line action (SU(3) spin) model
- fix Polyakov line holonomies \(U_0(\vec{x}, 0) = P_x \) (temporal gauge) and integrate out all other d.o.f.

\[
e^{S_P(P_x)} = \int DU_0(\vec{x}, 0) DU_k D\psi \prod_x \delta[P_x - U_0(\vec{x}, 0)] e^{S_L}
\]

- derive \(S_P \) at \(\mu = 0 \), for \(\mu > 0 \) we have (true to all orders of strong coupling/hopping parameter expansion)

\[
S^\mu_K(P_x, P_x^\dagger) = S^\mu_K=0[e^{N_t \mu} P_x, e^{-N_t \mu} P_x^\dagger]
\]

- hard to compute \(\exp[S_P(P_x)] \) directly, but action ratios are easily computed as expectation values \(\rightarrow \) relative weights via derivatives of \(S_P \) w.r.t. Fourier components \(a_k \) of \(P_x \)
setting a particular $a_k = 0$, we construct from the resulting configuration
\[\tilde{P}_x = P_x - e^{ikx} \sum_y P_y e^{-iky} / L^3 \]
setting a particular $a_k = 0$, we construct from the resulting configuration $\tilde{P}_x = P_x - e^{ikx} \sum_y P_y e^{-iky} / L^3$

$P'_x = (\alpha + \Delta \alpha / 2) e^{ikx} + f \tilde{P}_x$ and $P''_x = (\alpha - \Delta \alpha / 2) e^{ikx} + f \tilde{P}_x$
setting a particular $a_k = 0$, we construct from the resulting configuration

$$\tilde{P}_x = P_x - e^{ikx} \sum_y P_y e^{-iky} / L^3$$

$$P'_x = (\alpha + \Delta \alpha / 2) e^{ikx} + f \tilde{P}_x \quad \text{and} \quad P''_x = (\alpha - \Delta \alpha / 2) e^{ikx} + f \tilde{P}_x$$

effective Polyakov line action motivated by heavy-dense action, where h is some inverse power of hopping parameter and satisfies the Pauli exclusion principle
setting a particular $a_k = 0$, we construct from the resulting configuration $\tilde{P}_x = P_x - e^{ikx} \sum_y P_y e^{-iky} / L^3$

$$P'_x = (\alpha + \Delta \alpha / 2) e^{ikx} + f \tilde{P}_x \quad \text{and} \quad P''_x = (\alpha - \Delta \alpha / 2) e^{ikx} + f \tilde{P}_x$$

effective Polyakov line action motivated by heavy-dense action, where h is some inverse power of hopping parameter and satisfies the Pauli exclusion principle

$$S_{\text{eff}} [P_x] = \sum_{x,y} P_x K(x - y) P_y$$

$$+ p \sum_x \log(1 + he^{\mu / T} Tr[P_x] + h^2 e^{2\mu / T} Tr[P_x^\dagger] + h^3 e^{3\mu / T})$$

$$+ \log(1 + he^{-\mu / T} Tr[P_x] + h^2 e^{-2\mu / T} Tr[P_x^\dagger] + h^3 e^{-3\mu / T})$$
setting a particular $a_k = 0$, we construct from the resulting configuration $	ilde{P}_x = P_x - e^{ikx} \sum_y P_y e^{-iky} / L^3$

$P'_x = (\alpha + \Delta \alpha / 2) e^{ikx} + f \tilde{P}_x$ and $P''_x = (\alpha - \Delta \alpha / 2) e^{ikx} + f \tilde{P}_x$

effective Polyakov line action motivated by heavy-dense action, where h is some inverse power of hopping parameter and satisfies the Pauli exclusion principle

$S_{\text{eff}}[P_x] = \sum_{x,y} P_x K(x - y) P_y$

$+ p \sum_x \log(1 + he^{\mu/T} \text{Tr}[P_x] + h^2 e^{2\mu/T} \text{Tr}[P_x^\dagger] + h^3 e^{3\mu/T})$

$\log(1 + he^{-\mu/T} \text{Tr}[P_x] + h^2 e^{-2\mu/T} \text{Tr}[P_x^\dagger] + h^3 e^{-3\mu/T})$

determine $K(x - y)$ and h from fitting to lattice data
setting a particular \(a_k = 0 \), we construct from the resulting configuration

\[
\tilde{P}_x = P_x - e^{ikx} \sum_y P_y e^{-iky} / L^3
\]

\[
P'_x = (\alpha + \Delta \alpha / 2)e^{ikx} + f \tilde{P}_x \quad \text{and} \quad P''_x = (\alpha - \Delta \alpha / 2)e^{ikx} + f \tilde{P}_x
\]

effective Polyakov line action motivated by heavy-dense action, where \(h \) is some inverse power of hopping parameter and satisfies the Pauli exclusion principle

\[
S_{\text{eff}}[P_x] = \sum_{x,y} P_x K(x - y) P_y + p \sum_x \log(1 + he^{\mu/T} Tr[P_x] + h^2 e^{2\mu/T} Tr[P_x^\dagger] + h^3 e^{3\mu/T}) \log(1 + he^{-\mu/T} Tr[P_x] + h^2 e^{-2\mu/T} Tr[P_x^\dagger] + h^3 e^{-3\mu/T})
\]

determine \(K(x - y) \) and \(h \) from fitting to lattice data

\[
\frac{1}{L^3} \left(\frac{\partial S_P}{\partial a_k} \right)_{a_k = \alpha} = 2K(k)\alpha + \frac{p}{L^3} \sum_x (3he^{ikx} + 3h^2 e^{-ikx} + \text{c.c.})
\]
Fitting to lattice data

\[\frac{1}{L^3} \left(\frac{\delta S_p}{\delta \alpha} \right)_{\alpha=\alpha_0} = \alpha \]

- Gauge
- Fermion
- Total ΔS

10.5157$\alpha + 0.0397$

$k=0$
Fourier transform $K(k)$ to $K(r)$
Finite size cutoff R_{cut} for $K(r)$

![Graph showing the finite size cutoff R_{cut} for $K(r)$](image)

- $K(R) L=8^3$
- $K(R) L=16^3$
- $K(R) L=32^3$
- $K(R) L=64^3$

Fit: $0.599/R^4$
Solve sign problem for the effective action

remaining sign problem can be solved by mean field theory
(see also Splittorff and Greensite, 2012)
Solve sign problem for the effective action

- remaining sign problem can be solved by mean field theory (see also Splittorff and Greensite, 2012)
- treatment of $SU(3)$ spin models at finite μ is a minor variation of standard mean field theory at zero μ
Solve sign problem for the effective action

- remaining sign problem can be solved by mean field theory (see also Splittorff and Greensite, 2012)
- treatment of $SU(3)$ spin models at finite μ is a minor variation of standard mean field theory at zero μ
- basic idea is that each spin is effectively coupled to the average spin on the lattice, not just nearest neighbors
Solve sign problem for the effective action

- remaining sign problem can be solved by mean field theory (see also Splittorff and Greensite, 2012)
- treatment of SU(3) spin models at finite μ is a minor variation of standard mean field theory at zero μ
- basic idea is that each spin is effectively coupled to the average spin on the lattice, not just nearest neighbors

$$S^0_P = \frac{1}{9} [\sum_{x,y \neq x} \text{Tr} U_x \text{Tr} U_y^\dagger K(x - y) + \sum_x \text{Tr} U_x \text{Tr} U_x^\dagger K(0)]$$
QCD phase diagram from the lattice

Solve sign problem for the effective action

- remaining sign problem can be solved by mean field theory (see also Splittorff and Greensite, 2012)
- treatment of $SU(3)$ spin models at finite μ is a minor variation of standard mean field theory at zero μ
- basic idea is that each spin is effectively coupled to the average spin on the lattice, not just nearest neighbors

$$S_P^0 = \frac{1}{9} [\sum_{x,y \neq x} \text{Tr} U_x \text{Tr} U_y^\dagger K(x - y) + \sum_x \text{Tr} U_x \text{Tr} U_x^\dagger K(0)]$$

- we introduce two magnetizations u, v for $\text{Tr} U$ and $\text{Tr} U^\dagger$
Solve sign problem for the effective action

- remaining sign problem can be solved by mean field theory (see also Splittorff and Greensite, 2012)
- treatment of $SU(3)$ spin models at finite μ is a minor variation of standard mean field theory at zero μ
- basic idea is that each spin is effectively coupled to the average spin on the lattice, not just nearest neighbors

$$S_P^0 = \frac{1}{9}[\sum_{x,y \neq x} \text{Tr}U_x \text{Tr}U_y^\dagger K(x - y) + \sum_x \text{Tr}U_x \text{Tr}U_x^\dagger K(0)]$$

- we introduce two magnetizations u, v for $\text{Tr}U$ and $\text{Tr}U^\dagger$

$$\text{Tr}U_x = (\text{Tr}U_x - u) + u, \text{ Tr}U_x^\dagger = (\text{Tr}U_x^\dagger - v) + v$$
\[S_P^0 = \frac{1}{9} \sum_{x \neq 0} K(x) \left[\sum_x (v \text{Tr} U_x + u \text{Tr} U_x^\dagger) - uvL^3 \right] \]

\[+ \frac{1}{9} \sum_x \text{Tr}[U_x] \text{Tr} U_x^\dagger K(0) + E_0 \]

with \(E_0 = \sum_{x,y \neq x} (\text{Tr} U_x - u)(\text{Tr} U_y^\dagger - v)K(x - y) \)
\[S^0_P = \frac{1}{9} \sum_{x \neq 0} K(x) \left[\sum_x (\nu \text{Tr} U_x + u \text{Tr} U_x^\dagger) - uv L^3 \right] + \frac{1}{9} \sum_x \text{Tr} [U_x] \text{Tr} U_x^\dagger K(0) + E_0 \]

with \(E_0 = \sum_{x, y \neq x} (\text{Tr} U_x - u)(\text{Tr} U_y^\dagger - v) K(x - y) \)

- if we drop \(E_0 \) the total action (including \(\mu \neq 0 \)) is local and group integrations can be carried out analytically.
\[S_P^0 = \frac{1}{9} \sum_{x \neq 0} K(x) \left[\sum_x (\nu \text{Tr} U_x + u \text{Tr} U_x^\dagger) - uvL^3 \right] \]

\[+ \frac{1}{9} \sum_x \text{Tr}[U_x] \text{Tr} U_x^\dagger K(0) + E_0 \]

with \(E_0 = \sum_{x,y \neq x} (\text{Tr} U_x - u)(\text{Tr} U_y^\dagger - v)K(x - y) \)

- if we drop \(E_0 \) the total action (including \(\mu \neq 0 \)) is local and group integrations can be carried out analytically
- parameters \(u \) and \(v \) are chosen such that \(E_0 \) can be treated as a perturbation, \(\langle E_0 \rangle = 0 \) when \(u = \langle \text{Tr} U_x \rangle, v = \langle \text{Tr} U_x^\dagger \rangle \)
\[S_P^0 = \frac{1}{9} \sum_{x \neq 0} K(x) \left[\sum_x (v \text{Tr} U_x + u \text{Tr} U_x^\dagger) - uvL^3 \right] \]

\[+ \frac{1}{9} \sum_x \text{Tr}[U_x] \text{Tr} U_x^\dagger K(0) + E_0 \]

with \(E_0 = \sum_{x,y \neq x} (\text{Tr} U_x - u)(\text{Tr} U_y^\dagger - v)K(x - y) \)

- if we drop \(E_0 \) the total action (including \(\mu \neq 0 \)) is local and group integrations can be carried out analytically
- parameters \(u \) and \(v \) are chosen such that \(E_0 \) can be treated as a perturbation, \(\langle E_0 \rangle = 0 \) when \(u = \langle \text{Tr} U_x \rangle, v = \langle \text{Tr} U_x^\dagger \rangle \)
- equivalent to the stationarity of the mean field free energy with respect to variations in \(u \) and \(v \) → solve numerically
QCD phase diagram from the lattice

\[u - \frac{1}{G} \frac{\partial G}{\partial A} = 0 \quad \text{and} \quad v - \frac{1}{G} \frac{\partial G}{\partial B} = 0, \]

with \(A = J_0 v, \ B = J_0 u, \ J_0 = \sum_{x \neq 0} K(x)/9 \) and

\[G(A, B) = \mathcal{D} \left(\mu, \frac{\partial}{\partial A}, \frac{\partial}{\partial B} \right) \sum_{s=-\infty}^{\infty} \det \left[D_{ij}^{-s} I_0 [2\sqrt{AB}] \right], \]

where \(I_0 \) is a Bessel function and \(D_{ij}^{-s} \) is the \(i, j \)-th component of a matrix of differential operators

\[
D_{ij}^s = \begin{cases}
D_{i,j+s} & s \geq 0 \\
D_{i+|s|,j} & s < 0
\end{cases}, \\
D_{ij} = \begin{cases}
\left(\frac{\partial}{\partial B} \right)^{i-j} & i \geq j \\
\left(\frac{\partial}{\partial A} \right)^{j-i} & i < j
\end{cases}.
\]
Simulation parameters and mean field results

- for effective Polyakov line actions derived from LGT
- on $16^3 \times 6$ lattices with Wilson gauge action and
dynamical staggered fermions with $m_q = 695$ MeV
- scale setting via a from Necco-Sommer expression
- we keep $N_t = 6$ and $m_q = 695$ MeV fixed and vary T via β
- $a_0 = K(x = 0)/9$, $J_0 = \sum_{x \neq 0} K(x)/9$, note small h!!!
Finite temperature transition at $\mu = 0$
QCD phase diagram from the lattice

\[\beta = 5.63, m_\Lambda = 0.711 \]

\[\beta = 5.65, m_\Lambda = 0.677 \]

\[\beta = 5.66, m_\Lambda = 0.66 \]

\[\beta = 5.68, m_\Lambda = 0.63 \]
QCD phase diagram from the lattice

\[\beta = 5.7, m_a = 0.6 \]

\[\beta = 5.73, m_a = 0.561 \]

\[\beta = 5.75, m_a = 0.536 \]

\[\beta = 5.77, m_a = 0.513 \]
Free energy \(f_{mf}/T = J_0 \mu v - \log G(A, B) \)
Number density \(n = \frac{(\partial G/\partial \mu)}{G} \)
Preliminary Phase Diagram

![Phase Diagram Image]

- Phase transition line
- Critical endpoints

Axes:
- T [MeV] on the y-axis
- \(\mu\) [MeV] on the x-axis

Legend:
- Phase transition line
- Critical endpoints

Graph Details:
- Data points indicating key transitions and endpoints in the QCD phase diagram from the lattice.
Comparison to other methods

- tricky because of different lattice fermions, number of flavors and quark masses
Comparison to other methods

- tricky because of different lattice fermions, number of flavors and quark masses
- analytical continuation from imaginary μ (M. d’Elia and M.-P. Lombardo, 2003)
 - four flavors of staggered quarks, $ma = 0.05$
 - $T(\mu) = T_c(1 - 0.021 \frac{\mu^2}{2T_c^2})$, fit $T_c \approx 220\text{MeV}$
Comparison to other methods

- tricky because of different lattice fermions, number of flavors and quark masses
- analytical continuation from imaginary μ (M. d’Elia and M.-P. Lombardo, 2003)
 - four flavors of staggered quarks, $ma = 0.05$
 - $T(\mu) = T_c(1 - 0.021 \frac{\mu^2}{2T_c^2})$, fit $T_c \approx 220\text{MeV}$

- heavy-dense complex Langevin (G. Aarts, F. Attanasio, B. Jäger, and D. Sexty, 2016)
 - two flavors of Wilson fermions, $\kappa = 0.04$ (heavy!)
 - $T(\mu) = 481(1 - \frac{\mu^2}{\mu_0^2}) - 279.3(1 - \frac{\mu^2}{\mu_0^2})^2$
 - $\mu_0 = -\log(2\kappa)$ motivated by hopping parameter expansion
 - take a μ_0 to give the closest fit to our data
Analytical Continuation from imaginary μ

![Graph showing relative weights and analytic continuation]
Heavy-dense Complex Langevin

QCD phase diagram from the lattice

relative weights
heavy dense CL

T
µ

13.3.2018 Excited QCD 2018, Kopaonik, Serbia
Conclusions

- determined effective Polyakov line action for staggered fermions with $m_q = 695\text{MeV}$ with standard Wilson gauge action for a range of gauge couplings on $16^3 \times 6$ lattices

good agreement for the Polyakov line correlators computed in the effective theory and underlying lattice gauge theory solved sign problem for the effective theory by mean field and find a phase transition line and correct density limit good agreement with analytical continuation from imaginary μ (d'Elia and Lombardo, 2003) comparison to heavy dense complex Langevin and other methods tricky because of different lattice fermions, number of flavors and quark masses

Excited QCD 2018, Kopaonik, Serbia
Conclusions

- determined effective Polyakov line action for staggered fermions with $m_q = 695\text{MeV}$ with standard Wilson gauge action for a range of gauge couplings on $16^3 \times 6$ lattices
- good agreement for the Polyakov line correlators computed in the effective theory and underlying lattice gauge theory
Conclusions

- determined effective Polyakov line action for staggered fermions with $m_q = 695\text{MeV}$ with standard Wilson gauge action for a range of gauge couplings on $16^3 \times 6$ lattices
- good agreement for the Polyakov line correlators computed in the effective theory and underlying lattice gauge theory
- solved sign problem for the effective theory by mean field and find a phase transition line and correct density limit
Conclusions

- determined effective Polyakov line action for staggered fermions with $m_q = 695\text{MeV}$ with standard Wilson gauge action for a range of gauge couplings on $16^3 \times 6$ lattices
- good agreement for the Polyakov line correlators computed in the effective theory and underlying lattice gauge theory
- solved sign problem for the effective theory by mean field and find a phase transition line and correct density limit
- good agreement with analytical continuation from imaginary μ (d’Elia and Lombardo, 2003)
Conclusions

- determined effective Polyakov line action for staggered fermions with $m_q = 695\text{MeV}$ with standard Wilson gauge action for a range of gauge couplings on $16^3 \times 6$ lattices
- good agreement for the Polyakov line correlators computed in the effective theory and underlying lattice gauge theory
- solved sign problem for the effective theory by mean field and find a phase transition line and correct density limit
- good agreement with analytical continuation from imaginary μ (d’Elia and Lombardo, 2003)
- comparison to heavy dense complex Langevin and other methods tricky because of different lattice fermions, number of flavors and quark masses
Discussion

- second critical endpoint suggests heavy quark regime or maybe quark-hadron continuity (smooth superfluid nuclear to superconducting quark matter transition)

- simple PLA ansatz may not hold on finer lattices (diverging interaction range) and for lighter quarks?

- Polyakov lines in higher representations, trilinear couplings, etc., maybe required at higher densities?

- higher order (multi-body interactions) and chiral/center symmetry breaking terms suppressed by small h?

- can the mean-field PLA still locate transition lines and determine critical properties reliably?

- supplement RW and MF approach with other methods, e.g. inverse Monte-Carlo (Wozar et al., Bahrampour et al.), strong coupling effective PLA (G. Bergner, J. Langelage, O. Philipsen)
Discussion

- second critical endpoint suggests heavy quark regime or maybe quark-hadron continuity (smooth superfluid nuclear to superconducting quark matter transition)
- simple PLA ansatz may not hold on finer lattices (diverging interaction range) and for lighter quarks?
Discussion

- second critical endpoint suggests heavy quark regime or maybe quark-hadron continuity (smooth superfluid nuclear to superconducting quark matter transition)
- simple PLA ansatz may not hold on finer lattices (diverging interaction range) and for lighter quarks?
- Polyakov lines in higher representations, trilinear couplings, etc., maybe required at higher densities?
Discussion

- second critical endpoint suggests heavy quark regime or maybe quark-hadron continuity (smooth superfluid nuclear to superconducting quark matter transition)
- simple PLA ansatz may not hold on finer lattices (diverging interaction range) and for lighter quarks?
- Polyakov lines in higher representations, trilinear couplings, etc., maybe required at higher densities?
- higher order (multi-body interactions) and chiral/center symmetry breaking terms suppressed by small h?
Discussion

- second critical endpoint suggests heavy quark regime or maybe quark-hadron continuity (smooth superfluid nuclear to superconducting quark matter transition)
- simple PLA ansatz may not hold on finer lattices (diverging interaction range) and for lighter quarks?
- Polyakov lines in higher representations, trilinear couplings, etc., maybe required at higher densities?
- higher order (multi-body interactions) and chiral/center symmetry breaking terms suppressed by small h?
- can the mean-field PLA still locate transition lines and determine critical properties reliably?
Discussion

- second critical endpoint suggests heavy quark regime or maybe quark-hadron continuity (smooth superfluid nuclear to superconducting quark matter transition)
- simple PLA ansatz may not hold on finer lattices (diverging interaction range) and for lighter quarks?
- Polyakov lines in higher representations, trilinear couplings, etc., maybe required at higher densities?
- higher order (multi-body interactions) and chiral/center symmetry breaking terms suppressed by small h?
- can the mean-field PLA still locate transition lines and determine critical properties reliably?
- supplement RW and MF approach with other methods, e.g.
Discussion

- second critical endpoint suggests heavy quark regime or maybe quark-hadron continuity (smooth superfluid nuclear to superconducting quark matter transition)
- simple PLA ansatz may not hold on finer lattices (diverging interaction range) and for lighter quarks?
- Polyakov lines in higher representations, trilinear couplings, etc., maybe required at higher densities?
- higher order (multi-body interactions) and chiral/center symmetry breaking terms suppressed by small h?
- can the mean-field PLA still locate transition lines and determine critical properties reliably?
- supplement RW and MF approach with other methods, e.g.
 - inverse Monte-Carlo (Wozar et al., Bahrampour et al.)
Discussion

- second critical endpoint suggests heavy quark regime or maybe quark-hadron continuity (smooth superfluid nuclear to superconducting quark matter transition)
- simple PLA ansatz may not hold on finer lattices (diverging interaction range) and for lighter quarks?
- Polyakov lines in higher representations, trilinear couplings, etc., maybe required at higher densities?
- higher order (multi-body interactions) and chiral/center symmetry breaking terms suppressed by small h?
- can the mean-field PLA still locate transition lines and determine critical properties reliably?
- supplement RW and MF approach with other methods, e.g.
 - inverse Monte-Carlo (Wozar et al., Bahrampour et al.)
 - strong coupling effective PLA (G. Bergner, J. Langelage, O. Philipsen)
Questions?

arXiv:1708.08031

Thank You &

Tareq Alhalholy, Derar Altarawneh, Michael Engelhardt, Manfried Faber, Martin Gal, Jeff Greensite, Urs M. Heller, James Hettrick, Andrei Ivanov, Francesco Knechtli, Tomasz Korzec, Thomas Layer, Štefan Olejnik, Luis Oxman, Mario Pitschmann, Jesus Saenz, Thomas Schweigler, Wolfgang Söldner, David Vercauteren, Markus Wellenzohn

13.3.2018 Excited QCD 2018, Kopaonik, Serbia
QCD phase diagram from the lattice

Roman Höllwiesera, hroman@kph.tuwien.ac.at
Jeff Greensiteb, greensit@sfsu.edu

aDepartment of Physics, School of Mathematics and Natural Sciences, University of Wuppertal, Germany
bPhysics and Astronomy Dept., San Francisco State University, San Francisco, CA 94132, USA