Probing anomalous $WW\gamma$ Triple Gauge Bosons Coupling at LHeC

Speaker: Ruibo Li

Zhejiang Institute of Modern Physics Zhejiang University

In collaborated with Xiao-Min Shen, Kai Wang, Tao Xu, Liangliang Zhang and Guohuai Zhu, arXiv:1711.05607

Speaker: Ruibo Li (Zhejiang Institute of Modern Physics ZhProbing anomalous WW γ Triple Gauge Bosons Coupling at

イロト イポト イヨト イヨト

Outline

- Effective Lagrangian
 - CP properties
- Existing study
- Search Strategy
 - $e^- p \rightarrow e^- W j$ Channel
 - Total cross-section
 - Kinematic differential distributions: $\cos \theta_{\mu W}$, $\Delta \phi_{ej}$
 - Reconstruction of events
 - Estimation of sensitivity: χ^2 method
- Results

ヘロト ヘアト ヘビト ヘビト

Effective Lagrangian

Effective Lagrangian

$$\mathcal{L}_{TGC}/g_{WWV} = ig_{1,V}(W^{+}_{\mu\nu}W^{-}_{\mu}V_{\nu} - W^{-}_{\mu\nu}W^{+}_{\mu}V_{\nu}) + i\kappa_{V}W^{+}_{\mu}W^{-}_{\nu}V_{\mu\nu} + \frac{i\lambda_{V}}{M_{W}^{2}}W^{+}_{\mu\nu}W^{-}_{\nu\rho}V_{\rho\mu} + g_{5}^{V}\epsilon_{\mu\nu\rho\sigma}(W^{+}_{\mu}\overleftrightarrow{\partial}_{\rho}W^{-}_{\nu})V_{\sigma} - g_{4}^{V}W^{+}_{\mu}W^{-}_{\nu}(\partial_{\mu}V_{\nu} + \partial_{\nu}V_{\mu}) + i\tilde{\kappa}_{V}W^{+}_{\mu}W^{-}_{\nu}\tilde{V}_{\mu\nu} + \frac{i\lambda_{V}}{M_{W}^{2}}W^{+}_{\lambda\mu}W^{-}_{\mu\nu}\tilde{V}_{\nu\lambda}$$

- g_4^V : *C* and *CP* violation, *P* conservation;
- g_5^V : *C* and *P* violation, *CP* conservation;
- $\tilde{\kappa}_V$ and $\tilde{\lambda}_V$: *P* and *CP* violation, *C* conservation;
- $g_{1,V}, \kappa_V$ and λ_V : *C*, *P* and *CP* conservation.

$$\lambda_{\gamma} = \lambda_Z, \Delta \kappa_Z = \Delta g_{1,Z} - \tan^2 \theta_W \Delta \kappa_{\gamma}$$

Only 3 independent aTGCs parameters (*CP* conservation): $\Delta g_{1,Z}$, $\Delta \kappa_{\gamma}$ and λ_{γ} .

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Existing Study

Existing Study

- WW pair production@LEP/LHC: 1302.3415, 1703.06095, 1706.01702;
- Experimental bounds:

aTGC	LEP	CMS, 8 TeV	ATLAS, 8 TeV	SM
$\Delta \kappa_{\gamma}$	[-0.099, 0.066]	[-0.044, 0.063]	[-0.061, 0.064]	0
λ_{γ}	[-0.059, 0.017]	[-0.011, 0.011]	[-0.013, 0.013]	0

Table 1: 95% C.L. limits on $\Delta \kappa_{\gamma}$ and λ_{γ} at LEP and LHC. These bounds are from single parameter fittings. LHC measurement of *WW/WZ* pair production in semi-leptonic decay channel with an integrated luminosity of 19 ab^{-1} (CMS) and 20.2 ab^{-1} (ALTAS) give the above abounds. arXiv:1302.3415, 1703.06095, 1706.01702

• single γ production@LHeC: 1405.6056, 1406.7696, FCC-DRAFT-ACC-2016-017;

・ロト ・ 同ト ・ ヨト・

$e^-p \rightarrow e^-Wj$ Channel

- total cross-section: previously discussed (1406.7696, hep-ph/0004089......)
- azimuthal angle $\Delta \phi_{ej}$: measure the CP nature of Higgs couplings (hep-ph/0105325)
- polar angle $\cos \theta_{\mu W}$: contains W polarization information directly which we want!
 - someone defines polar angle between *W* boson or *W* boson decay production and the incoming particle, which also contains polarization information but has a dependence on polarized state of the incoming particle. (Nucl.Phys.B325.1989.253-274, 1501.01380, 1507.02238)

イロト 不得 とくほ とくほ とうほ

To illustrate the feature, we first focus on the μ^+ decay of W boson:

 $e^-p
ightarrow e^-W^+j, W
ightarrow \mu^+
u_\mu$

Note: Due to large suppression from the Z boson mass, the results are insensitive to WWZ couplings. Therefore, we only consider γ propagator diagrams!

Speaker: Ruibo Li (Zhejiang Institute of Modern Physics ZhProbing anomalous $WW\gamma$ Triple Gauge Bosons Coupling at

Only (e) contains TGC vertex (longitudinal polarized *W* dominates) \Rightarrow unitarity violation

(f)–(j) are included \Rightarrow large cancellation between the longitudinal components \Rightarrow unitarity restoration

TGC is related to the polarization information. We can choose some kinematic observables containing W polarization information to probe aTGC contributions!

くロト くぼと くきと くきと

total cross-section

The cross-sections and detector simulations are implemented by *MadGraph5v2.4.2*, *Pythia*6.420 and *Delphes3.3.0.*(including off-shell W boson contributions)

- $\Delta \kappa_{\gamma}$: interference term is dominant.
- λ_{γ} : interference term is overshadowed by the contribution purely coming from the 6-dimension anomalous term when $\sqrt{\hat{s}} \ge 500$ GeV. (1601.01380)

Kinematic differential distributions

- $\Delta \phi_{ej}$: the azimuthal angle $\Delta \phi_{ej}$ is defined on the *ej* plane in Lab frame.
- cos θ_{µW}: θ_{µW} is the angle between the W boson and the µ⁺ defined in W boson CM frame(contains W polarization information).

Speaker: Ruibo Li (Zhejiang Institute of Modern Physics ZhProbing anomalous WW γ Triple Gauge Bosons Coupling at

 $\lambda_{\gamma} \Rightarrow$ enhancement transverse polarization \Rightarrow peak: $\cos \theta_{\mu W} = -1 \rightarrow +1$ $\Delta \kappa_{\gamma} \Rightarrow$ enhancement longitudinal polarization \Rightarrow peak: $\cos \theta_{\mu W} = -1 \rightarrow 0$

イロト イポト イヨト イヨト

Reconstruction of events

Nontrivial!

There is one invisible neutrino in the final state and z-direction momentum conservation cannot be used as a result of the unknown Bjorken xWe define the e^- beam direction is the z-direction.

- 1. use the W boson invariant mass and massless neutrino.
 - problem: two solutions for the invisible neutrino.
 - solution: assume the neutrino with momentum more parallel with muon is the *W* decay product.
- 2. use energy and z-direction momentum conservation conditions.

$$p_{\nu_{\mu}}^{z} = \frac{(2E_{e} - E_{e'j\mu} - p_{e'j\mu}^{z})^{2} - (p_{\nu_{\mu}}^{T})^{2}}{2(2E_{e} - E_{e'j\mu} - p_{e'j\mu}^{z})}$$

• advantage: only single accurate solution for the invisible neutrino.

• 3. use the recoil mass M_X (on-shell W dominant).

$$M_X^2 = \hat{s} + M_{e'j}^2 - 2E_{e'j}(E_q + E_e) + 2p_{e'j}^z(E_e - E_q)$$

$$x = \frac{M_W^2 - M_{e'j}^2 + 2E_e(E_{e'j} - p_{e'j}^z)}{2E_p(2E_e - E_{e'j} - p_{e'j}^z)}$$

- advantage-1: restore z-direction momentum conservation condition.
- advantage-2: don't need any information of the invisible neutrino.

イロト イポト イヨト イヨト

Criteria: Vetoing second or more hard jets, 30% survival probaility

Estimation of sensitivity: χ^2 method

$$\chi^2 \equiv \sum_i \left(\frac{N_i^{BSM} - N_i^{SM}}{\sqrt{N_i^{SM}}} \right)^2,$$

- $\sum_{i} N_i^{SM} = \frac{10M}{10}$ to reduce MC fluctuation;
- $\sum_{i} N_i^{BSM} = 1M;$
- ten bins and 95% C.L.;
- $\frac{1}{\sqrt{N_i^{SM}}}$ is the statistic uncertainty. We neglect the systematic uncertainty and N_i^{SM} theoretical uncertainty here.

・ロト ・回 ト ・ヨト ・ヨト … ヨ

Why we focus on μ^+ decay subchannel?

Other channels:

- $\ell = e^+$: additional backgrounds-neutral bosons decay to e^+e^- pair;
- $\ell = e^-$:
 - the mis-tagging rate between the e^- from W and the scattered beam: 7%;
 - neutral current DIS events in e^- channel are potential source of background.
- $\ell = \mu^{-}$: potential to be combined

Therefore we expect the μ^+ channel to be more sensitive to aTGCs than others.

イロト 不得 とくほ とくほ とうほ

Results

• Single-parameter fitting: $\mathcal{L} = 1 \ ab^{-1}$

variable	μ^+ decay, $E_e = 60 \text{ GeV}$		μ^+ decay, $E_e = 140 \text{ GeV}$		
parameter	$\cos heta_{\mu^+W^+}$	$\Delta \phi_{ej}$	$\cos \theta_{\mu^+W^+}$	$\Delta \phi_{ej}$	SM
λ_{γ}	—	[-0.0074, 0.0062]	—	[-0.0038, 0.002]	0
$\Delta \kappa_{\gamma}$	[-0.005, 0.0058]	[-0.0057, 0.0061]	[-0.0032, 0.0029]	[-0.0023, 0.0026]	0
	μ^- decay, $E_e = 60 \text{ GeV}$		μ^- decay, $E_e = 140 \text{ GeV}$		
variable	μ^- decay, E	e = 60 GeV	μ^- decay, E_e	r = 140 GeV	
variable parameter	$\frac{\mu^{-} \operatorname{decay}, E}{\cos \theta_{\mu^{-}W^{-}}}$	$G_e = 60 \text{ GeV}$ $\Delta \phi_{ej}$	$\frac{\mu^{-} \operatorname{decay}, E_{e}}{\cos \theta_{\mu^{-}W^{-}}}$	$\phi_{ej} = 140 \text{ GeV}$	SM
λ_{γ} variable	μ^- decay, <i>E</i> $\cos \theta_{\mu^- W^-}$	$C_e = 60 \text{ GeV}$ $\Delta \phi_{ej}$ [-0.011, 0.011]	$\frac{\mu^{-} \operatorname{decay}, E_{e}}{\cos \theta_{\mu^{-}W^{-}}}$	$e_{e} = 140 \text{ GeV}$ $\Delta \phi_{ej}$ [-0.0027, 0.0051]	SM 0

Table 2: The 95% C.L. bound on aTGC λ_{γ} and $\Delta \kappa_{\gamma}$, obtained from the kinematic observables $\cos \theta_{\mu^{\pm}W^{\pm}}$ and $\Delta \phi_{ej}$ at LHeC with $E_e = 60$ and 140 GeV. The results listed are from single-parameter fitting when the other one is fixed to its SM value. The "—" in the table means this bound is no better than the ones from LEP.

• Two-parameter fitting: $\mathcal{L} = 1 \ ab^{-1}$

Figure 2: Two-parameter fitting results of aTGC bounds at 95% C.L. for LHeC, LHC and LEP.

The above results are all obtained via pure partonic level study. To achieve the same results in a full simulation(*Pythia* and *Delphes*), one expects about threefold integrated luminosity with 30% survival probability criteria.

Speaker: Ruibo Li (Zhejiang Institute of Modern Physics ZhProbing anomalous WW γ Triple Gauge Bosons Coupling at

• Theoretical uncertainty: PDF variation 0.6%(*NNPDF23_nlo_as_0119*) ⇒ 0.15%~0.2% with LHeC PDF sets

Figure 3: Comparison of the up valence quark distribution of different colliders.1206.2913(LHeC Study Group)

• • • • • • • • • • • • •

-

Conclusion

- The sensitivity to λ_{γ} and $\Delta \kappa_{\gamma}$ could reach $\mathcal{O}(10^{-3})$ when $\mathcal{L} = 1 \ ab^{-1}$ based on χ^2 -method at parton level with the expectation of more precise PDFs at future LHeC, while in a full simulation the integrated luminosity need to be increased to 2-3 ab^{-1} to consistent the result.
- There's also a significant improvement in constraining $\Delta \kappa_{\gamma}$ parameter because the observables we choose are sensitive to the enhancement in longitudinal polarization.

We hope:

- Combine the μ^+ and μ^- subchannels.
- Utilize more technical analysis method: consider the joint distribution of $\Delta \phi_{ej}$ and W boson polarization.
- Complementary studies with different electron beam polarizations.

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト