
2018
edition

Supervisers: Eric Chabert,
Eric Conte

Computing session 4

Simulation of a simple tracker based on the Geant4 package

Abstract:
This computing session is dedicated to detector simulation using the Geant4 package. The
aim of this session is to explain and to illustrate the main principles of Geant4 simulation.
The physics context is adapted from the Geant4 example B2: a tracker made up of �ve
gas chambers in the presence of a uniform magnetic �eld. The students will learn to build
progressively a complete application based on Geant4 which must describe the setup. Then
ingoing particles will be generated and the detector response must be analyzed.

Pedagogical goals:

Geant4 package
• Describing the geometry of a detector.

• Choosing properly the physics reference list.

• Simulating the response of a detector.

• Generating events and analyzing the simulation results.

• Respecting the programming conventions of theGeant4 col-
laborations.

• Handling the user interactive console and the visualization.

• Using the o�cial Geant4 guides available on the website.

Compiling/linking • Accessing information related to the Geant4 installation.

• Con�guring a Make�le for using the Geant4 package.

Requirements:

• Inheritance from an abstract class and polymorphism.

• Attending the introduction ESIPAP course about detector simulation.

1 / 31

Contents

I Introduction to the ESIPAP computing sessions 4

1 Foreword 5

2 The ESIPAP framework 6
2.1 Launching the Windows machine . 6
2.2 Accessing the Linux virtual machine . 6
2.3 Setting the environment . 7
2.4 Saving your work on a share disk . 7

II Getting started with Geant4 9

3 First contact with Geant4 10
3.1 Available online documentation . 10
3.2 Programming conventions . 10
3.3 Main program with an instance of G4RunManager 11
3.4 Geant4 con�guration . 12
3.5 Make�le with Geant4 . 13
3.6 Launch the program . 14

4 Structure of a Geant4 application 15
4.1 Downloading the template . 15
4.2 A new main program . 15
4.3 Analyzing the class DetectorConstruction . 17
4.4 Analyzing the class ActionInitialization . 17
4.5 Analyzing the class PrimaryGeneratorAction 17
4.6 Launching the program . 18
4.7 Handling the interactive console . 18

III A simple simulation of a tracker 20

5 Physics context 21

6 Detector construction 22
6.1 Material . 22
6.2 Detector geometry . 23
6.3 Geometry tolerance . 23
6.4 Colour attributes for visualization . 23
6.5 Magnetic �eld . 24

7 Physics speci�cations 25
7.1 Particle sources . 25
7.2 Reference physics list . 25
7.3 Studying few events . 26

2 / 31

8 Detector response 27
8.1 Package to download . 27
8.2 Analyzing the class TrackHit . 27
8.3 Analyzing the class TrackerSD . 27
8.4 Implementing sensitive detectors . 28

9 Analyzing Geant4 output 29
9.1 Implementing user action in UserEventAction class 29
9.2 Implementing user action in UserRunAction class 29
9.3 Adding the user action classes into the Geant4 processing 30
9.4 Accessing output . 30

3 / 31

Part I

Introduction to the ESIPAP computing

sessions

4 / 31

1 Foreword

Computing sessions belong to the educational program of the ESIPAP (European School in
Instrumentation for Particle and Astroparticle Physics). Their goal is to teach the secrets of
C++ programming through practical work in the context of high energy physics. The session
is designed to be pedagogical. It is advised to read this document section-by-section. Indeed,
except the Physics context, each section of the document is a milestone allowing to acquire
computing skills and to validate them. The sections related to C++ programming are ranked
in terms of complexity. In order to facilitate the reading of this document and to measure his
progress, the student must �ll up the dedicated roadmap which includes a check-list and
empty �elds for personal report.

In the document, some graphical tags are used for highlighting some particular points. The list
of tags and their description are given below.

The student is invited to perform a pratical work by
writing a piece of code following some instructions.

Analyzing or interpreting task is requested and the re-
sults must be reported in the roadmap.

Some additional information is provided for exten-
ding the main explanations. It is devoted to curious
students.

A piece of advice is given to help the student in his
task.

5 / 31

2 The ESIPAP framework

The practical works must be performed on devoted machines where all required software are
properly installed. The user will �nd below all the instructions for setting the environment at
each beginning of session.

2.1 Launching the Windows machine

You must choose a computer in the computing room, spot its name and check that no peripheral
is missing (mouse, keyboard, ...). Then boot it and login to the Windows operator system
(supervisors will provide the password access).

2.2 Accessing the Linux virtual machine

The practical sessions will be achieved on a Linux machine for pedagogical motivations. You
must connect a virtual machine. First click on the "Start" button, i.e. the button with the
Windows logo, located on the bottom left of the screen (see Figure 1).

Figure 1: The Windows Start button

According to Figure 2, click on the virtual machine called "ESIPAP_slc6". A password could
be necessary and should be supplied by the supervisors.

Figure 2: The screen showing the available virtual machines

6 / 31

2.3 Setting the environment

To load the work environment, you can issue the command below at the shell prompt.

bash$source /home/esipap/tools/setup.sh

If the system is properly installed, the version of each tool to study should be displayed at the
screen like below. If you have an error, please call the supervisors.

--

ESIPAP environment

--

- GNU g++ version 4.9.1

- ROOT version 6.06/00

- Geant4 version 10.2.0

--

You must work in your local folder. Of course, it is advised to create one folder for each practical
session like: session1, session2, session3 and session4. Do not overwrite or remove �les
that you wrote in a previous session.

2.4 Saving your work on a share disk

Your work will be evaluated from the the piece of code that you wrote. At the end of each
session you must save your production on a share disk. The virtual machine is equipped with
one share disk called "ESIPAP-SHARE" and saved everyday. For accessing this disk, click on
the Linux tab named "places" according to Figure 3 and select the disk "ESIPAP-SHARE".

Figure 3: The Linux tab named "places"

7 / 31

After entering a password, the list of all connected machines in the room is displayed (see
Figure 4). Select the folder corresponding to your machine and put there all you work. Please
organize this folder by creating one folder for each practical session like: session1, session2,
session3 and session4.

Figure 4: List of all available machines in the room

8 / 31

Part II

Getting started with Geant4

9 / 31

3 First contact with Geant4

In this section, the design of an application using the Geant4 package will be discussed. The
requirements will be enumerated and checked. Implementing and running an example program,
very similar to the so-called "hello world!" example, will be the �nal step to reach.

3.1 Available online documentation

All developers of Geant4 applications must use the updated documentation available on the
o�cial website of the package: http://geant4.web.cern.ch and students must to learn to
use it as a tool. The main page of the user documentation enumerates the di�erent kinds of
support provided. This is the summarized list:

• Guide for application developers

• Guide for toolkit developers

• Physics reference manual

• Courses and tutorials

• FAQ: Frequently Asked Questions

• doxygen documentation

• LXR code browser: interactive viewing and searching facility for the Geant4 source
code

In this documents explanations will refer as much as possible to this online documentation.

3.2 Programming conventions

This is a non-exhaustive list of recommendations for Geant4 software developpers. In the
context of the exercise, the students must respect as much as possible these conventions in
their source �les.

• One source �le and one header �le per class. Naming rules: class name + su�x (.cc or
.hh)

• Usually Geant4 class names begin with G4. User classes do not respect this convention.

• Start method names with an upper case letter. Use also upper case characters for following
words. Example: CollisionPoint().

• Start data member names with the character "f". User upper case characters for following
words. Example: fCollisionPoint.

• Do not use single character names, except for loop indices.

• Protect each header �le from multiple inclusion with:

10 / 31

http://geant4.web.cern.ch
http://geant4.web.cern.ch/geant4/support/index.shtml
http://cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/index.html
http://cern.ch/geant4/UserDocumentation/UsersGuides/ForToolkitDeveloper/html/index.html
http://cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf
http://geant4.web.cern.ch/geant4/support/training.shtml
http://geant4.web.cern.ch/geant4/support/faq.shtml
http://www-geant4.kek.jp/Reference/
http://www-geant4.kek.jp/LXR/

#ifndef className_h

#define className_h

...

#endif

• Header �les must not contain any implementation except for class templates and code to
be inlined.

• Limit line length to 120 character positions.

• Geant4 code uses independent-machine types such as G4bool, G4double, G4int, ... All
these types are de�ned in the header �le: G4Types.hh.

• Geant4 code does not use all STL functions. Many of functionnalities have been imple-
mented in the package such as G4string, G4cout, G4cerr, G4Exception ... Nonetheless
std::vector of the STL is recommended.

• When you would like to introduce some data in your code, you must specify the units.
Main units are de�ned in the header �le G4SystemOfUnits.hh. When a value is introdu-
ced, it must be multiplied to the proper unit. Example: size=15*km;. If you would like
to print a value with the good unit, you have to divide the value by the unit. Example:
G4cout � size/nm;.

Headers of all Geant4 basic objects such as units, types, G4string
and G4Exception are gathered in only one header called globals.hh.
Usually it is more convenient to include the header globals.hh in your
source �le instead of several speci�c headers.

• Read carefully this extract of Geant4 policy for develo-
pers. Your code must respect as much as possible these
rules.

3.3 Main program with an instance of G4RunManager

The main program will be contained in a source �le called main.cc. A simple example re-
specting fully the Geant4 programming rules is presented here. It displays at the screen the
message "Hello World!" and the size of the Ei�el tower.

1 // Geant4 headers

2 #include "G4RunManager.hh"

3 #include "globals.hh"

4 #include "G4SystemOfUnits.hh"

5

6 // Main program

7 int main(int argc , char** argv)

8 {

11 / 31

http://www-geant4.kek.jp/Reference/10.00/G4Types_8hh.html
http://www-geant4.kek.jp/Reference/10.00/G4SystemOfUnits_8hh_source.html

9 // Construct the default run manager

10 G4RunManager* runManager = new G4RunManager;

11

12 // Display messages at screen with Geant4 streamers

13 G4cerr << "ERROR: hello world!" << G4endl;

14 G4double length = 324 * m;

15 G4cout << "INFO: Eiffel tower length = "

16 << length/m << " m" << G4endl;

17

18 // Free the memory

19 delete runManager;

20

21 // Normal program termination

22 return 0;

23 }

Listing 1: Hello World! with Geant4

In this main program, a object of type G4RunManager is created. This class is the main core
class of Geant4 and manages all operations. During this creation, a header mentionning the
release version of the package is automatically printed at the screen.

• Recopy this example in a new �le called main.cc in your
working folder

3.4 Geant4 con�guration

Before working with Geant4, we will interest in its con�guration and its installation on your
machine. For Linux/Unix system, a lot of information can be obtained with program geant4-
config. For launching this program and obtaining some help about its use, the user has to
issue the following command line in the prompt shell:

bash$geant4 -config --help

at any place of the disk (thank to the setup script). Among all the possible commands, the
user can focus on these several points:

• accessing the Geant4 version:

bash$geant4 -config --version

• options to supply to the compiler for building a C++ program with Geant4:

bash$geant4 -config --cflags

• options to supply to the linker for building a C++ program with Geant4:

bash$geant4 -config --libs

12 / 31

• check that all physics datasets are installed:

bash$geant4 -config --check -datasets

• check that the openGL driver for visualization is enable:

bash$geant4 -config --has -feature opengl -x11

• Type and execute the above command lines using geant-
config.

• Check you do not see any issues ou inconsistencies in the
con�guration

3.5 Make�le with Geant4

1 CC=g++

2 CFLAGS=$(shell geant4 -config --cflags)

3 LDFLAGS=$(shell geant4 -config --libs)

4 SRCS = $(wildcard *.cc)

5 HDRS = $(wildcard *.hh)

6 OBJS = $(SRCS:.cc=.o)

7 EXEC=myprog

8

9 all: $(EXEC)

10

11 $(EXEC): $(OBJS)

12 $(CC) $(LDFLAGS) $(OBJS) -o $@

13

14 %.o: %.cc $(HDRS)

15 $(CC) $(CFLAGS) -c $< -o $@

16

17 print:

18 @echo "CFLAGS = " $(CFLAGS)

19 @echo "LDFLAGS = " $(LDFLAGS)

20 @echo "SRCS = " $(SRCS)

21 @echo "HDRS = " $(HDRS)

22 @echo "OBJS = " $(OBJS)

23 @echo "EXEC = " $(EXEC)

24

25 clean:

26 rm -f $(OBJS) $(EXEC)

Listing 2: Just a test

To compile the source �les with this Make�le, just issue at the prompt:

bash$make

13 / 31

• Recopy this make�le.

• Compile your program main.cc.

To remove all objects produced during the compilation, the user can
type:

bash$make clean

In the same spirit, it is possible to print at the screen the value of the
Make�le internal variables by issuing:

bash$make print

3.6 Launch the program

The command line for launching the program is:

bash$./ myprog

• Execute the program and see if the program runs properly.

• Normally the header of Geant4 should appear at the
screen. Check that the release number is consistent with
the one given by geant4-config

14 / 31

4 Structure of a Geant4 application

We focus now on the structure of an application based on the Geant4 package. The minimal
structure will be provided and the students are invited to analyze it and to use it.

4.1 Downloading the template

The minimal structure of a Geant4 application is made up of several source �les. A template
of this �le is given as a starting point of the study. First the user can download and untar a
tarball containing these source �les by typing at the prompt shell:

bash$ cp ~econte/public/ESIPAP/TP4/G4Template.tgz ./

bash$ tar xvzf G4Template.tgz

In the same way, the students must download and untar con�guration �les required for the
Geant4 visualisation. The instructions are very similar:

bash$ cp ~econte/public/ESIPAP/TP4/VisuConfigFiles.tgz ./

bash$ tar xvzf VisuConfigFiles.tgz

• Execute the instructions in order to have the �les required
for the following.

4.2 A new main program

We present here a new main program which will replace the one introduced previously.

1 // Geant4 headers

2 #include "G4RunManager.hh"

3 #include "G4UImanager.hh"

4 #include "G4VisExecutive.hh"

5 #include "G4UIExecutive.hh"

6 #include "QGSP_BERT.hh"

7 #include "Randomize.hh"

8

9 // User headers

10 #include "DetectorConstruction.hh"

11 #include "ActionInitialization.hh"

12

13

14 // Main program

15 int main(int argc ,char** argv)

16 {

17 // Choose the Random engine

18 G4Random :: setTheEngine(new CLHEP :: RanecuEngine);

19

20 // Construct the default run manager

21 G4RunManager * runManager = new G4RunManager;

15 / 31

22

23 // Set mandatory initialization: detector construction

24 runManager ->SetUserInitialization(new DetectorConstruction ());

25

26 // Set mandatory initialization: physics

27 G4VModularPhysicsList* physicsList = new QGSP_BERT;

28 runManager ->SetUserInitialization(physicsList);

29

30 // Set mandatory initialization: action

31 runManager ->SetUserInitialization(new ActionInitialization ());

32

33 // Initialize G4 kernel

34 runManager ->Initialize ();

35

36 // Initialize visualization

37 G4VisManager* visManager = new G4VisExecutive;

38 visManager ->Initialize ();

39

40 // Get the pointer to the user Interface manager

41 G4UImanager* UImanager = G4UImanager :: GetUIpointer ();

42 UImanager ->ApplyCommand("/control/execute init_vis.mac");

43

44 // interactive mode

45 G4UIExecutive* ui = new G4UIExecutive(argc , argv , "tcsh");

46 ui ->SessionStart ();

47

48 // Free the memory

49 delete ui;

50 delete visManager;

51 delete runManager;

52

53 // Normal program termination

54 return 0;

55 }

Listing 3: a complete Geant4 main program

This source �le needs some explanations:

• Line 18: a random generator is initialized. It will be used for generating random values.

• Before initializing the only instance of G4RunManager, three mandatory inputs are requi-
red:

� a detector geometry describing by the class DetectorConstruction at Line 24. The
related header is included at Line 10.

� a physics reference list at Lines 27-28.

� actions (such as generating particles) describing by the class ActionInitialization
at Line 31. The related header is included at Line 11.

16 / 31

• Line 34: Initializing the only instance of G4RunManager.

• Creating a graphical view at Line 38 and initializing it at Line 42 with the con�guration
�le called init_vis.mac.

• Lines 45-46: Creating an user interactive console.

More details can be found here.

• Recopy this code and put it in the �le main.cc.

• Check that the project compile properly.

4.3 Analyzing the class DetectorConstruction

We would like to analyze the class DetectorConstruction described in the �le
DetectorConstruction.cc and DetectorConstruction.hh.

• From which base class this class is derived?

• Is the base class is abstract? If yes, which methods must
be absolutely de�ned in the derived class?

• Draw the UML diagram corresponding to the studied class
by specifying also the methods and data members inheri-
ted.

• With the help of yourGeant4 courses, explain the content
of the method construct.

4.4 Analyzing the class ActionInitialization

We would like to analyze the class ActionInitialization described in the �le
ActionInitialization.cc and ActionInitialization.hh.

• From which base class this class is derived?

• Is the base class is abstract? If yes, which methods must
be absolutely de�ned in the derived class?

• Draw the UML diagram corresponding to the studied class
by specifying also the methods and data members inheri-
ted.

4.5 Analyzing the class PrimaryGeneratorAction

We would like to analyze the class PrimaryGeneratorAction described in the �le
PrimaryGeneratorAction.cc and PrimaryGeneratorAction.hh.

17 / 31

http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch02.html

• From which base class this class is derived?

• Is the base class is abstract? If yes, which methods must
be absolutely de�ned in the derived class?

• Draw the UML diagram corresponding to the studied class
by specifying also the methods and data members inheri-
ted.

• With the help of yourGeant4 courses, explain the content
of the construct of the class PrimaryGeneratorAction.

4.6 Launching the program

The command line for launching the program is:

1 bash$./prog

If the program runs properly, an initialization sequence is launched. At the end of the sequence,
a user console with a prompt Idle> is opened and a OpenGL viewer is created, displaying the
detector geometry.

• Execute the program and see if the program runs properly.

4.7 Handling the interactive console

The interactive console allows the user to change inline the Geant4 con�guration, to change
the visualization settings and to launch Geant4 processing. The syntax of the commands is
very simple.

• Some short instructions allow to do special actions. The most important one are: quit
for exiting the program and help for opening the inline help menu.

• The di�erent options or actions of Geant4 are represented as executable �les sorted in
folder tree. To set an option, you have the possibility to execute the command from the
root. Example: /run/verbose 3.

• For displaying the current value of an option, the command must be preceded by the '?'
character. For instance: ?/run/verbose.

• It is possible to browser the folder tree by command ls and cd.

• The tab completion is very useful!

Here we would like to describe some useful commands related to the OpenGl viewer:

18 / 31

• camera rotation: /vis/view/set/viewpointThetaPhi
example: /vis/viewer/set/viewpointThetaPhi 0. 0.

example: /vis/viewer/set/viewpointThetaPhi 90. 180.

• zoom: /vis/viewer
example: /vis/viewer/zoom 1.4

• add/change axes: /vis/viewer/add/axes
example: /vis/viewer/add/axes 0 0 0 0.5 m

for 0.5m-length axis centered in (0,0,0)

• refresh the view: /vis/viewer/refresh

Finally the following command allows to launch one run of n events:

/run/beamOn 10

• Pratice the interactive console, especially learn to use the
commands handling the OpenGL viewer.

All the commands you type can be gathered in a script �le (called for
instance myscript.mac). To execute the script from the console just
issue: /control/execute myscript.mac

The default con�guration for the OpenGL viewer is loaded with the �le
vis_gui.mac. It is possible to tune this �le.

19 / 31

Part III

A simple simulation of a tracker

20 / 31

5 Physics context

The physics context is adapted from the example B2 of the Geant4 package. The application
to design must simulate a simpli�ed �xed target experiment. The setup consists of a target
in lead followed by �ve chambers of increasing transverse size at de�ned instances from the
target. These chambers have a cylindrical shape and are �lled by xenon. They are located
in a air-�lled region called the tracker region. In addition, a global, uniform, and transverse
magnetic �eld is applied: (0.2T,0,0). The position and the size of the di�erent item are shown
in the �gure below.

y

z

800 800 800 800800800

y

x

50
50
480
1560
2640
3720
4800

200

Figure 5: Layout of the experimental setup [size in millimeter]

The particle's type and the physic processes are set in the FTFP_BERT physics list. This
physics list requires data �les for electromagnetic and hadronic processes, i.e. the datasets
G4LEDATA, G4LEVELGAMMADATA and G4SAIDXSDATA are mandatory.

The primary kinematics consists of a single particle which hits the target perpendicular to the
entrance face. Several particle kind must be investigated: electron, proton and pions. The
energy of these particles will be �xed to the value of 3 GeV.

Each chamber will be considered as a sensitive detector and particle hits in its matter will be
collecd. Histograms will be achieved in order to display some distributions or to compute some
e�ciencies.

21 / 31

6 Detector construction

The design of the application is based on the structure introduced in the previous section. We
work �rst on the detector geometry, so on the code on the �les DetectorConstruction.cc and
DetectorConstruction.hh.

6.1 Material

According to the physics topics, three types of material must be implemented: Air, Pb and Xe.
There are several to de�ne this matter ; we will investigate two of them:

• First Method: it is possible to de�ne Pb and Xe elements by specifying their Z, their
A and their density. For the air, we consider a mixture of O and N elements (30%-70%)
with a density of 1.290 mg/cm3. More details and explanations could be found here and
here.

Element Z A density
Pb 82 207.22 g/mole 11.350 g/cm3

Xe 54 131.29 g/mole 5.485 mg/cm3

N 7 14.01 g/mole
O 8 16.00 g/mole

• Second Method: use the Geant4 material database based on the NIST (National In-
stitute of Standards and Technology) work. A NIST manager must be implemented. List
of pure materials and list of compounds can be found here in the Geant4 documentation
appendices.

The material must be de�ned at the beginning of the function Construct. To print the descrip-
tion of a G4Material or a G4Element, it is possible to use the traditionnal Geant4 streamer:

G4Material *air = [...]

G4cout << *air << G4endl;

• Implement the three materials according to both methods.

• Test and compare the implementations by printing them
at screen.

The list of the material de�ned in your application can be displayed by
only one command line:

1 G4cout << *(G4Material :: GetMaterialTable ())

2 << G4endl;

22 / 31

http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch02s03.html#sect.HowToSpecMate.DefSimpleMate
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch02s03.html#sect.HowToSpecMate.DefMixtureByFractionalMass
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/apas08.html

6.2 Detector geometry

• Implement in the function Construct the geometry shown
in the physics context.

• Check there is no overlaps between the di�erent item

6.3 Geometry tolerance

The tolerance value de�ning the accuracy of tracking on the surfaces is by default set to a
reasonably small value of 0.001 nm. Such accuracy may be too abusive for simulations of big
detectors. That's why it is possible to specify the surface tolerance to be relative to the extent
of the world volume de�ned for containing the geometry setup.

To compute in this way and display the geometry tolerance, the piece of code below must
be implemented. It is assumed that the size of the item world is contained in the variable
worldLength. Becareful: the implementation must be done before all volume de�-
nition and must be done only one time.

1 G4GeometryManager :: GetInstance ()

2 ->SetWorldMaximumExtent(worldLength);

3 G4cout << "Computed tolerance = "

4 << G4GeometryTolerance :: GetInstance ()

5 ->GetSurfaceTolerance ()/nm

6 << " nm" << G4endl;

• Set a geometry tolerance adapted to the application geo-
metry.

6.4 Colour attributes for visualization

From the OpenGL view, all the detector items appear in white colour. It is possible to assign
colours to each item in order to highlight it. In Geant4 the colour is described by a class
called G4Colour. The list of colours and the way to design new ones could be found here.

The colour assignment can be done after the implementation of the detector logical volume.
The following lines allow to set in white colour the shape of the item world.

G4VisAttributes* worldAtt= new G4VisAttributes(G4Colour(1.0,1.0,1.0));

worldLV ->SetVisAttributes(worldAtt);

Of course corresponding headers need to be included at the beginning of the source �le.

#include "G4VisAttributes.hh"

#include "G4Colour.hh"

23 / 31

http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08s06.html#sect.VisAtt.Colr

• Assign a di�erent colour for each component of the setup:
world, tracker and chamber

6.5 Magnetic �eld

The way to introduce a uniform magnetic �eld is discussed here. First the following lines allow
to include the required header �les:

1 #include "G4UniformMagField.hh"

2 #include "G4TransportationManager.hh"

3 #include "G4FieldManager.hh"

The magnetic �eld is described by the class G4UniformMagfield. An instance of this class can
be declared at any place of the function Construct by the following line:

1 G4UniformMagField* magField = new G4UniformMagField(

2 G4ThreeVector (0.2* tesla ,0. ,0.));

To take into account the magnetic �eld in the tracking step, the following piece of code must
be implemented:

1 G4FieldManager* fieldMgr =

2 G4TransportationManager :: GetTransportationManager ()

3 ->GetFieldManager ();

4 fieldMgr ->SetDetectorField(magField);

5 fieldMgr ->CreateChordFinder(magField);

More details can be found here.

• Implement the magnetic �eld in the construct method.

24 / 31

http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch04s03.html#sect.EMField.Pract

7 Physics speci�cations

Concerning the physics input, a generator of particles must be initialized and a the physics
modeling the particle interaction must be precised. Both topics will be treated in this section.

7.1 Particle sources

We would like to generate only one particle an event. A particle gun generator (described by
the class G4ParticleGun) is the best generator for this goal. The particle must be generated
from the interface between the tracker and the target, centered in the transverse plane. The
direction is along the z-axis.

Concerning the particle identi�cation, the default identi�cation should be a proton. We would
like to specify the particle identi�cation as an argument of the executable program prog. The
argument will be a string whose the allowed values are "e+", "e-", "proton", "antiproton",
"pi+" or "pi-". Launching the program with a "e+" con�guration should require to execute
the following instruction:

bash$./prog e+

• Adapt the piece of code in the source �le
PrimaryGeneratorAction.cc.

• Adapt the piece of code in the source �le
PrimaryGeneratorAction.cc for implementing the requested
particle sources.

• Implement a mutator function of the class
PrimaryGeneratorAction with the following prototype
void SetParticleId(G4string name) for changing the
particle identi�cation of the particle gun generator.

• Retrieve the particle identi�cation by reading the argu-
ments of the main program (if arguments are supplied) and
propagate this setting to the class PrimaryGeneratorAction.

7.2 Reference physics list

The particle interactions are described in a physics list which is highly dependent on the use
case. Geant4 provides several reference physics lists which are routinely validated and upda-
ted with each release. Their de�nition can be found here and their application here.

For the targeted application, the list called FTFP_BERT is suggested.

25 / 31

https://geant4.web.cern.ch/geant4/support/proc_mod_catalog/physics_lists/referencePL.shtml
https://geant4.web.cern.ch/geant4/support/proc_mod_catalog/physics_lists/useCases.shtml

• Looking through the documentation, explain in few words
the content of the physics list FTFP_BERT

• Motivate the choice of the physics list.

• In the main.cc program, the physics list used in the
G4RunManager initialization is not the correct one.
Adapt the code in order to take into account the FTFP_BERT

list

7.3 Studying few events

• Compile and execute the program with di�erent generated
particles: e-, e+, pi+, pi-, proton and antiproton.

• For each con�guration, generate an event and save the
graphical view in the longitudinal plane

• Describe that you observe in the graphical view.

• Compare the views obtained with the di�erent con�gura-
tions.

26 / 31

8 Detector response

Implementing the response of the detector is performed in two step. First it is necessary to
de�ne the sensitive volumes and to describe the "measurement". The second step consists in
de�ning the "measures". In the case of a tracker apparatus, the "measures" take the form of a
collection of hits. Unfortunately, due to a lack to time, the students will not learn to program
by themselves these two steps ; the required C++ classes will be provided.

8.1 Package to download

An example of source �les required for describing the detector response is supplied. These �les
are gathered into a tarball which can be downloaded and uncompressed:

bash$ cp ~econte/public/ESIPAP/TP4/G4Hit.tgz ./

bash$ tar xvzf G4Hit.tgz

8.2 Analyzing the class TrackHit

In Geant4 a hit is a snapshot of the physical interaction of a track (or an accumulation of
interactions of tracks) in the sensitive region of the detector. The user must implement himself
the class describing a hit and must specify the various types information to store (position time,
energy deposit, ...). In the downloaded package, a such class is alreay created: TrackerHit

implemented in the �les TrackerHit.cc and TrackerHit.hh.

• From which base class this class is derived?

• Is the base class is abstract? If yes, which methods must
be absolutely de�ned in the derived class?

• Draw the UML diagram corresponding to the studied class
by specifying also the methods and data members inheri-
ted.

• Try to explain the goals of each method.

8.3 Analyzing the class TrackerSD

A sensitive detector creates hit(s) using the information given from a G4Step object. The user
has to provide his/her own implementation of the detector response. The hits created will be
stored them into a HitsCollection object. In the downloaded package, a such class is already
created: TrackerSD implemented in the �les TrackerSD.cc and TrackerSD.hh.

27 / 31

• From which base class this class is derived?

• Is the base class is abstract? If yes, which methods must
be absolutely de�ned in the derived class?

• Draw the UML diagram corresponding to the studied class
by specifying also the methods and data members inheri-
ted.

• Try to explain the goals of each method.

8.4 Implementing sensitive detectors

It is necessary to assign a TrackerSD object to the interested logical volume. To reach this aim,
the class DetectorConstruction must be modi�ed. First the header �le corresponding to the
class TrackerSD should be included.

1 #include "TrackerSD.hh"

Then an instance of the class TrackerSD should be created after the de�nition of the di�erent
volumes. Becareful: a speci�c name should be precised to the sensitive volume and to the hit
collection produced. These names will be used in the following. The line below is an example
of a such de�nition:

1 TrackerSD* trackerSD =

2 new TrackerSD("TrackerSD","TrackerHitsCollection");

The assignment of TrackerSD object to a logical volume is performed by an inherited method
of the class DetectorConstruction called SetSensitiveDetector. The corresponding line of
code is the following:

1 SetSensitiveDetector("ChambersLV", trackerSD , true);

In this example it is assumed that all interested volumes (the Xenon chambers) have the same
logical volume name "ChambersLV".

• Implement these pieces of code.

• Compile the program and launch it.

• Generate some events and visualize the hits in the OpenGL
view.

28 / 31

9 Analyzing Geant4 output

A this step, the description and the simulation of the experimental setup are achieved. Events
can be generated and collection of hits are produced. Now we have to learn how to analyze
them. To ful�ll this goal, the program structure must be enriched by new classes.

9.1 Implementing user action in UserEventAction class

The �rst class, that we call UserEventAction, must inherit from the Geant4 class
G4UserEventAction. The implementation of this class will be contained in the �les
UserEventAction.cc and UserEventAction.hh. The two relevant virtual functions are
BeginOfEventAction and EndOfEventAction. The �rst function is launched before processing
each event and the second function is launched after processing each event.

• Find the description of the class G4UserEventAction in the
o�cial documentation of Geant4

• Implementing the class UserEventAction which publi-
cly inherits from G4UserEventAction. Only the no-
argument constructor, the destructor, BeginOfEventAction
and EndOfEventAction must be implemented. The content
of these functions will remain empty for the moment.

• Perform a preliminary check by just compiling the pro-
gram.

9.2 Implementing user action in UserRunAction class

The �rst class, that we call UserRunAction, must inherit from the Geant4 class
G4UserRunAction. The implementation of this class will be contained in the �les
UserRunAction.cc and UserRunAction.hh. The two relevant virtual functions are
BeginOfRunAction and EndOfRunAction. The �rst function is launched before processing each
run and the second function is launched after processing each run.

• Find the description of the class G4UserRunAction in the
o�cial documentation of Geant4

• Implementing the class UserRunAction which publi-
cly inherits from G4UserRunAction. Only the no-
argument constructor, the destructor, BeginOfRunAction

and EndOfRunAction must be implemented. The content
of these functions will remain empty for the moment.

• Perform a preliminary check by just compiling the pro-
gram.

29 / 31

9.3 Adding the user action classes into the Geant4 processing

Instances of the new classes UserEventAction and UserRunAction must be added in
the class PrimaryGeneratorAction. After including the proper header �les, the functions
BuildForMaster and Build must be modi�ed in that way:

1 void ActionInitialization :: BuildForMaster () const

2 {

3 SetUserAction(new RunAction);

4 }

5

6 void ActionInitialization ::Build () const

7 {

8 SetUserAction(new PrimaryGeneratorAction);

9 SetUserAction(new RunAction);

10 SetUserAction(new EventAction);

11 }

• Do the changes above in the ActionInitialization imple-
mentation

• Compile and execute the program. No change in the
Geant4 behaviour is expected.

• Adding some printed messages in functions
BeginOfRunAction, EndOfRunAction, BeginOfEventAction

and EndOfEventAction. Compile and execute the program.
Launch a run of several events and see your messages
appear on the screen. Check in which order they appear.

9.4 Accessing output

We would like to read through the collection of hits produced at the end of each events. There-
fore the corresponding piece of code must be implemented in the function EndOfEventAction

of the class UserEventAction.

Preliminary, it is necessary to include the headers at the beginning of the source �le UserEventAction.cc.

1 #include "G4HCofThisEvent.hh"

2 #include "G4SDManager.hh"

3 #include "TrackerHit.hh"

In the function EndOfEventAction, you need to get the identi�cation number corresponding
to the collection you would like to retrieve. Becareful to the name of hits collection! Getting
an identi�cation integer to the collection:

1 G4SDManager* sdManager = G4SDManager :: GetSDMpointer ();

2 G4int collId = sdManager ->

30 / 31

3 GetCollectionID("TrackerSD/TrackerHitsCollection");

Getting a pointer to the list of collections produced during the event can performed by a method
of the class G4Event called GetHCofThisEvent(). The following piece of code shows how to
access it.

1 G4HCofThisEvent* hce = event ->GetHCofThisEvent ();

2 if (hce ==0)

3 {

4 G4cerr << "No Hit collections are found" << G4endl;

5 return;

6 }

Getting a pointer to the collection of hits can be performed in the following way:

1 TrackerHitsCollection* hc = static_cast <TrackerHitsCollection*>

2 (hce ->GetHC(collId));

Browsing through the hits collection and accessing the hits data are illustrating by the following
piece of code.

1 for (G4int i=0;i<hc->entries ();i++)

2 {

3 TrackerHit* hit = (*hc)[i];

4 G4ThreeVector position = hit ->GetPos ();

5 G4cout << position << G4endl;

6 }

• For each event, print on the screen the number of hits
collected.

• For each event and for each chamber, print the position of
the �rst hit inside the given chamber and also the energy
deposit.

31 / 31

	I Introduction to the ESIPAP computing sessions
	Foreword
	The ESIPAP framework
	Launching the Windows machine
	Accessing the Linux virtual machine
	Setting the environment
	Saving your work on a share disk

	II Getting started with Geant4
	First contact with Geant4
	Available online documentation
	Programming conventions
	Main program with an instance of G4RunManager
	Geant4 configuration
	Makefile with Geant4
	Launch the program

	Structure of a Geant4 application
	Downloading the template
	A new main program
	Analyzing the class DetectorConstruction
	Analyzing the class ActionInitialization
	Analyzing the class PrimaryGeneratorAction
	Launching the program
	Handling the interactive console

	III A simple simulation of a tracker
	Physics context
	Detector construction
	Material
	Detector geometry
	Geometry tolerance
	Colour attributes for visualization
	Magnetic field

	Physics specifications
	Particle sources
	Reference physics list
	Studying few events

	Detector response
	Package to download
	Analyzing the class TrackHit
	Analyzing the class TrackerSD
	Implementing sensitive detectors

	Analyzing Geant4 output
	Implementing user action in UserEventAction class
	Implementing user action in UserRunAction class
	Adding the user action classes into the Geant4 processing
	Accessing output

