

Observational facts in cosmology

Galaxy distribution

- the universe is expanding
- small structures form first and combine to form larger ones

-5

Supernovae type la

- currently expansion is accelerated: dark energy

• Cosmic Microwave Background (CMB)

- the universe is isotropic and homogeneous
- universe fully thermalized
- density fluctuations of the order of 10

• Abundance of light elements

- Light elements form first from nucleosynthesis
- Dynamics of galaxies and of cluster of galaxies

- Evidence for extra matter component: dark matter and/or modified gravity theory

Brief history of the univers

Observing the sky

Observing the « CMB » sky

CMB experiments

	Radio	mm
Telescopes	dish and horns	dish and horns
Detectors	HEMT + square law detectors	bolometer and/or KIDs
Cooling	18-50 K	100-300 mK
Observing mode	Ground, satellite	ground, balloon, satellite

CMB intensity and polarisation power spectra : the quest for B-modes

directly related to inflation energy scale

CMB intensity and polarisation power spectra : the quest for B-modes

Current results are limited by foreground contamination, r<0.07 @ 95 % C.L. [BICEP, KECK & Planck]

Antenna coupled TES detectors

COUPLING TO BOLOMETER

KIDs in a nutshell

Superconducting Microwave Resonators coupled to a feed line

OUT

Resonance frequency changes with received power

« Some » current (planned) CMB experiments

Project	Country	Location	Status	Frequencies	ℓ range		$\sigma(r)$ goal	
				(GHz)	value	Ref.	no fg.	with fg.
QUBIC	France	Argentina		150,220	30-200		0.006	0.01
Bicep3/Keck	U.S.A.	Antartica	Running	95, 150, 220 ¹	50-250	[<mark>22</mark>]	$2.5 \ 10^{-3}$	0.013
CLASS	U.S.A.	Atacama	≥ 2016	38, 93, 148, 217	2-100	[<mark>29</mark>]	1.4 10 ⁻³	0.003
SPT3G	U.S.A.	Antartica	2017	95, 148, 223	50-3000	[<mark>23</mark>]	1.7 10 ⁻³	0.005
AdvACT	U.S.A.	Atacama	Starting	90, 150, 230	60-3000	[<mark>24</mark>]	1.3 10 ⁻³	0.004
Simons Array	U.S.A.	Atacama	≥ 2017	90, 150, 220	30-3000	[<mark>25</mark>]	1.6 10 ⁻³	0.005
LSPE	Italy	Artic	2017	43, 90, 140, 220, 245	3-150	[<mark>30</mark>]	0.03*	
EBEX10K	U.S.A.	Antartica	≥ 2017	150, 220, 280, 350	20-2000	[<mark>28</mark>]	2.7 10 ⁻³	0.007
SPIDER	U.S.A.	Antartica	Running	90, 150	20-500	[<mark>26</mark>]	3.1 10 ⁻³	0.012
PIPER	U.S.A.	Multiple	≥ 2016	200, 270, 350, 600	2-300	[<mark>27</mark>]	3.8 10 ⁻³	0.008

+ proposed satellites : LITEBIRD (2027), CORE (2035?),

+ ground S4 (2030 ?)

Q&U Bolometric Interferometer for Cosmology

QUBIC design and expected performance

- Dual band TES bolometer interferometer
- Cold continuosly rotating Half-wave-plate
- Designed for deeo control of systematics
- To be installed in Alto Chorrillos, Argentina
- First module tests expected in 2018
- Operations 2019-2021
- International collaboration : APC, LAL, ...

Frequency channels	150 and 220 GHz
Bandwidth	25%
Number of horns (interferometric elements)	400
Primary beam FWHM at 150 GHz	12.9 degrees
Primary beam FWHM at 220 GHz	15 degrees (not gaussian)
Number of detectors	2x1024

LITEBIRD satellite

LITEBIRD design and expected performance

LiteBIRD Band Sensitivity CO J43 Noise Equivalent Temperature [K_{CMB} $\sqrt{
m sec}$] LFT \mathbf{HFT} 10^{-5} CMB 10100 40400Frequency [GHz]

- Multi-band instrument, 15 frequency bands from 40 to 400 GHz
- Two independent telescopes : LFT (40-135 GHz ; 12 bands) and HFT (250-400 GHz, 3 bands)
- Resolution 20' to 70'
- Cold continuosly rotating Half-wave-plate
- 2622 TES cooled down @ 0.1
- 2 years of operation
- Launch expected for 2026-2027
- Japanese USA collaboration, european (french) contribution is under study

LITEBIRD design and expected performance

10⁻³ sensitivity in r in 2 years of operation, good foreground removal, problems with delensing

Sunyaev-Zeldovich effect

- tSZ = CMB spectral distortion from interaction with clusters' hot electrons
- kSZ = CMB Doppler shift from bulk motion of electrons (typically ~ tSZ/10)

NIKA2: a millimeter camera

for cluster cosmology

NIKA2

The NIKA2 camera

Dual band mm KID camera operating and 150 and 260 GHz

IRAM 30-m telescope at Pico Veleta (Spain)

Specific optical system to obtain the largest FOV

Dilution cryostat: 180 mK nominal

Arrays of 1140 (616) KIDs: 8 (4) independent feedlines with up to 200 KID each

20 boxes (one per feedline) arranged in 3 crates (one per array)

NIKA2

The NIKA2 camera

- September 2015 : installation at IRAM
- October 2015 : First lights
- September 2016 : complete instrumental setup
- April 2017 : commissioning succesfully finished ; performance better than expected
- Open to for public observations for at least one decade from now

Frequency	150 GHz	260 GHz		
# KIDs	616 (553)	2 x 1140 (960)		
FOV diameter	6.5 arcmin	6.5 arcmin		
Sensitivity	9 mJy/s	33 mJy/s		
Angular res.	17.7 arcsec	11.2 arcsec		

[NIKA collaboration, A&A, 2017,arXv:]

NIKA2 is well adapted for SZ observations of intermediate and high redshift

- Two frequency bands, negative & zero tSZ signal
- Large FOV : size of PLANCK beam
- High resolution : 17 times better than Planck

NIKA2 SZ Large program

One of the 5 NIKA2 LP (1300h in total)

- > 300 hours of tSZ observation
- > 50 high redshift clusters 0.5 < z < 1.0
- > tSZ selected clusters from Planck and

Ancidery catalogues

- X-ray follow-up with XMM
- > Optical data using GranTeCan
- MUSIC hydrodynamic simulations

Main goals

- In-depth study of ICM
- Thermodynamic properties: pressure, density, temperature and entropy profiles
- Mass tSZ flux relationship

Redshift evolution of:

- > Thermodynamic quantities profiles
- Scaling laws and hydrostatic bias

Variation of cluster properties with:

- Dynamical state (mergers)
- Morphology (ellipticity)

PSZ2 G144

- Planck tSZ detected cluster at redshift, z = 0.58, high mass M = 7.8 x 10 M_{\odot}
- 11h observations with NIKA1 in poor weather conditions (atmospheric opacity 0.3@225 GHz)
 Aluse the served of a Muster of Palasers X many XMM (Ruppin et al. 2018)

14

• Already observed: SZ – Mustang & Bolocam, X-rays - XMM

Very promising results, detailed analysis on going

Kid Imager-Spectrometer Survey

Grenoble (Institut Néel, LPSC, & IPAG), Tenerife (IAC) & Roma (La Sapienza) collaboration

KISS Scientific motivation and concept

- Use low resolution spectroscopy to separate different components in the millimeter emission of clusters
- Map low redshift clusters physical properties from their SZ spectral distorsions : pressure (tSZ), temperature (RtSZ), LOS velocity (kSZ)

• **KISS** : Low-resolution ($\Delta v = 1-3$ GHz) Martin-Puplett interferometer spectrometer coupled to a KID based camera (100-300 GHz) mounted at the QUIJOTE telescope (2.25 m diameter) in Teide observatory (Tenerife)

KISS Instrument design and status

- Telescope ready for operations early 2018
- MPI has been built, currently under test at Grenoble labs
- NIKA camera has been adapted for KISS optical design
- Large frequency band (80-300 GHz) 500 KID arrays has been constructed
- Readout electronic ready for use

Dilution Cryostat 3He-4He (100 mK)

Frequency Multiplexing Read-Out Electronics : NIKEL

KISS Specifications and observation strategy

Telescope diameter [m]	2.5		
Resolution [arcmin]	from 5 to 1.7		
FOV [degrees]	1		
Number of detectors	600		
Frequency range [GHz]	80 - 280		
Number of frequency bins	up to 200		
Spectral resolution [GHz]	1-10		
Modulation [Hz]	1-10		
NEP [W /Hz ^{1/2}] BLIP	4.35 10 ⁻¹⁶		
NEFD [mJy/Hz ^{1/2}] BLIP	68		
NEFD per frequency bin [Jy/Hz ^{1/2}] BLIP	1.44		

- Astrophysical targets :
 - Low redshift clusters from Planck tSZ catalogue
 - Planet and bright radio sources for spectral calibration
- Atmospheric emission correction :
 - 5 interferograms per second to avoid atmospheric variations
 - Hardware instantaneous subtraction of atmospheric background
 - Filter out atmospheric absorption bands

• More work in simulations and data anlaysis is in progress

Part II : LSS OBSERVATIONS

LSS observables

• Lensing : weak & strong

Supernovae type I

Clusters of galaxies

Cerro Pachón – Future site of the LSST

LSST Rendering on El Peñón

Cerro Pachón ridge – view from northwest

Large Synoptic Survey Telescope

First lights 2019 Survey from 2022 to 2

Cerro Pachón, Chili (2715 m d'altitude)

26 septembre 2017

LSST must scan the full visible sky every 3/4 nights during 10 years in 6 frequency bands with high sensitivity

Large = big

Synoptic = view all

Survey = systematic survey

8.4 m diameter telescope to be able to detect faint objects

Large FOV camera with 6 filters from nearby IR to nearby UV, 3 millards of pixels

Une structure mobile de 300 tonnes, ompacte pou

3 milliards de pixels pour observer un large champ de vue, électronique de lecture rapide (2

LSST scientific program

www.lsst.org/lsst/scibook

Solar system objects
Stellar populations
Our galaxy and the local environment
Variable sky objects
galaxies
Actifs galaxies
Supernovae
Strong lensing
Weak lensing
Galaxy clustering
Clusters of galaxies
osmologie

IN2P3 labs are fully involved in cosmological studies

Mesure the position of milliards of galaxies

To use galaxies for cosmology we need to measure their redshift

Accurate photometry in 6 bands = very low resolution spectroscopy

Need to estimate redshift for 3-4 milliards for galaxies up to z=2-3

Although photometric redshift uncertainties smear out the distribution, the large statistic allows us to use galaxies for cosmology

EUCLID

The EUCLID instrument

The Visible imager (VIS) 36 E2V CCD, 0,1"PSF 1 broad band R+I+Z (550-900nm)

The Infrared spectro/photometer (NISP) 16 H2Rg infra red pixel detectors,0,3" PSF, 3 IR bands Y,J,H (920-2000 nm) NIR slitless spectroscopy (1100 – 2000 nm) R ~ 350

- M class ESA space mission
- All-sky visible and IR observations in photometry and spectroscopy
- Exposure depth 24 magnitudes
- 2 surveys : shallow (15000 deg²), deep (2 x 20 deg²)
- Consists of 2 channels, and 3 instruments :
 - VIS, optical imager for lensing reconstruction (550-900 nm)
 - NISP, IR photometer (900 2000 nm) and spectrometer (1100- 2000 nm)
- Launch 2020-2021
- 7 years operation
- International collaboration, IN2P3 fully involved

EUCLID cosmological probes

Weak lensing (WL)

- distribution of matter, expansion history, growth rate, tomography
- 3-D cosmic shear measurements 0 < z< 2
- shape and photo-z from optical and NIR data
- 1.5 billion galaxies

Galaxy clustering (GC)

- distribution of matter, expansion history, growth rate, tomography
- 3-D position measurements 0.7 < z< 2
- 3D distribution of galaxies from spectroscopy redshift
- measure position of 50 millions galaxies
 Clusters of galaxies
- measure cluster number counts as a function mass and redshift, power spectrum statistics,
- detection of about 60000 clusters

EUCLID expected performance

	Dark energy			neutrinos	Initial conditions	Modified gravity
Parameter	w _p	w _a	FOM	mv (eV)	F _{NL}	γ
Euclid alone	0,013	0,048	1540	0,027	5,5	0,009
Euclid +Planck	0.007	0.035	4020	0.019	2.0	0.007
Current	0.1	1.5	~10	0.58	100	0.2
Improve factor	>10 TI	>50 he Euclid mis	>400 ssion	30	50	30