
2018
edition

Supervisers: Eric Chabert,
Eric Conte

Computing session 2

C++ model for the electromagnetic barrel calorimeter

of the CMS (Compact Muon Solenoid) detector

Abstract:
This computing session is dedicated to the �rst notions of oriented-object programming. The
physics topic chosen for the exercise is the electromagnetic calorimeter of the CMS experiment.
In a �rst part, the students are invited to program a C++ model of the calorimeter from UML
(Uni�ed Modeling Language) diagrams. The developed code must describe the apparatus
geometry, read data acquired by all cells and correct these data with calibration settings. The
second part of the session consists in equipping the programming project with a make�le-based
compilation and with an automatically generated documentation.

Pedagogical goals:

C++ language • Writing new classes from UML diagrams.

• Instantiating objects from classes and initializing them.

• Reading and adapting an existing piece of code.

• Improving the robutness of the code in order to prevent ab-
normal termination or unexpected actions.

Collaboration work • Respecting a given set of programming rules and conventions.

• Generating automatically the reference documentation rela-
ted to the code with Doxygen.

Compiling/linking • Creating an executable �le from a simple source �le.

• Compiling and linking a project made up of several source
�les: in a manual or automated (Make�le) way.

Requirements:

• Concept of class in C++, including constructors, destructor, mutators, accessors, ...

• Some particular C++ points: I/O access, arrays, pointers/references.

1 / 22

Contents

I Introduction to the ESIPAP computing sessions 3

1 Foreword 4

2 The ESIPAP framework 5
2.1 Launching the Windows machine . 5
2.2 Accessing the Linux virtual machine . 5
2.3 Setting the environment . 6
2.4 Saving your work on a share disk . 6

II C++ model for CMS calorimeters 8

3 Physics context 9
3.1 The CMS detector . 9
3.2 CMS coordinates systems . 9
3.3 The electromagnetic calorimeter of the CMS detector 10
3.4 Layout and mechanics of the barrel calorimeter 10
3.5 Data acquisition by a calorimeter cell . 10

4 Starting point 12
4.1 The main �le main.cpp . 12
4.2 Programming conventions . 12

5 Description of a calorimeter 13
5.1 Speci�cations . 13
5.2 First work to achieve . 14
5.3 Enriching the class CaloCell . 14

6 Description of a supermodule and a barrel 16
6.1 Implementation of caloSupermodule class . 16
6.2 Implementation of caloBarrel class . 17
6.3 First work to achieve . 18
6.4 Enriching the classes . 18

7 Generating documentation from C++ sources 20
7.1 First words about the Doxygen package . 20
7.2 Standard doxygen con�guration �le . 20
7.3 Adding graphics in the reference documentation 21
7.4 Launching Doxygen . 21
7.5 Work to do . 22

2 / 22

Part I

Introduction to the ESIPAP computing

sessions

3 / 22

1 Foreword

Computing sessions belong to the educational program of the ESIPAP (European School in
Instrumentation for Particle and Astroparticle Physics). Their goal is to teach the secrets of
C++ programming through practical work in the context of high energy physics. The session
is designed to be pedagogical. It is advised to read this document section-by-section. Indeed,
except the Physics context, each section of the document is a milestone allowing to acquire
computing skills and to validate them. The sections related to C++ programming are ranked
in terms of complexity. In order to facilitate the reading of this document and to measure his
progress, the student must �ll up the dedicated roadmap which includes a check-list and
empty �elds for personal report.

In the document, some graphical tags are used for highlighting some particular points. The list
of tags and their description are given below.

The student is invited to perform a pratical work by
writing a piece of code following some instructions.

Analyzing or interpreting task is requested and the re-
sults must be reported in the roadmap.

Some additional information is provided for exten-
ding the main explanations. It is devoted to curious
students.

A piece of advice is given to help the student in his
task.

4 / 22

2 The ESIPAP framework

The practical works must be performed on devoted machines where all required software are
properly installed. The user will �nd below all the instructions for setting the environment at
each beginning of session.

2.1 Launching the Windows machine

You must choose a computer in the computing room, spot its name and check that no peripheral
is missing (mouse, keyboard, ...). Then boot it and login to the Windows operator system
(supervisors will provide the password access).

2.2 Accessing the Linux virtual machine

The practical sessions will be achieved on a Linux machine for pedagogical motivations. You
must connect a virtual machine. First click on the "Start" button, i.e. the button with the
Windows logo, located on the bottom left of the screen (see Figure 1).

Figure 1: The Windows Start button

According to Figure 2, click on the virtual machine called "ESIPAP_slc6". A password could
be necessary and should be supplied by the supervisors.

Figure 2: The screen showing the available virtual machines

5 / 22

2.3 Setting the environment

To load the work environment, you can issue the command below at the shell prompt.

bash$source /home/esipap/tools/setup.sh

If the system is properly installed, the version of each tool to study should be displayed at the
screen like below. If you have an error, please call the supervisors.

--

ESIPAP environment

--

- GNU g++ version 4.9.1

- ROOT version 6.06/00

- Geant4 version 10.2.0

--

You must work in your local folder. Of course, it is advised to create one folder for each practical
session like: session1, session2, session3 and session4. Do not overwrite or remove �les
that you wrote in a previous session.

2.4 Saving your work on a share disk

Your work will be evaluated from the the piece of code that you wrote. At the end of each
session you must save your production on a share disk. The virtual machine is equipped with
one share disk called "ESIPAP-SHARE" and saved everyday. For accessing this disk, click on
the Linux tab named "places" according to Figure 3 and select the disk "ESIPAP-SHARE".

Figure 3: The Linux tab named "places"

6 / 22

After entering a password, the list of all connected machines in the room is displayed (see
Figure 4). Select the folder corresponding to your machine and put there all you work. Please
organize this folder by creating one folder for each practical session like: session1, session2,
session3 and session4.

Figure 4: List of all available machines in the room

7 / 22

Part II

C++ model for CMS calorimeters

8 / 22

3 Physics context

3.1 The CMS detector

CMS(Compact Muon Solenoid) is one of the four main detectors build for analyzing particles
produced by proton-proton collisions at the LHC (Large Hadron Collider). The detector is
buried under about 100m at the point 5 of LHC ring. With a weight of 12500 tons, it has
cylinder volume with a diameter of 14.6 m and a length of 21.6 m. The LHC beam cross the
detector in its axis and the collisions occur in its middle. CMS is made up of several detector
components: a silicon tracker equipped with a huge solenoid magnet, electromagnetic
and hadronic calorimeters and �nally ionizing chambers devoted to muon tracking. The
�gure below allows to distinguish the di�erent components.

Figure 5: A perspective view of the CMS detector

The �rst run of data taking has begun since Fall 2008. It is designed to undergo 40 millions
of proton-proton collisions per second. All collisions (we speak later in term of events) are not
interested for the physicists and a trigger system selects in real-time the most relevant one.
The data�ow is reduced to about 300 collisions per second.

3.2 CMS coordinates systems

It is important to remind the cartesian and cylindrical coordinates systems used in the CMS
collaboration. The both coordinate systems has the origin centered at the nominal collision
point inside the experiment.

• cartesian. The y-axis pointing vertically upward, and the x-axis pointing radially
inward toward the center of the LHC. Thus, the z-axis points along the beam direction
toward the Jura mountains from LHC Point 5.

• cylindrical. The azimuthal angle φ is measured from the x-axis in the x-y plane and
the radial coordinate in this plane is denoted by r. The polar angle θ is measured from

9 / 22

the z-axis. Pseudorapidity η = −ln tan θ
2
is usually used instead of θ.

3.3 The electromagnetic calorimeter of the CMS detector

The aim of the electromagnetic calorimeter is to measure the energy of photons and electrons
produced during the collisions. At high energies, electromagnetic particles induce electromag-
netic shower when they interact with the calorimeter material. Loss energy is converted to
light due to scintillating property of the material: lead tungstate (PbWO4) crystals with a
short radiation length X0 = 0.89 cm and a short Moliere radius equal to 2.2 cm. The CMS
electromagnetic calorimeter is hermetic, homogeneous and compact. It covers the full range in
azimuthal angle and the pseudorapidity range |η| < 1.48. The cells have a size of 22×22 mm2

at the front face and a length of 230 mm corresponding with 25.8 X0. The electromagnetic
calorimeter is compound of two di�erent geometries:

• the cylinder part, called barrel, has a radius of 1.29 cm and contains 61,200 cells.

• the two planes at each end of the cylinder (z=-1 m and z=+1 m), called end-cap, contain
together 14,648 cells.

Barrel

E
n
d
-C
ap

E
n
d
-C
ap

z

1.29m

z=-3m z=+3m

Figure 6: Barrel and End-cap part of the calorimeter in the transverse plane of the detector

Only the barrel part of the calorimeter is considered in the following.

3.4 Layout and mechanics of the barrel calorimeter

The cells are gathered in submodules; submodules are gathered in modules ; modules are
gathered in supermodules. For simplifying the exercise, only the last structure is considered.
There are 36 supermodules and one supermodule contains 25 × 68 cells. Their layout in the
η − φ plane is shown by the �gure below.

3.5 Data acquisition by a calorimeter cell

For the sake of completness, the acquisition chain of a calorimeter cell is brie�y discussed.
The scintillator crystals emit blue-green scintillation light which is collected by photodetectors
(Avalanche PhotoDetectors). The signal is shaped by a MGPA (Multi-Gain Pre-Ampli�er) and
digitized by an ADC (Analogic Digital Converter). After an adaptation of the signal, the signal
is sent to a Front-End electronics board which computes some information useful for the �rst
level of trigger. If the trigger is �red, digital data are sent to the DAQ (Data AcQuisition).
The energy resolution can be parametrized as in the equation:(σ

E

)2

=

(
S√
E

)2

+

(
N

E

)2

+ C2

10 / 22

→ phi

eta

+1.48

-1.48

0

360°

+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18

Figure 7: Subdivision of the calorimeter barrel in supermodules

phi

eta

+1.48

0
20°

...

... 68 cells

25 cells

Figure 8: Subdivision of the supermodules in cells

Figure 9: Simpli�ed schematics of the calorimeter cell readout

where S is the stochastic term, N the noise term, and C the constant term. Typical values are
S=2.8%, N=0.12 and C=0.30% for E in GeV.

11 / 22

4 Starting point

4.1 The main �le main.cpp

The C++ project will be made up of one main source �le called main.cpp. A skeleton of a such
�le could be found in Section 3 of Computing Session 1. According to the principles of modular
programming, the classes that the student must develop should be stored in other source �les.
For compiling the project, a proposal is to use a generic Makefile like the one in Section 7.3
of Computing Session 2.

4.2 Programming conventions

This is a non-exhaustive list of recommendations for CMS software developpers. In the context
of the exercise, the students must respect as much as possible these conventions in their source
�les.

• One source �le and one header �le per class. Naming rules: class name + su�x (.cpp or
.h)

• Start method names with lower case. Use upper case initials for following words. Example:
collisionPoint()

• Start data member names with lower case. User upper case initials for following words.
Use "_" character at the end of the name. Example: collisionPoint_

• Do not use single character names, except for loop indices.

• Protect each header �le from multiple inclusion with:

#ifndef className_h

#define className_h

...

#endif

• Header �les must not contain any implementation except for class templates and code to
be inlined.

• Classes must not have public data members.

• Do not use global data.

• Use "0" not "NULL".

• Use C++ casts, not C-style casting.

• Keep the ordering of methods in the header �le and in the source �le identical.

• Limit line length to 120 character positions.

12 / 22

5 Description of a calorimeter

In this section, a class called caloCell, corresponding to the �les called CaloClass.h and
CaloClass.cpp, must be written. This class must describe the status of each cell of the barrel
calorimeter. Therefore 61,200 instances of this class are expected.

5.1 Speci�cations

Here are enumerated the functionalities of the class caloCell.

• The class must contain an identi�cation code corresponding to its relative position in
the supermodule. This can be done by two positive integer called etaPosition_ and
phiPosition_.

• The class must store the raw energy (rawEnergy_) coming directly from the DAQ.

• The class must also store calibration settings:

� o�set: real value to subtract to the raw energy.

� gain: multiplicative value (de�ned as a strictly positive real).

� boolean mask: if the mask is enable, a veto is applied to the cell (describing dead
cell).

• A function called getEnergymust return the corrected energy value following the formula:{
if mask=true → energy* = 0.
if mask=false → energy* = (energy - o�set)× gain

• A function called getResolution must return the resolution value expected for the cur-
rent corrected energy value. The formula is given in section "Physics context".

• In order to access all data members of the class, accessor (or getter) and mutator (or
setter) functions must be de�ned. We choose the conventions that the name of these
functions begin either by get either by set.

• A function called print allows to display at the screen the current values of the data
members of the class.

• Two constructors will be implemented for this class: one constructor with no argument
where data members will be initialized to the default values and a second constructor
with some arguments (etaPosition, phiPosition, mask, o�set, gain, energy).

• A function called clear allows to reinitialize all the data members.

The UML diagram corresponding to the class caloCell is supplied below.

13 / 22

caloCell
-mask_: bool = false
-rawEnergy_: double = 0.
-gain_: double = 0.
-offset_: double = 0.
-etaPosition_: unsigned int = 0
-phiPosition_: unsigned int = 0

+caloCell()
+caloCell(in etaPosition:unsigned int,in phiPosition:unsigned int,
 in mask:bool,in offset:double,in gain:double,
 in energy:double)
+~CaloCell()
+getMask(): bool const
+getRawEnergy(): double
+getGain(): double
+getOffset(): double
+getEtaPosition(): unsigned int
+getPhiPosition(): unsigned int
+getEnergy(): double
+getResolution(): double
+setMask(in mask:bool): void
+setRawEnergy(in energy:double): void
+setGain(in gain:double): void
+setOffset(in offset:double): void
+setEtaPosition(in eta:unsigned int): void
+setPhiPosition(in phi:unsigned int): void
+print(): void
+clear(): void

Figure 10: UML diagram of the class caloCell

5.2 First work to achieve

• Implement the class caloCell according to the UML dia-
gram.

• Test the class de�nition by instantiating an object and by
performing some operations.

• Adapt the script mymake for building this project.

• Explaining how you test the implementation of caloCell.

5.3 Enriching the class CaloCell

We suggest to improve the implementation of the class caloCell by advanced functionalities.
These functionalities are not crucial for the next developments. Their goal is totally pedagogical.

14 / 22

• Add a copy constructor to the class.

• Associate the reserved word const to the appropriated
functions.

• Overload the operator � to display the data member values
when std::cout is applied directly to instance of this class.

• Have you other ideas (new function, optimization, ...) for
improving the implementation of the class?

15 / 22

6 Description of a supermodule and a barrel

For modeling the electromagnetic barrel calorimeter, we would like to implement the two
classes caloSupermodule and caloBarrel, corresponding to the �les caloSupermodule.h,
caloSupermodule.cpp, caloBarrel.h and caloBarrel.cpp. The implementation will be ba-
sed on the supplied UML diagrams. We would like to have the most general and �exible classes
as possible. For instance, the supermodule segmentation will be not �xed, but tunable by the
user.

6.1 Implementation of caloSupermodule class

Here are enumerated the functionnalities of the class caloSupermodule.

• The class must contain a identi�cation code corresponding to the supermodule position
in the supermodule. This can be done by a signed integer called Id_.

• The class must store an array of caloCell. The data members nPhi_ and nEta_ mean
the number of cells respectively in φ and η direction.

• In order to access all data members of the class, accessor (or getter) and mutator (or setter)
functions must be de�ned. We choose the conventions that the name of these functions
begin either by get either by set. Of course, changing nPhi_ and nEta_ implies changing
the array dimension.

• A function called print allows to display at the screen the iden�cation number and the
array size.

• Two constructors will be implemented for this class: one constructor with no argument
where data members will be initialized to the default values and a second constructor
with some arguments (identi�cation number, nEta, nPhi).

• A function called clear allows to reinitialize all the data members.

• A function called getCell allows to access, via a pointer, a caloCell located at eta and
phi position.

The UML diagram corresponding to the class caloSupermodule is supplied below.

16 / 22

caloSupermodule
-id_: int = 0
-cells_: array = <empty array>
-nPhi_: unsigned int = 0
-nEta_: unsigned int = 0

+caloSupermodule()
+caloSupermodule(in id:int,in nEta:unsigned int,
 in nPhi:unsigned int)
+~caloSupermodule()
+getId(): int
+getNEta(): unsigned int
+getNPhi(): unsigned int
+setId(in mask:bool): void
+setId(in id:int): void
+setNEta(in nEta:unsigned int): void
+setNPhi(in nPhi:unsigned int): void
+print(): void
+clear(): void
+getCell(in etaId:unsigned int,in phiId:unsigned int): caloCell*

6.2 Implementation of caloBarrel class

Here are enumerated the functionnalities of the class CaloCell.

• The class must store an array of caloSupermodule. The data member nSupermodule_
mean the number of supermodules.

• In order to access all data members of the class, accessor (or getter) and mutator (or
setter) functions must be de�ned. We choose the conventions that the name of these
functions begin either by get either by set. Of course, changing nSupermodule_ implies
changing the array dimension.

• A function called print allows to display at the screen the iden�cation number and the
array size.

• Two constructors will be implemented for this class: one constructor with no argument
where data members will be initialized to the default values and a second constructor
with one argument (number of supermodules).

• A function called clear allows to reinitialize all the data members.

• A function called getSupermodule allows to access, via a pointer, a caloSupermodule

with a given identi�cation number. If no caloSupermodule is found, a null pointer is
returned.

• A function called getCell allows to access, via a pointer, a caloCell located in a given
supermodule, at relative η − id and φ − id. If no caloCell is found, a null pointer is
returned.

• A function called getCellDim will give the absolute coordinate in the η − φ plane (ηmin,
φmin, ηmax and φmax) of a caloCell located in a given supermodule, at relative η− id and
φ− id.

17 / 22

The UML diagram corresponding to the class caloBarrel is supplied below.

caloBarrel
-cells_: ARRAY<caloSupermodule> = <EMPTY>
-nBarrel_: unsigned int = 0

+caloBarrel()
+caloBarrel(in nSupermodule:unsigned int)
+~caloBarrel()
+getNSupermodules(): unsigned int
+setNSupermodules(in nSupermodules:unsigned int): void
+print(): void
+clear(): void
+getSupermodule(in supermoduleId:int): caloSupermodule*
+getCell(in supermoduleId:int,in etaId:unsigned int,
 in phiId:unsigned int): caloCell*
+getCell(in supermoduleId:int,in etaId:unsigned int,
 in phiId:unsigned int,out etaMin:double,
 out phiMin:double,out etaMax:double,
 out phiMax:double): void

6.3 First work to achieve

• Implement the two classes according to the UML dia-
grams.

• Test the class de�nition by instantiating an object and by
performing some operations.

• Adapt the script mymake for building this project.

• Explaining how you test theses implementations.

6.4 Enriching the classes

Like the class CaloCell, we suggest to improve the implementation of the classes by advanced
functionnalities. These functionnalities are not crucial for the next developments. Their goal
is totally pedagogical.

18 / 22

• Add a copy constructor to the class.

• Associate the reserved word const to the appropri-
ated functions. Advice: the methods getCell and
getSupermodule will be duplicated in order to have a non-
const version and a const version.

• Overload the operator << to display the data member va-
lues when std::cout is applied directly to instance of this
class.

• Have you others ideas (new function, optimization, ...) for
improving the implementation of the class?

19 / 22

7 Generating documentation from C++ sources

Annotation and comments inside the code is very useful for the understanding. In order to
increase the documentation level, it is also possible to generate automatically reference docu-
mentation by reading the syntax and the annotations of the code. Whereas some documentation
generators such as Javadoc are speci�c to one programming language, the Doxygen program
has the advantage to be used for plenty languages.

7.1 First words about the Doxygen package

Doxygen can read not only C++ language but also Java Python, Fortran, PHP and
others. The formats of the generated documentation are mainly HTML and LaTex (PDF
or PS after Latex compilation). It can cross reference documentation and code, so that the
reader of a document can easily refer to the documentation.

The package can be downloaded from the o�cial website (www.doxygen.org). From the Lx-
plus session, doxygen program can be launched from any folder. A small test to check the
presence of this package consists in issuing the command below at the shell prompt. If the
program is found, the version release must appear at the screen.

bash$doxygen --version

7.2 Standard doxygen con�guration �le

The starting point consists in writing a doxygen con�guration �le. A template of a such �le
can be generated by typing the following command:

bash$doxygen -g doxygen.cfg

A text �le called doxygen.cfg is then created and can be modi�ed with a text editor. It con-
tains all the available Doxygen options set with the default values. The syntax is very similar
to a shell script. To enter into details, comment line begins with a # character and options are
speci�ed by the scheme tag = value. The options values are usually the reserved words YES
or NO for binary options, or string for other option kinds. Appearance order of the options is
not relevant.

For generating HTML, the user must set the following settings:

1 GENERATE_HMTL = YES

2 HMTL_OUTPUT = html # name of the folder where HTML document

3 # will be generated

and for LATEX, the following lines

1 GENERATE_LATEX = YES

2 LATEX_OUTPUT = latex # name of the folder where LATEX document

3 # will be generated

By default, all source �les (C++ and other programming languages) placed in the local fol-
der are taken into account. These properties can be tuned by changing options such as
FILE_PATTERNS, RECURSIVE and EXCLUDE.

20 / 22

A GUI (Graphical User Interface) wizard con�guration tool, called
doxywizard, exists also. It facilitates the Doxygen con�guration and
running. Nonethess this program is not installed on Lxplus session.

7.3 Adding graphics in the reference documentation

Doxygen tool can use graphviz package for generating graphs and diagrams. It can be
downloaded from the o�cial website (http://www.graphviz.org/). From the Lxplus session,
graphviz is already installed and ready to used. A small test to check the presence of this
package consists in issuing at the shell prompt the command below. The version of graphviz
must appear at the screen.

bash$dot -v

For enabling all the graphical options in the report, the user must apply the following settings:

HAVE_DOT = YES

CLASS_GRAPH = YES

COLLABORATION_GRAPH = YES

GROUP_GRAPHS = YES

UML_LOOK = NO

TEMPLATE_RELATIONS = YES

INCLUDE_GRAPH = YES

INCLUDED_BY_GRAPH = YES

CALL_GRAPH = YES

CALLER_GRAPH = YES

GRAPHICAL_HIERARCHY = YES

DIRECTORY_GRAPH = YES

DOT_MULTI_TARGETS = YES

7.4 Launching Doxygen

To generate automatically documentation, the user has just to type the Doxygen command
following the name of the con�guration �le:

bash$doxygen doxygen.cfg

During the documentation generation, error or warning could be displayed. The user is invited
to read these messages and to investigate the relevant ones. If the running is successful, folders
html and latex are generated according to the con�guration �le.

• html folder contains all HTML �les and can be browsed with a navigator internet from
the �le index.html.

• latex folder contains latex �les and can be compiled with latex with a make�le. By
issiung the command make, a PDF �le is created and can be viewed with a PDF reader.

21 / 22

7.5 Work to do

• Generate the documentation related to your code in Latex
and HTML format

• Add/adjust annotations in your code in order to improve
the generated documentation.

Some suggestions about the documentation layout:

FULL_PATH_NAMES = NO

JAVADOC_AUTOBRIEF = YES

HIDE_UNDOC_CLASSES = NO

GENERATE_LATEX = NO

TAB_SIZE = 4

OPTIMIZE_OUTPUT_FOR_C = YES

BUILTIN_STL_SUPPORT = YES

EXTRACT_ALL = YES

RECURSIVE = YES

SOURCE_BROWSER = YES

ALPHABETICAL_INDEX = YES

GENERATE_TREEVIEW = YES

TEMPLATE_RELATIONS = YES

SEARCHENGINE = YES

REFERENCED_BY_RELATION = YES

22 / 22

	I Introduction to the ESIPAP computing sessions
	Foreword
	The ESIPAP framework
	Launching the Windows machine
	Accessing the Linux virtual machine
	Setting the environment
	Saving your work on a share disk

	II C++ model for CMS calorimeters
	Physics context
	The CMS detector
	CMS coordinates systems
	The electromagnetic calorimeter of the CMS detector
	Layout and mechanics of the barrel calorimeter
	Data acquisition by a calorimeter cell

	Starting point
	The main file main.cpp
	Programming conventions

	Description of a calorimeter
	Specifications
	First work to achieve
	Enriching the class CaloCell

	Description of a supermodule and a barrel
	Implementation of caloSupermodule class
	Implementation of caloBarrel class
	First work to achieve
	Enriching the classes

	Generating documentation from C++ sources
	First words about the Doxygen package
	Standard doxygen configuration file
	Adding graphics in the reference documentation
	Launching Doxygen
	Work to do

