Lectures on calorimetry

and a state of the state of the

Christophe Ochando (LLR/Ecole Polytechnique/CNRS)

Lecture 3

February 6th 2018, ESIPAP 2018

Plan of lectures

Lecture 1	Lecture 2
Why/what calorimeters ?	ATLAS & CMS calorimeters
Physics of EM & HAD showers	Calorimeter Objects
Calorimeter Energy Resolution	Triggering

Lecture 3

Example of calorimeters (suite)

Future of calorimetry

Calorimeters: (more) examples

Calorimeters in space: FERMI/LAT

Fermi Satellite with Large Area Telescope (LAT) instrument.

- Gamma-Ray Telescope
 - (200 MeV < γ < 300 GeV)
- Launched June 11 2008
- Consists of:
 - Tracker: Pb foils + Si strips
 - Calorimeter (see next slide)
 - Anticoincidence Detector : plastic scintillator tiles

Calorimeters in space: FERMI ECAL

Homogenous calorimeter made from 1728 CsI(TI) scintillating crystals

7 | incoming gamma ray

- > 18 modules (400mmx400mmx250mm) ~100 kg each
- 1 module:
 - carbon-fiber alveolar structure +
 - 96 Csl(Tl) crystals (2.7 cm x 2.0 cm x 32.6 cm)
 - arranged in 8 layers of 12 crystals each
- Each module aligned 90° wrt its neighbors, forming x,y (hodoscopic) array
 - Depth: 8.6 X₀ (10.1 including tracker)
 Need shower leakage correction

Calorimeters in space: AMS-02

> Alpha Magnetic Spectrometer (AMS):

- HEP-like detector operating as external module on ISS¹
- Launched in 2011
- Search for Dark Matter, anti-matter, precise study of high energy cosmic ray (flux, composition), gamma rays.

AMS: A TeV precision, multipurpose, magnetic spectrometer

The AMS-02 ECAL

Sampling calorimeter made from Lead + Scintillating fibers

3-D imaging of shower development

- 9 Super-Layers (SL) alternatively oriented along X and Y axis (5 SL along X, 4 long Y)
- ➤ 1 Super-Layer (~18.5mm):
 - 11 grooved, Pb foils (1mm thick) interleaved with 10 layers of scintillating fibers (Ø~1mm) glued by epoxy-resin

Depth: ~17 X0

Fibers read by PMT

ECAL support structure

"Future" of calorimetry

(selected) Future of HEP at colliders.

- > "Short" term: HL-LHC (2025-2035)
 - Upgrade of ATLAS, CMS... (see later)
- Longer term (30-50 years)
 - Lots of on-going discussions on what will be the "best" machine
 - Possible new e+e- colliders
 - Linear (ILC, CLIC)
 - Circular (FCC_{ee}, CEPC,...)
 - Possible new hadron colliders: FCC_{hh}
 - μ-colliders, …

> Physics Goals:

- Higgs
 - high precision measurement on couplings to fundamental fields,
 - Tri- and quadri-linear couplings (HH, HHH production)
- Search / Study of new physics
 - SUSY, extra-dimensions, ...
 - => High mass resonances (d-ijet, $\gamma\gamma$, ee,...), jets+MET, multi-leptons, ...

Require high precision for calorimetry, in particular for jets !

- + timing capabilities
- + radiation hardness...

- > Worst than (or at most as good as) single hadron resolution
 - How to improve on jet resolution ?
 - ie, how to get rid / mitigate the inherent fluctuations (in particular on fEM) ??

> Two approaches:

- Minimize influence of calorimeter: use combination of all detectors
 =>"particle flow" (software and hardware)
- Measure the shower components in each event: access the source of the fluctuations
 => Dual readout (mostly hardware + software)

Hadronic/Jet Resolution

Hadron Calorimeter Resolution limited by fluctuations (sampling, f_{EM}, quantum, leakage, ...)

- Non-compensation degrades resolution.
- > Excellent hadron resolution already achieved by several experiment (~30%/ \sqrt{E}):
 - Absorber/scintillating fibers compensated calorimeters: ZEUS (Ur), SpaCAL (Pb)
 - Resolution ultimately limited by sampling fluctuations

> How to improve resolution, ie:

- Reduce contribution from sampling fluctuations
- Elimate/Reduce effect of fluctuations in fEM
- Elimate/Reduce effect of fluctuation in invisible energy

... WITHOUT the inherent problems of "standard" compensation ?

(time integration, volume, sampling fraction)

(one possible solution)

Estimate f_{EM} event-by-event [1]:

- "hardware" identification
- comparing light from Cerenkov light and light from scintillation (dE/dx)
- Note: ideally, one wants to measure also f_n (proportional to binding energy) to remove fluctuations in invisible energy
 - Using time structure of showers

> Why Cerenkov light ?

- almost exclusively produced by EM component
- 80% of non-em energy deposited by non-relativistic particles (mainly spallation protons with E~few hundred of MeV => no Cerenkov light)
- Same medium read by 2 different fibers
 - 2 e/h for the same event

[1]. "old" idea; although not initially with 2 types of fibers. P. Mockett, "A review of the physics and technology of high-energy calorimeter devices," Proc. 11th SLAC Summer Inst. Part. Phy., July 1983, SLAC Report No. 267 (July 1983), p. 42

DREAM Prototype

Basic structure: 4x4 mm² Cu rods 2.5 mm radius hole 7 fibers 3 scintillating 4 Čerenkov

DREAM prototype: 5580 rods, 35910 fibers, 2 m long (10 λ_{int}) 16.2 cm effective radius (0.81 λ_{int} , 8.0 ρ_M) 1030 Kg $X_0 = 20.10$ mm, $\rho_M = 20.35$ mm 19 towers, 270 rods each hexagonal shape, 80 mm apex to apex Tower radius 37.10 mm (1.82 ρ_M) Each tower read-out by 2 PMs (1 for Q and 1 for S fibers) 1 central tower + two rings

How to determine E and f_{EM} ?

$$egin{aligned} egin{aligned} egi$$

e.g. If e/h = 1.3 (S), 4.7 (Q)

$$\frac{Q}{S} = \frac{f_{\rm em} + 0.21 (1 - f_{\rm em})}{f_{\rm em} + 0.77 (1 - f_{\rm em})}$$

$$E = \frac{S - \chi Q}{1 - \chi}$$

with
$$\chi = \frac{1 - (h/e)_{\rm S}}{1 - (h/e)_{\rm Q}} \sim 0.3$$

Q: Cerenkov S: Scintillation

DREAM prototype results (1)

Figure 2: Čerenkov signal distributions for 200 GeV multi-particle events. Shown are the raw data (a), and the signal distributions obtained after application of the corrections based on the measured em shower content, with (c) or without (b) using knowledge about the total "jet" energy [5].

DREAM prototype results (2)

Jet Resolution improvement: another path

Energy Flow, Particle Flow (1)

> Two ways to deal with fluctuations:

- Adjust the hardware to response to equalize the e & h ("hardware" compensation)
- Identify the various components (EM, non-EM) and weight them adequately ("software" compensation)

Software weighting was deployed at H1 detector (LAr, SpaCal calorimeters) in the 90's.

- Reconstruct 3D-cluster (group of "connected" cells of calorimeter)
- Energy of every cells is corrected by a weighting factor, depending on:
 - energy density of cell (E_{cell} / V_{cell})
 - dense EM deposits vs mip from hadronic
 - total energy of the cell cluster

=> less tail in energy distribution, more Gaussian shape, and 15% improved resolution

Energy Flow, Particle Flow (2)

Going a step forward...

- > Typically, the jet energy fraction can be split **on average**:
 - ~65% charged hadrons
 - ~25% photons
 - ~10% neutral hadrons

"Default" way to reconstruct/identify particles.

- Neutrinos: via missing energy
- e/γ: mainly ECAL (+tracker)
- Charged hadrons: calorimeters (but tracking system can be used as well)
- Important to understand if prompt or non-prompt (decay of V⁰'s,...)
- Neutral hadrons: calorimeters (mainly HCAL)
- Muons: muon station + tracker
- But no attempt to reconstruct individual particles and/or avoid double counting (tracker/calo)
 - Jets are "clusters" of calorimeter deposits/towers/...

Can we combine measurement of tracker and calorimeter ?

Energy Flow, Particle Flow (3)

Pioneered in ALEPH at LEP (90's)

"simple design" !

Energy Flow @ ALEPH: description

WW→qqqq

(simplified) Overview of the algorithm

- Reconstruct charged tracks and clusters in calorimeters
 - Including cleaning (noisy channels, ...)
- Extrapolate tracks to calorimeters and form "calo objects"
- For each calo object:
 - for identified electrons, muons, γ , π 0, remove energy from calorimeters
 - Only charged hadrons (mostly pions) and neutral hadrons should remain
 - Neutral are built as clusters not linked to tracks or with incompatible E/p

"Energy Flow" in ALEPH: (some) results

 $e+e- \rightarrow Z \rightarrow qq$

vs 13 GeV for calorimeter only

> Also: better angular resolution, b-tagger improved by a factor 2...

BUT: ultimately limited by HCAL resolution... and loss of information due to interaction in the coil before reaching the HCAL.

Beyond Calorimetry: The Particle Flow paradigm

Particle Flow:

Reconstruct and identify every stable particle in the event

- Combining Optimally all information from all sub-detectors
- Charged particles measured by tracker (~perfect)
- Photons by ECAL (σ E/E ~10-20%)
- Neutral hadrons (ONLY) by HCAL (σE/E ~50-100%)

⇒ Much improved resolution on jets wrt calorimeter measurement only (vs ~70% of particles measured with HCAL

in traditional approach)

> Not only:

- Aim at having a "Global Event Description"
- Use adapted calibration for each object
- Natural mitigation of pile-up (at hadron colliders)
- Improved angular resolution
- Access to sub-structure of shower

• etc....

Needed ingredients for a good Particle Flow

Good separation of charged and neutrals

- high field integral (BxR), "effective granularity"
- Small granularity (to minimize overlapping showers)

"No" material before the calorimeters

"light" tracker, calorimeters inside the coil

Small Moliere Radius

to minimize shower overlap

Efficient Tracking

Particle Flow @ LHC (CMS)

CMS design meets several of the criteria for a good PF

- Large Field Integral: BxR = 4.9 T.m
 - CMS: B=3.8 T, Ecal Radius R = 1.29m
 - ALEPH: 1.5 x 1.8 = 2.7 T.m
- ECAL with excellent resolution (σ_E/E ~10-3%), granularity and small R_M (2.2 cm).
 - poor HCAL resolution (as ALEPH)
- Excellent tracking (high granularity, $\sigma_{pT}/pT \sim 1\% pT$)

BUT, considerable challenges!

- Up to 2 X0 of tracker material in front of ECAL
 - Nuclear & EM interactions in the tracker...
- pp collisions, pile-up and (very) high density of particles

First studies started in ~2004

PFLow @ CMS: Results

PFLow @ CMS: Results

Not only for jets...

Jets

- energy resolution / 2
- angular resolution / 3
- Flavour dependence of response / 3
- Systematic error on JES / 2
- « electron in jet » b tagging
- quark-gluon jet tagging
- MET:
 - resolution / 3
 - smallest tails
- τ
 - jet fake rate / 3 @ same eff.
 - energy resolution / 4

Electrons

- down to pT = 3 GeV
- in jets
- μ
 - 4% more efficient ID @ same bgd rate
 - better momentum assignment at high pT
- e, μ, τ, γ isolation
 - pile-up control
- Physics analyses
 - Better trigger for jets, MET, taus (PF@HLT)
 - e.g:
 - FSR photon recovery in $H \rightarrow ZZ$
 - embedding in $H \rightarrow \tau \tau$
 - jet substructure

The ILC case

- **Study Higgs, Unitarity, top at e+e- linear colliders** (ILC, CLIC, ...)
 - Heavily involves W, Z and H in hadronic modes (high BR)

- Hadronic decay of W/Z
- Need to separate W&Z ie, measure the mass of di-jet pairs:

∆M(W,Z)~10 GeV

> Forgetting the correlations, the jet resolution can be written as:

$$\sigma_{jet}^{2} = \sigma_{h\pm}^{2} + \sigma_{\gamma}^{2} + \sigma_{ho}^{2} + \sigma_{confusion}^{2} + \sigma_{threshold}^{2} + \sigma_{losses}^{2}$$

 $\sigma_{\text{confusion}}$: mixing between neutral and hadron deposited energy $\sigma_{\text{threshold}}$: threshold for each species (integrate fluctuations at low energy of jet fragmentation) σ_{losses} : losses due to imperfect reconstruction

- > Studies show the confusion term play a major role !
- Towards ultimate Pflow performance:
 - focus more on separating showers

 (ie, granularity) than single particle resolution

"Particle Flow Calorimeters"

Another step beyond: Design the detector for PFLOW

<u>Hardware:</u>

★Need to be able to resolve energy deposits from different particles → Highly granular detectors (as studied in CALICE)

Software:

*Need to be able to identify energy deposits from each individual particle !

Sophisticated reconstruction software

*****Particle Flow Calorimetry = HARDWARE + SOFTWARE

Initially thought for TESLA in 2000's, then ILC.

"Particle Flow Calorimeters"... or "Imaging Calorimeters" !

Another step beyond: Design the detector for PFLOW

Detectors for ILC

Lots of R&D since 15 years. TDR in 2013.

- ➤ Lots of possible options. Ex:
 - 3D-tracking:
 - High Precision vertex (Si) detector + TPC
 - High Granular Calorimeters
 - ECAL with 30 longitudinal samples
 - HCAL (48 long. Samples)
 - B-field: 3.5 T
 - Iron yoke instrumented with Muons detection system (Gas or scintillators)

Si / W high-granularity ECAL (1)

> One possible option studied inside the CALICE collaboration: Si/W sampling calorimeter

- R~1.8m
- W absorber
 - Ensure compactness (~20 cm thickness),
 - small RM
- Si as active medium
 - for 30 layers: ~2600 m² of Si,
 - Large S/N
- Extreme high granularity
 - 10⁸ channels (vs 10⁵ at LHC !!!)

Si / W high-granularity ECAL (2)

Prototype: 3/5 of one module.

Carbon-fibre support contains every second W plate.

2 PCBs of embedded front end electronics with glued 16x16 sensors are on both sides of other W plates.

1 barrel module = 5 x 15 slabs 1 slab = 8...13 x Active Sensor Units, 1 ASU = 4 x Si sensors = 1024 chan. HV, LV, signal cables, water cooling

run in 3 cm ECAL - HCAL gap, exit between barrel - endcap.

Hamamatsu Si sensor
Si/W prototypes

Physics Prototype Proof of principle 2003 - 2011

JINST 3, 2008

Technological Prototype

Engineering challenges

TDR EUDET-Report-2009-01

LC detector

Number of channels : 9720 Weight : ~ 200 Kg Number of channels : 45360 Weight : ~ 700 Kg ECAL : Channels : ~ 100 10⁶

Total Weight : ~ 130 t

Si/W: physics prototype

Si/W: physics prototype test beam results

HCAL for ILC: AHCAL (1)

One possible option studied inside the CALICE collaboration:
 Analogue HCAL Stainless Steel / Scintillators sampling calorimeter

- 3x3 cm² scintillator tiles
- 8.10⁶ channels
 vs O(10k) for ATLAS/CMS !

HCAL for ILC: AHCAL (2)

Some other results

Particle Flow Algorithms for High Granular Calorimeters

High Granular / Imaging Calorimeters need **powerful and innovative reconstruction algorithms** to be fully exploited

- Lots of R&D in parallel to detector developments.
- > Challenges:
 - Avoid double counting of energy from same particles
 - Separate energy deposits from different particles

If <u>these hits</u> are clustered together with <u>these</u>, lose energy deposit from this neutral hadron (now part of track particle) and ruin energy measurement for this jet.

Level of mistakes, "confusion", determines jet energy resolution, <u>not</u> intrinsic calorimetric performance

Three basic types of confusion:

Failure to resolve neutral hadrons

Reconstruct fragments as separate neutral hadrons

PANDORA Particle Flow Algorithms (PFA)

PFA Results (examples)

(near) Future at LHC

High Luminosity LHC

LHC: from Run I to HL-LHC

Challenges: Radiation damage

Aging studies shows that Endcap Calorimetry (+Tracker) has to be replaced.

CMS Endcap

Challenges: Pile-Up (PU)

Figure 9.1: An event display showing reconstructed tracks and vertices of a simulated top-pair event with additional 140 interactions overlaid for the Phase-II detector.

➤ HL-LHC Nominal Parameters:

- 140 additional interactions per bunch crossing (every 25 ns) + out-of-time PU
 - Could go up to 200
- Instantaneous Peak Luminosity: 5x10³⁴ cm⁻²s^{-1,}

> Challenges for Triggers (especially Level 1 !) & offline reco + computing (30xLHC)

Need to preserve "low" energy physics (125 GeV Higgs) and explore TeV scale (e.g. SUSY) in a very harsh environment !

HGCAL: General Layout

HGC+BH: covers դ range up to 3

HGC Parameters

HGC-ECAL: Si+W/Cu 28 layers, ~26 X_0 (1.5 λ) 10 x 0.65 X_0 + 10 x 0.88 X_0 + 8 x 1.26 X_0

Operation at -30°C via CO₂ Cooling (to mitigate Si leakage current)

Table 3.2: Parameters of the EE and FH.

	EE	FH	Total
Area of silicon (m ²)	380	209	<mark>589(*)</mark>
Channels	4.3M	1.8M	6.1M
Detector modules	13.9k	7.6k	21.5k
Weight (one endcap) (tonnes)	16.2	36.5	52.7(**)
Number of Si planes	28	12	40

(*) 3x CMS tracker !

Modules, Cassettes & Mechanics (Technical Proposal)

Modules, Cassettes & Mechanics (Si & modules)

Modules

with 2x6 or 8" Hexagonal Si sensors, PCB, FE chip, on W/Cu baseplate

To cope	the	irradiation	/ PU:
---------	-----	-------------	-------

- η -dependent depletion of Si
- η -dependent cell size

<	Thickness	$300 \mu m$	$200 \mu \mathrm{m}$	100 µm	>
-	Maximum dose (Mrad)	3	20	100	
	Maximum n fluence (cm^{-2})	6×10^{14}	2.5×10^{15}	1×10^{16}	
	EE region	$R > 120 \rm{cm}$	$120 > R > 75 \mathrm{cm}$	$R < 75\mathrm{cm}$	
FH region		$R > 100 \rm{cm}$	$100 > R > 60 \mathrm{cm}$	$R < 60 \mathrm{cm}$	
	Si wafer area (m²)	290	203	96	
<	Cell size (cm ²)	1.05	1.05	0.53	>
	Cell capacitance (pF)	40	60	60	
	Initial S/N for MIP	13.7	7.0	3.5	
	S/N after 3000 fb ⁻¹	6.5	2.7	1.7	54

Modules, Cassettes & Mechanics (Cassettes)

"dummy" cassette for thermal tests

CO₂ cooling plant at FNAL

HGC Performance (1)

HGC Performance (2)

- High Granularity + longitudinal segmentation gives additional powerful handles for particle ID:
 - shower start, shower length compatibility, restoration of projectivity, 3D shower profile fits, layer-by-layer PU subtraction, etc...

HGC: Test beams

> Goals:

- Performance studies: S/N, timing, energy and positions resolutions
- Comparison with simulation

Several test beams campaign (FNAL, CERN)

- FNAL: 120 GeV protons, 4-32 GeV electrons/pions
- CERN: 125 GeV pions, 20-250 GeV electrons

Common DAQ, Modules:

- 6" Si wafers, 200um, p-on-n,
- 1.1 cm² cells,
- 2-layers PCB, SKIROC2 chip (single PCB version still at work...)

Laboratory	Layers	X ₀	Date
FNAL	1	6	March 2016
FNAL	4	12	May 2016
FNAL	16	15	July 2016
CERN	8	27	Aug 2016

+ various timing tests (next in November at CERN?)

Test Beams: set up

CERN (Similar at FNAL)

Mechanical design allows flexible insertion of modules and absorbers plates

HGC Test beams: (some) results

• FNAL: 32 GeV electron passing through 16 layers (15 X0)

• CERN: 250 GeV electron passing through 8 layers (27 X0)

Test Beams: (some) results

> FNAL

16

HGCAL Timeline

To be presneted to LHCC/UC	G										
Calendar Year	2016 2	2017	2018	2019 20	020	2021	2022	2023	2024	20	25 2026
Long Shutdowns				LS2						LS3	
Tracker: Outer	Davies Davies	E	ngin Proto.	👸 Pre-prod.		Prod.	Integ		Comm. F	loat	Install. Comm.
Pixel	Design - Demo. 2 F		Engin Proto.		EDR	Pre-prod.	Prod.	Integ. C	omm. Floa	at Install	
Barrel Calorimeters	Design - Demo	<u>.</u>	Engin Proto.	🞽 Pre-prod	1.	🥳 Pr	od.	Float	Integ.		Insall. Comm.
Endcap Calorimeters	Design - D	emo.	Engin Proto.		B I	Pre-prod. Endcap	Endcap 2 prod. 1 prod.	Integ.	Com Comm. Float	<mark>m.</mark> Float	Install. Comm.
Muons: GEM1	Engin. ED/SR P	roduc	tion - Assembly Float	Install. Comm.							
CSC	FE Engin Pre-prod.		ESR Prod.	Install.		Off- detec.	ESR Pre-prod	ProdInte.	Float		Install. Comm.
DT		œ				Pre-prod.	- ProdInte.	Float	Insta	II. Comm.	
GEM2-RPC3/4	Design - Demo		Engin Proto.		l č	Pre-prod.	- Prod Inte. R	eady to install. Co	omm.		
GEM0						Pre-prod.	- Prod Inte.		Float Install. Comm.		
Trigger	Design	₽	Demo - Engin Pro	to. 🎽 Pre-	prod.	ESR	Prod Inte		Float	Install.	Comm.
DAQ/HLT	Design	ם י	Demo Proto.		< T	DR>Pr	e-prod. 👸 P	rod Inte.	Float	Install.	Comm.
Development of detector de	sign, Technology R&D, specifi	cation a	and demonstration of major co	omponents feasiility							
Enginireeging, prototyping a	nd validation of final compon	ents, as	semblies and systems								
Pre-rpoduction of final grade	e components, assemblies and	d systen	ns								
Production, Integration nd commissioning of detector and systems											
instantion at P5, cabling and	a commissioning of detectors	anu sys	stems								

> HGCAL Schedule:

- -> 2020 : Prototyping
- 2020 2014 : Pre-production et Production
- 2024 2026 : Installation

First time a high-granularity 5D (x,y,z,E, t) calorimeter will be installed in an experiment taking data !

Summary / Conclusion (1)

- Calorimetry has been (and is still!) studied for decades
- > Calorimeters plays a unique role in HEP experiments.
 - Their usage have lead to major discovery in physics (W/Z bosons, top quark, Higgs boson,...)
- Calorimetry has evolved from early energy measurement techniques, addressing the problem of the compensation of the intrinsic response to electromagnetic and hadronic showers, to arrive ultimately at "particle flow" (PFIow) techniques where the individual contributions of the particles are disentangled.
 - This improves the measurement of jets and allows for a complete and coherent reconstruction of collision events.
- > Still, these developments will not kill other types of calorimeters
 - "hardware" compensation is pursued (ex: dual readout calorimeters).
 - "standard" calorimeters (crystals, Pb/scintillating fibers, ...) will still be used (and their performance improved), depending on physics case/cost/...
 - Can PFLOW calorimeters play a role at 100 TeV pp colliders ?

BACK UP SLIDES

DREAM prototypes

- Some characteristics of the DREAM detector
 - Depth 200 cm (10.0 λ_{int})
 - Effective radius 16.2 cm (0.81 λ_{int} , 8.0 ρ_M)
 - Mass instrumented volume 1030 kg
 - Number of fibers 35910, diameter 0.8 mm, total length \approx 90 km
 - Hexagonal towers (19), each read out by 2 PMTs

DREAM prototype

DREAM readout

Conclusion & Perspectives (1)

HGCAL is on the critical path towards physics discoveries & measurements in Phase II (HH, VBF jets for Higgs/SUSY/Dark Matter, Unitarity, ...) and has all ingredients for being rad-hard, mitigate PU, deal with high rates,...

Many major & excited challenges for the next decade :

- Engineering (includes cold/warm transition, services, ...
- FE electronics & L1 Trigger
- Software, computing

PFCand pdg = 1

phi

eta = 2.344 phi = 1.195

PFCandidatepdq = 22 Y

PFCandidate 186 pdg = 22 Y pt = 0.20 eta = 2.068 phi = 1.272

Now in R&D phase

- Fast progress since Technical Proposal (mechanics, sensors & modules, FE, ...)
- Several test beams session scheduled this year (FNAL, CERN) See talk by Z. Gecse
- **TDR expected end of 2017**, including key technical choices

(test beam)

Construction starts in ~2019

Front-End Electronics (1)

One of the most challenging aspect of the project !

Need to have large dynamic range @ low power + low noise

- ADC (10 bits) and TDC (12 bits) with existing designs
- Potential for 50 ps timing per cell

[*] alternative: more classical readout (bi-gain) or switched feedback

Front-End Electronics (2)

One of the most challenging aspect of the project !

Need to have large dynamic range @ low power + low noise

- Also: test vehicles on blocks launched (TSMC 130nm)
- First iteration of full chip expected by Spring 2017.
 - with feedback from test vehicles & SKIROC2_CMS

Modules, Cassettes & Mechanics (Structures)

HGC-EE: C-fiber Alveolar structure with embedded W plates

HGC-HCAL Structure (similar to current HE)

Inspired from CALICE Si/W

CALICE Technological Prototype

Will evolve if absorber=steel to minimize machining

C-fiber "petal" alveolar prototypes