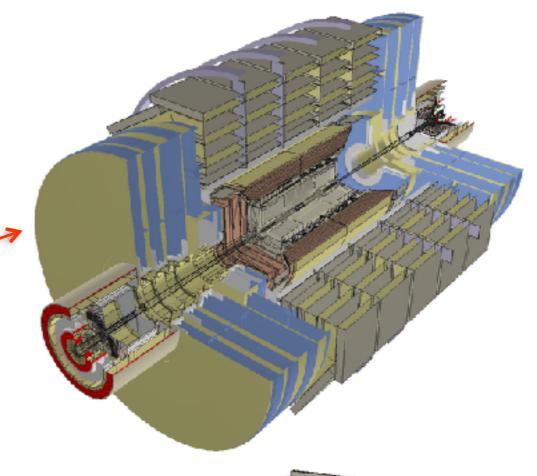
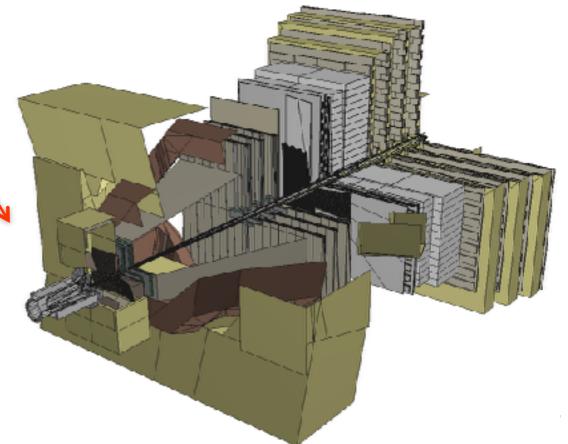


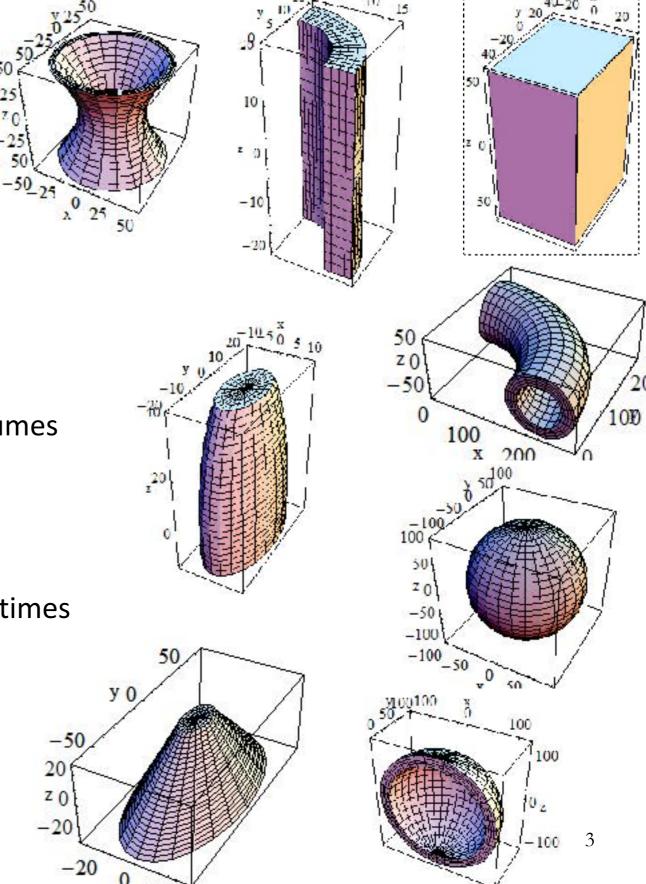
Detector Simulation Geometry

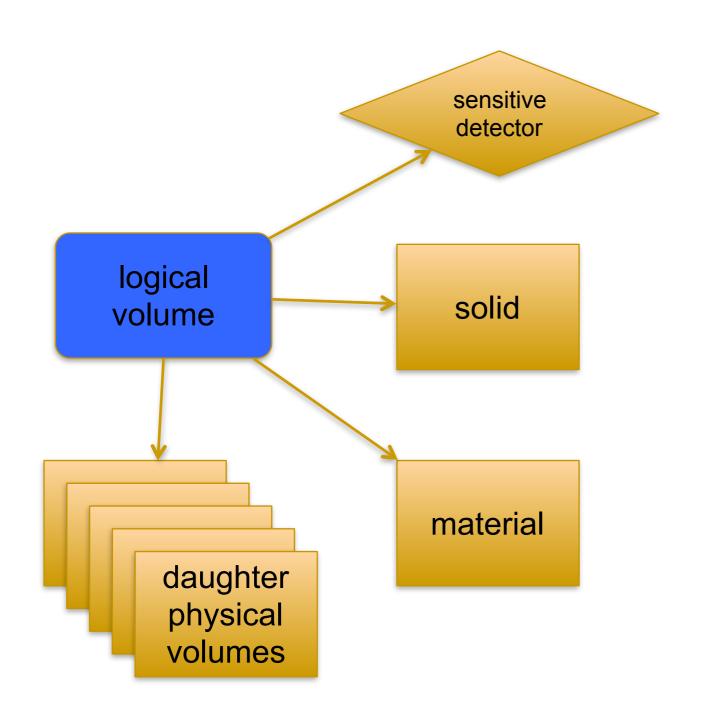
Witek Pokorski Alberto Ribon CERN

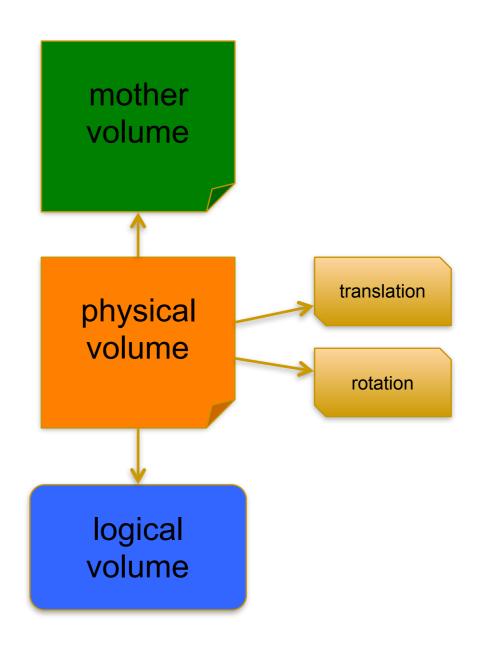

12-13.02.2018



Chalenge


- how to implement (efficiently) this in your computer program?
 - you need 'bricks'
 - 'solids', 'shapes'
 - you need to position them
 - you want to 'reuse' as much as possible the same 'templates'




Building blocks

- set of solids (shapes) classes
 - box, sphere, tube, etc, etc...
 - boolean operations on solids
- logical volumes
 - unpositioned volumes with associated materials and possibly with 'daughter' volumes
 - unpositioned hierarchies of volumes
- physical volumes
 - concrete 'placements' of logical volumes
 - can reuse the same logical volume several times

Volumes

Hierarchy side corrugations left detector half world (PV) experiment right detector half cavern (LV) tracker 1 (PV) tracker 2 (PV) calorimeter (PV) calorimeter (LV) tracker LV cell1 cell2 module module module module 1(PV) 1(PV) 1(PV) 1(PV) (PV) (PV)

module

LV

cell LV

Units

- In Geant4 quantities should be explicitly multiplied by units
 - for example :

```
G4double width = 12.5*m;
G4double density = 2.7*g/cm3;
```

- If no unit is specified, the *internal* G4 unit will be used, but <u>this is</u> discouraged!
- Almost all commonly used units are available.
- The user can define new units.
- Refer to CLHEP: SystemOfUnits.h
- Divide a variable by a unit you want to get.

```
G4cout << dE / MeV << " (MeV)" << G4endl;
```

Describe your detector

- Derive your own concrete class from G4VUserDetectorConstruction abstract base class.
- Implementing the method construct():
 - Modularize it according to each detector component or sub-detector:
 - 1. Construct all necessary materials
 - 2. Define shapes/solids required to describe the geometry
 - 3. Construct and place volumes of your detector geometry
 - Define sensitive detectors and identify detector volumes which to associate them
 - ➤ Associate magnetic field to detector regions
 - Define visualization attributes for the detector elements

Definition of Materials

- Different kinds of materials can be defined:
 - isotopes <> G4Isotope
 - elements <> G4Element
 - molecules <> G4Material
 - compounds and mixtures <> G4Material
- Attributes associated:
 - temperature, pressure, state, density

Isotopes, Elements and Materials

- G4Isotope and G4Element describe the properties of the atoms:
 - Atomic number, number of nucleons, mass of a mole, shell energies
 - Cross-sections per atoms, etc...
- G4Material describes the macroscopic properties of the matter:
 - temperature, pressure, state, density
 - Radiation length, absorption length, etc...
- G4Material is the class used for geometry definition

Elements & Isotopes

Isotopes can be assembled into elements

```
G4Isotope (const G4String& name,
G4int z, // atomic number
G4int n, // number of nucleons
G4double a); // mass of mole
```

• ... building elements as follows:

Material of one element

Single element material

```
G4double density = 1.390*g/cm3;
G4double a = 39.95*g/mole;
G4Material* lAr =
new G4Material("liquidArgon", z=18., a, density);
```

Material: molecule

 A Molecule is made of several elements (composition by number of atoms):

```
a = 1.01*g/mole;
G4Element* elH =
   new G4Element("Hydrogen",symbol="H",z=1.,a);
a = 16.00*g/mole;
G4Element* elO =
   new G4Element("Oxygen",symbol="O",z=8.,a);
density = 1.000*g/cm3;
G4Material* H2O =
   new G4Material("Water",density,ncomp=2);
H2O->AddElement(elH, natoms=2);
H2O->AddElement(elO, natoms=1);
```

Material: compound

Compound: composition by fraction of mass

```
a = 14.01*g/mole;
G4Element* elN =
   new G4Element(name="Nitrogen",symbol="N",z= 7.,a);
a = 16.00*g/mole;
G4Element* elO =
   new G4Element(name="Oxygen",symbol="O",z= 8.,a);
density = 1.290*mg/cm3;
G4Material* Air =
   new G4Material(name="Air",density,ncomponents=2);
Air->AddElement(elN, 70.0*perCent);
Air->AddElement(elO, 30.0*perCent);
```

Material: mixture

Composition of compound materials

```
G4Element* elC = ...;  // define "carbon" element
G4Material* SiO2 = ...;  // define "quartz" material
G4Material* H2O = ...;  // define "water" material

density = 0.200*g/cm3;
G4Material* Aerog =
   new G4Material("Aerogel", density, ncomponents=3);
Aerog->AddMaterial(SiO2, fractionmass=62.5*perCent);
Aerog->AddMaterial(H2O, fractionmass=37.4*perCent);
Aerog->AddElement (elC, fractionmass=0.1*perCent);
```

Example: gas

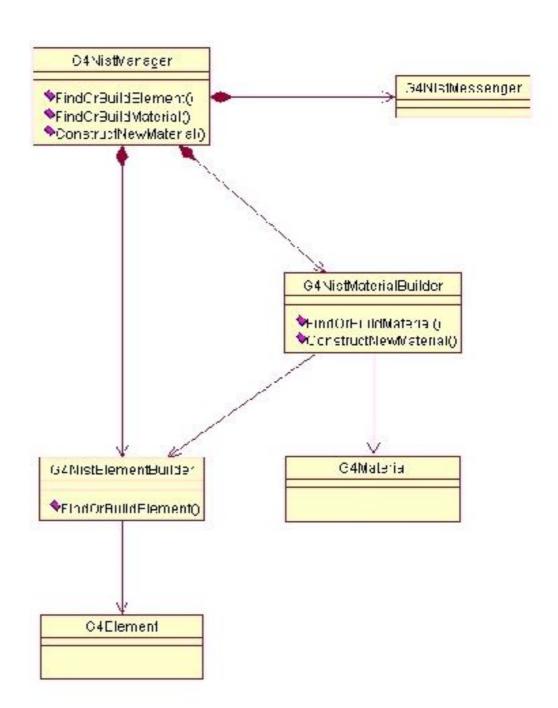
- It may be necessary to specify temperature and pressure
 - (dE/dx computation affected)

Example: vacuum

- Absolute vacuum does not exist. It is a gas at very low density!
 - Cannot define materials composed of multiple elements through **Z** or **A**, or with ρ =**0**

```
G4double atomicNumber = 1.;
G4double massOfMole = 1.008*g/mole;
G4double density = 1.e-25*g/cm3;
G4double temperature = 2.73*kelvin;
G4double pressure = 3.e-18*pascal;
G4Material* Vacuum =

new G4Material("interGalactic", atomicNumber,


massOfMole, density, kStateGas,
temperature, pressure);
```

NIST Manager & Messenger

NIST database for materials is imported inside Geant4

http://physics.nist.gov/PhysRefData

- Additional interfaces defined
- UI commands specific for handling materials
- The best accuracy for the most relevant parameters guaranteed:
 - Density
 - Mean excitation potential
 - Chemical bounds
 - Element composition
 - Isotope composition
 - Various corrections

NIST Elements & Isotopes

Z	Α	m	error	(%)	A_{eff}	
14	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	22.03453 23.02552 24.011546 25.004107 25.992330 26.9867047 27.9769265 28.9764947 29.9737702 30.9753632 31.9741481 32.978001 33.978576 34.984580 35.98669 36.99300 37.99598 39.00230 40.00580 41.01270 42.01610	3327 (20) 72 (3) 72 (5) 77 (7)	92.2297 (7 4.6832 (5) 3.0872 (5)		 Natural isotope compositions More than 3000 isotope masses Used for elements definition

Elementary Materials from the NIST Data Base

Z Name ChFormula	density(g/cm^3) I(eV)		
1 G4_H H_2	8.3748e-05	19.2	
2 G4_He	0.000166322	41.8	
3 G4_Li	0.534	40	
4 G4_Be	1.848	63.7	
5 G4_B	2.37	76	
6 G4_C	2	81	
7 G4_N N_2	0.0011652	82	
8 G4_O O_2	0.00133151	95	
9 G4_F	0.00158029	115	
10 G4_Ne	0.000838505	137	
11 G4_Na	0.971	149	
12 G4_Mg	1.74	156	
13 G4_Al	2.6989	166	
14 G4_Si	2.33	173	

NIST Elementary materials:

• H
$$->$$
 Cf (Z = 1 $->$ 98)

NIST compounds:

- HEP and Nuclear materials:
 - · e.g. Liquid Ar, PbWO
- It is possible to build mixtures of NIST and user-defined materials

NIST Materials

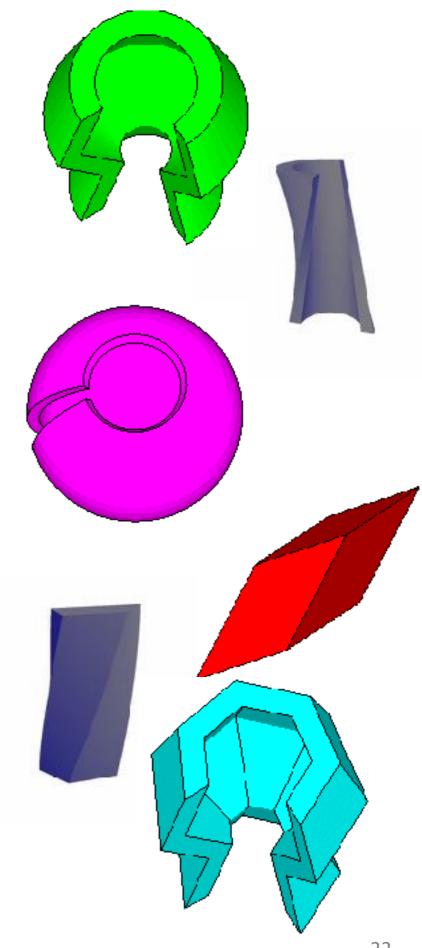
### Com	pound Materia	als from the N	IST Data Base
N Name		density(g/cm^3) I(eV)	
13 G4_Ad	ipose_Tissue	0.92	63.2
1	0.119477		
6	0.63724		
7	0.00797		
8	0.232333		
11	0.0005		
12	2e-05		
15	0.00016		
16	0.00073		
17	0.00119		
19	0.00032		
20	2e-05		
26	2e-05		
30	2e-05		
4 G4_Air		0.00120479 85.7	
6	0.000124		
7	0.755268		
8	0.231781		
18	0.012827		
2 G4_CsI		4.51	553.1
53	0.47692		
55	0.52308		

How to use the NIST DB

- No need to predefine elements and materials
- Retrieve materials from NIST manager:

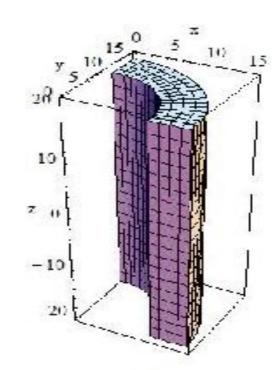
Creating a Detector Volume

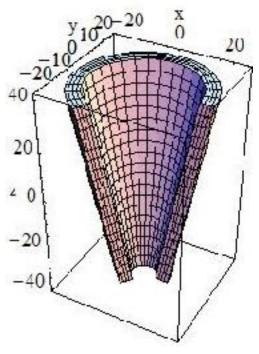
- Start with its Shape & Size
 - Box 3x5x7 cm, sphere R=8m
- Add properties:
 - material, B/E field,
 - make it sensitive
- Place it in another volume
 - in one place
 - repeatedly using a function


> Solid

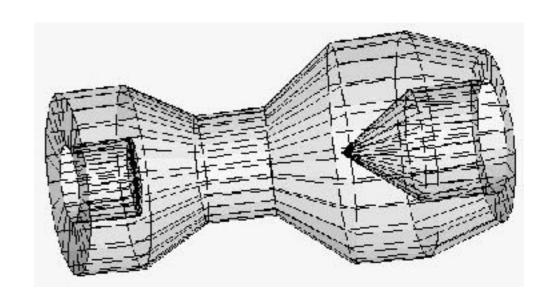
➤ Logical-Volume

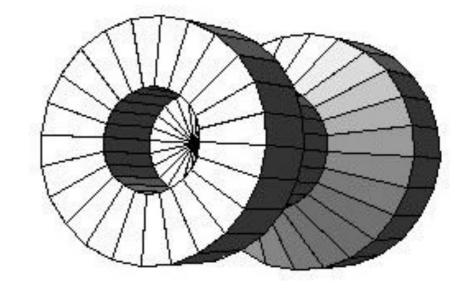
➤ Physical-Volume


Solids

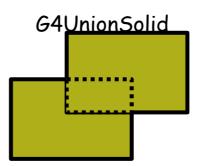

- Solids defined in Geant4:
 - CSG (Constructed Solid Geometry) solids
 - G4Box, G4Tubs, G4Cons, G4Trd, ...
 - Analogous to simple GEANT3 CSG solids
 - Specific solids (CSG like)
 - G4Polycone, G4Polyhedra, G4Hype, ...
 - G4TwistedTubs, G4TwistedTrap, ...
 - Boolean solids
 - G4UnionSolid, G4SubtractionSolid, ...

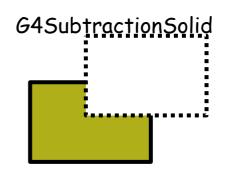
CSG: G4Tubs, G4Cons

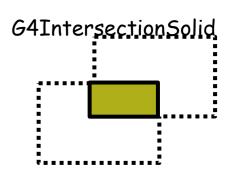

```
G4Tubs (const G4String& pname, // name
             G4double pRmin, // inner radius
             G4double pRmax, // outer radius
             G4double pDz, // Z half length
             G4double pSphi, // starting Phi
             G4double pDphi); // segment angle
G4Cons (const G4String& pname, // name
             G4double pRmin1, // inner radius -pDz
             G4double pRmax1, // outer radius -pDz
             G4double pRmin2, // inner radius +pDz
             G4double pRmax2, // outer radius +pDz
             G4double pDz, // z half length
             G4double pSphi, // starting Phi
             G4double pDphi); // segment angle
```

Specific CSG Solids: G4Polycone

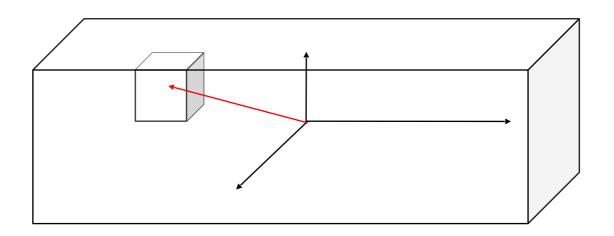

```
G4Polycone (const G4String& pName,
G4double phiStart,
G4double phiTotal,
G4int numRZ,
const G4double r[],
const G4double z[]);
```




- numRZ numbers of corners in the r,z space
- r, z coordinates of corners
- Also available additional constructor using planes

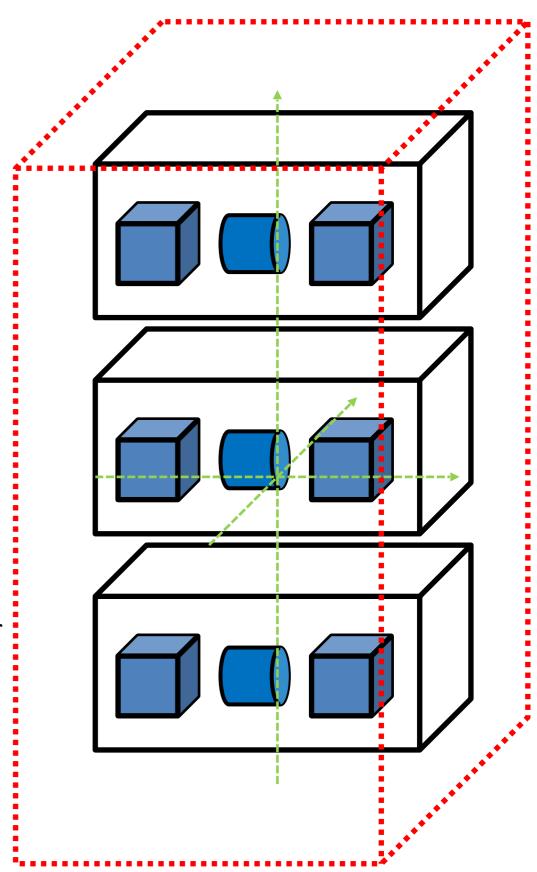
Boolean Solids

- Solids can be combined using boolean operations:
 - G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid
 - Requires: 2 solids, 1 boolean operation, and an (optional) transformation for the 2nd solid
 - 2nd solid is positioned relative to the coordinate system of the 1st solid
 - Component solids must <u>not</u> be disjoint and must <u>well intersect</u>


- Solids can be either CSG or other Boolean solids
- Note: tracking cost for the navigation in a complex Boolean solid is proportional to the number of constituent solids

G4LogicalVolume

- Contains all information of volume except position:
 - Shape and dimension (G4VSolid)
 - Material, sensitivity, visualization attributes
 - Position of daughter volumes
 - Magnetic field, User limits
 - Shower parameterisation
- Physical volumes of same type can share a logical volume.
- The pointers to solid and material must be NOT null
- Once created it is automatically entered in the LV store
- It is not meant to act as a base class


Geometrical hierarchy

- Mother and daughter volumes
 - A volume is placed in its mother volume
 - Position and rotation of the daughter volume is described with respect to the local coordinate system of the mother volume
 - The origin of the mother's local coordinate system is at the center of the mother volume
 - Daughter volumes cannot protrude from the mother volume
 - Daughter volumes cannot overlap
 - One or more volumes can be placed in a mother volume

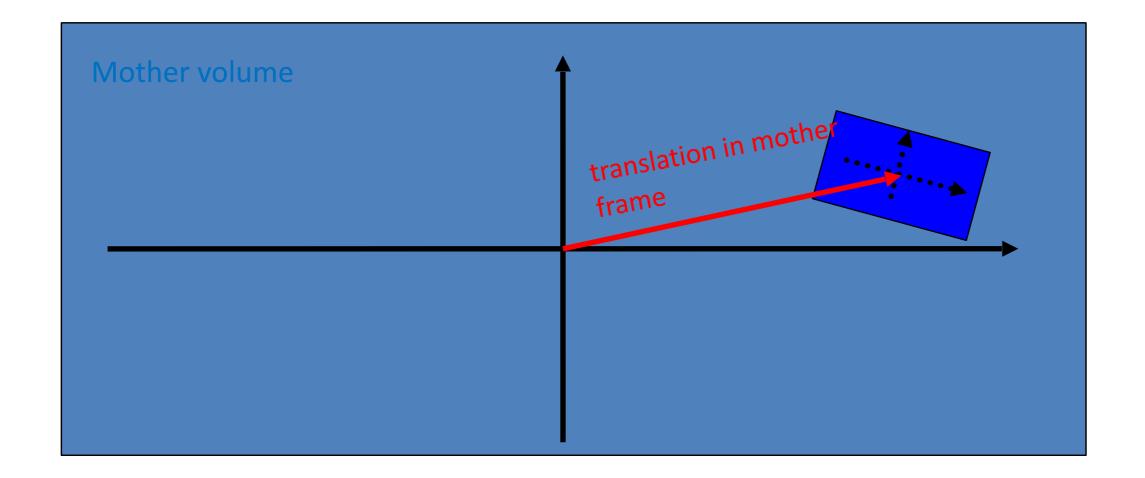
Geometrical hierarchy

- Note that the mother-daughter relationship is an information of G4LogicalVolume
 - If the mother volume is placed more than once, all daughters by definition appear in each placed physical volume
- The world volume must be a unique physical volume which <u>fully contains with some margin</u> all the other volumes
 - The world volume defines the global coordinate system.
 The origin of the global coordinate system is at the center of the world volume
 - Position of a track is given with respect to the global coordinate system

G4PVPlacement

```
G4PVPlacement (G4RotationMatrix* pRot, // rotation of mother frame const G4ThreeVector& tlate, // position in rotated frame G4LogicalVolume* pCurrentLogical, const G4String& pName, G4LogicalVolume* pMotherLogical, G4bool pMany, // not used. Set it to false...

G4int pCopyNo, // unique arbitrary index G4bool pSurfChk=false); // optional overlap check
```

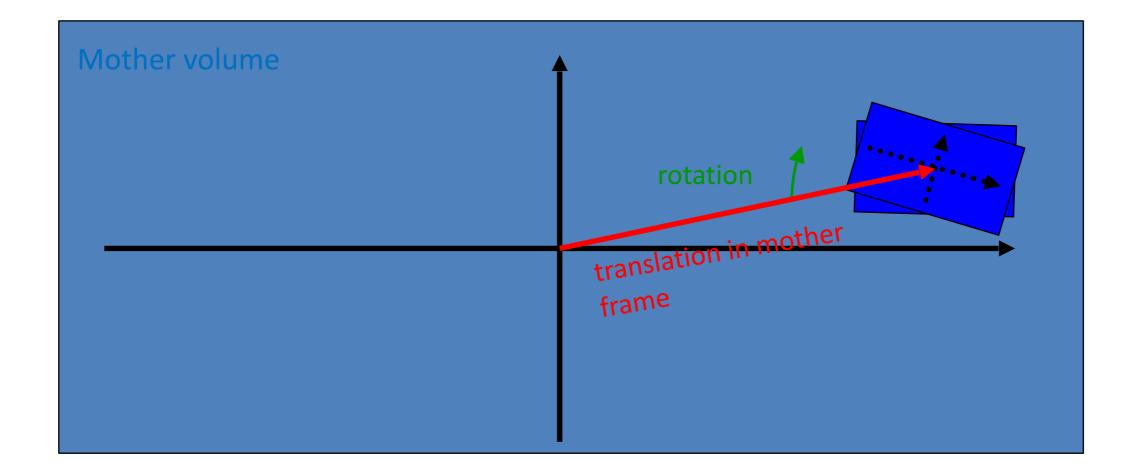

- Single volume positioned relatively to the mother volume
 - In a frame rotated and translated relative to the coordinate system of the mother volume
- Three additional constructors:
 - A simple variation: specifying the mother volume as a pointer to its physical volume instead of its logical volume.
 - Using G4Transform3D to represent the direct rotation and translation of the solid instead of the frame (alternative constructor)
 - The combination of the two variants above

G4PVPlacement

Rotation of mother frame ...

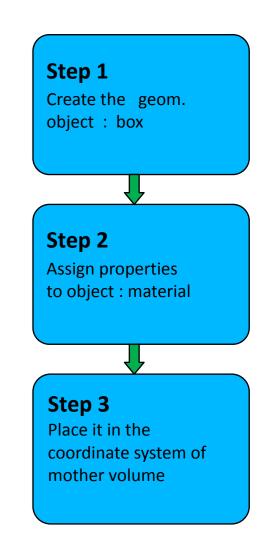
```
G4PVPlacement(G4RotationMatrix* pRot, // rotation of mother frame const G4ThreeVector& tlate, // position in mother frame G4LogicalVolume* pCurrentLogical, const G4String& pName, G4LogicalVolume* pMotherLogical, G4bool pMany, // not used. Set it to false... G4int pCopyNo, // unique arbitrary index G4bool pSurfChk=false); // optional overlap check
```

• Single volume positioned relatively to the mother volume



G4PVPlacement

Rotation in mother frame ...


```
G4PVPlacement( G4Transform3D( G4RotationMatrix &pRot, // rotation of daughter frame const G4ThreeVector &tlate), // position in mother frame G4LogicalVolume *pDaughterLogical, const G4String &pName, G4LogicalVolume *pMotherLogical, G4bool pMany, // not used, set it to false...

G4int pCopyNo, // unique arbitrary integer G4bool pSurfChk=false); // optional overlap check
```


Detector geometry components

Basic strategy

- A unique physical volume which represents the experimental area must exist and fully contains all other components
 - ➤ The world volume

Conclusion

- we know know how to describe our detector geometry
 - we create materials
 - instantiate solids
 - build the volumes hierarchy

Backup

System of Units

- System of units are defined in CLHEP, based on:
 - millimetre (mm), nanosecond (ns), Mega eV (MeV), positron charge (eplus) degree Kelvin (kelvin), the amount of substance (mole), luminous intensity (candela), radian (radian), steradian (steradian)
- All other units are computed from the basic ones
- In output, Geant4 can choose the most appropriate unit to use.
 Just specify the category for the data (Length, Time, Energy, etc...):

```
G4cout << G4BestUnit(StepSize, "Length");</pre>
```

StepSize will be printed in km, m, mm or ... fermi, depending on its value

Defining new units

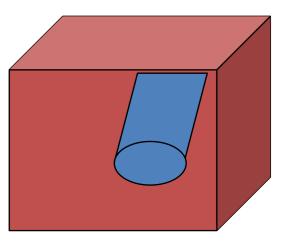
New units can be defined directly as constants, or (suggested way) via G4UnitDefinition

```
- G4UnitDefinition ( name, symbol, category, value )
```

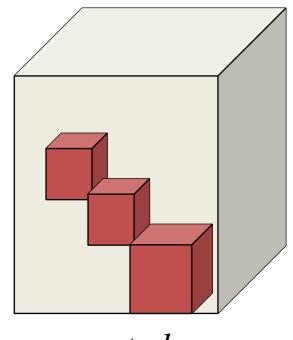
- Example (mass thickness):

 - The new category "MassThickness" will be registered in the kernel in G4UnitsTable
- To print the list of units:
 - From the code

```
G4UnitDefinition::PrintUnitsTable();
```

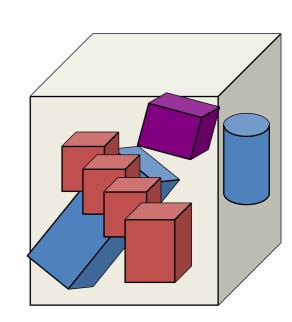

- At run-time, as UI command:
 Idle> /units/list

Kinds of G4VPhysicalVolume

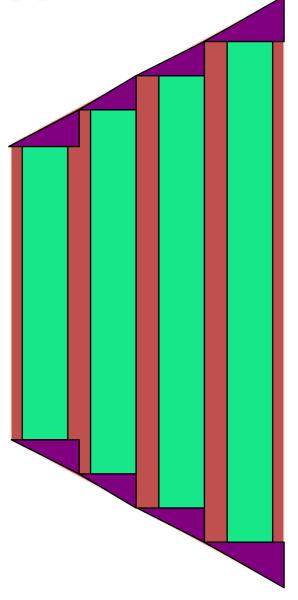

- G4PVPlacement 1 Placement = One Volume
 - A volume instance positioned once in a mother volume
- G4PVParameterised 1 Parameterised = Many Volumes
 - Parameterised by the copy number
 - Shape, size, material, position and rotation can be parameterised,
 by implementing a concrete class of G4VPVParameterisation.
 - Reduction of memory consumption
 - Parameterisation can be used only for volumes that either a) have no further daughters or b) are identical in size & shape.
- G4PVReplica 1 Replica = Many Volumes
 - Slicing a volume into smaller pieces (if it has a symmetry)

Physical Volumes

- Placement: it is one positioned volume
- Repeated: a volume placed many times
 - can represent any number of volumes
 - reduces use of memory.
 - Replica
 - simple repetition, similar to G3 divisions
 - Parameterised
- A mother volume can contain either
 - many placement volumes <u>OR</u>
 - one repeated volume


placement

repeated


Parameterised Physical Volumes

- User written functions define:
 - the size of the solid (dimensions)
 - Function ComputeDimensions (...)
 - where it is positioned (transformation)
 - Function ComputeTransformations (...)
- Optional:
 - the type of the solid
 - Function ComputeSolid (...)
 - the material
 - Function ComputeMaterial (...)
- Limitations:
 - Applies to a limited set of solids
 - Daughter volumes allowed only for special cases
- Very powerful
 - Consider parameterised volumes as "leaf" volumes

Uses of Parameterised Volumes

- Complex detectors
 - with large repetition of volumes
 - regular or irregular
- Medical applications
 - the material in animal tissue is measured
 - cubes with varying material

G4PVParameterised

```
G4PVParameterised(const G4String& pName,
G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4int nReplicas,
G4VPVParameterisation* pParam,
G4bool pSurfChk=false);
```

- Replicates the volume nReplicas times using the parameterisation praram, within the mother volume
- The positioning of the replicas is dominant along the specified Cartesian axis
 - If kundefined is specified as axis, 3D voxelisation for optimisation of the geometry is adopted
- Represents many touchable detector elements differing in their positioning and dimensions. Both are calculated by means of a G4VPVParameterisation object
- Alternative constructor using pointer to physical volume for the mother

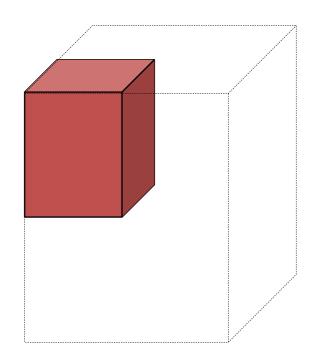
Parameterisation

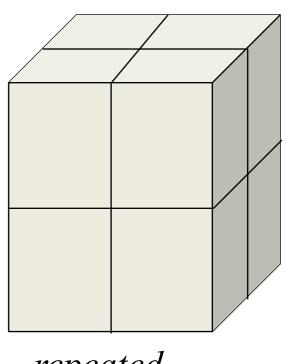
example - 1

```
0*cm);
```

Use **kUndefined** for activating 3D voxelisation for optimisation

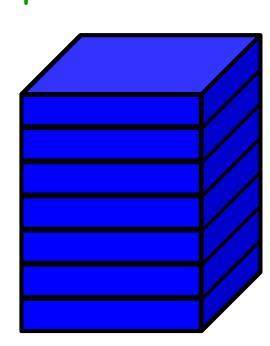
Parameterisation example - 2


Parameterisation

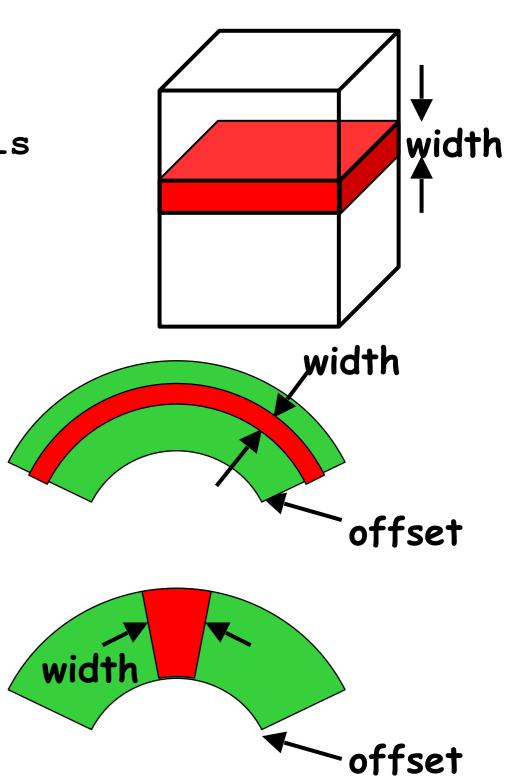

example - 3

```
void ChamberParameterisation::ComputeTransformation
(const G4int copyNo, G4VPhysicalVolume* physVol) const
 G4double Zposition= fStartZ + (copyNo+1) * fSpacing;
 G4ThreeVector origin(0, 0, Zposition);
 physVol->SetTranslation(origin);
 physVol->SetRotation(0);
void ChamberParameterisation::ComputeDimensions
(G4Box& trackerChamber, const G4int copyNo,
 const G4VPhysicalVolume* physVol) const
 G4double halfLength= fHalfLengthFirst + copyNo * fHalfLengthIncr;
 trackerChamber.SetXHalfLength(halfLength);
 trackerChamber.SetYHalfLength(halfLength);
 trackerChamber.SetZHalfLength(fHalfWidth);
```

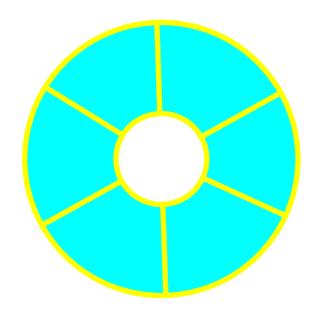
Replicated Physical Volumes

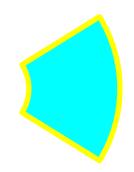

- The mother volume is sliced into replicas, all of the same size and dimensions.
- Represents many touchable detector elements differing only in their positioning.
- Replication may occur along:
 - Cartesian axes (X, Y, Z) slices are considered perpendicular to the axis of replication
 - Coordinate system at the center of each replica
 - Radial axis (Rho) cons/tubs sections centered on the origin and un-rotated
 - Coordinate system same as the mother
 - Phi axis (Phi) phi sections or wedges, of cons/tubs form
 - Coordinate system rotated such as that the X axis bisects the angle made by each wedge

G4PVReplica


a daughter logical volume to be replicated

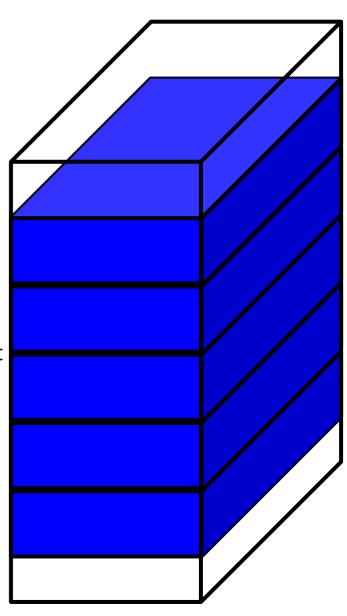
- G4PVReplica(const G4String& pName,
 G4LogicalVolume* pCurrentLogical,
 G4LogicalVolume* pMotherLogical,
 const EAxis pAxis,
 const G4int nReplicas,
 const G4double width,
 const G4double offset=0);
- Alternative constructor:
 - Using pointer to physical volume for the mother
- An offset can be associated
 - Only to a mother offset along the axis of replication
- Features and restrictions:
 - Replicas can be placed inside other replicas
 - Normal placement volumes can be placed inside replicas, assuming no intersection or overlaps with the mother volume or with other replicas
 - No volume can be placed inside a radial replication
 - Parameterised volumes cannot be placed inside a replica

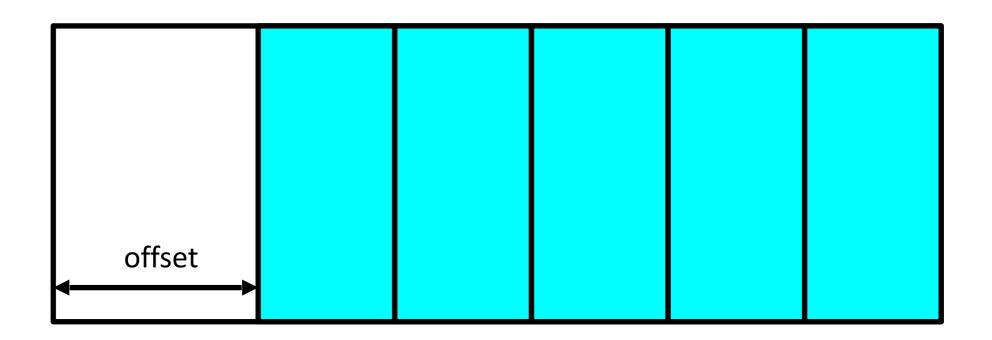

Replica – axis, width, offset

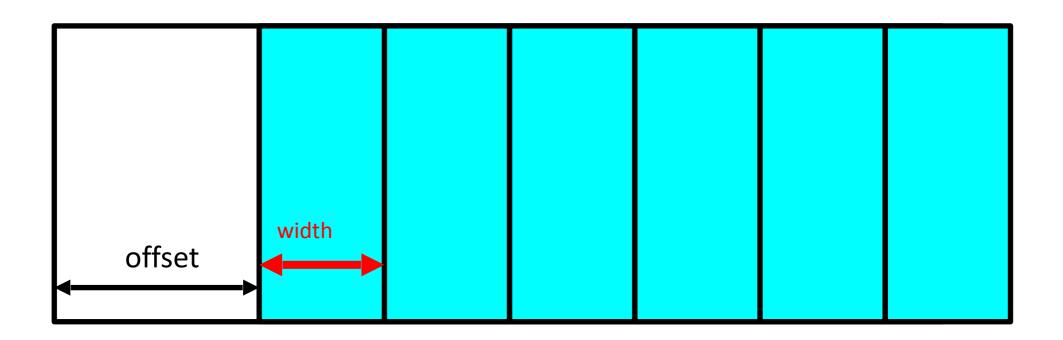

- Cartesian axes kXaxis, kYaxis, kZaxis
 - offset shall not be used
 - Center of n-th daughter is given as
 —width*(nReplicas-1)*0.5+n*width
- Radial axis kRaxis
 - Center of n-th daughter is given as width* (n+0.5) +offset
- Phi axis kPhi
 - Center of n-th daughter is given as width* (n+0.5) +offset

Replication example

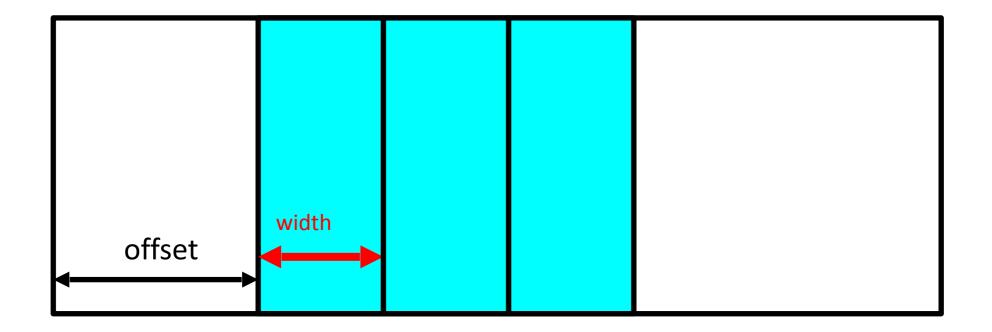
```
G4double tube dPhi = 2.* M PI * rad;
G4VSolid* tube =
   new G4Tubs("tube",20*cm,50*cm,30*cm,0.,tube dPhi);
G4LogicalVolume * tube log =
   new G4LogicalVolume(tube, Air, "tubeL", 0, 0, 0);
G4VPhysicalVolume* tube phys =
   new G4PVPlacement(0,G4ThreeVector(-200.*cm,0.,0.),
            "tubeP", tube log, world phys, false, 0);
G4double divided_tube_dPhi = tube_dPhi/6.;
G4VSolid* div_tube =
   new G4Tubs("div_tube", 20*cm, 50*cm, 30*cm,
        -divided tube dPhi/2., divided tube dPhi);
G4LogicalVolume* div tube log =
   new G4LogicalVolume(div tube, Pb, "div tubeL", 0, 0, 0);
G4VPhysicalVolume* div tube phys =
   new G4PVReplica ("div tube phys", div tube log,
   tube log, kPhi, 6, divided tube dPhi);
```




Divided Physical Volumes


- Implemented as "special" kind of parameterised volumes
 - Applies to CSG-like solids only (box, tubs, cons, para, trd, polycone, polyhedra)
 - Divides a volume in identical copies along one of its axis (copies are not strictly identical)
 - e.g. a tube divided along its radial axis
 - Offsets can be specified
- The possible axes of division vary according to the supported solid type
- Represents many touchable detector elements differing only in their positioning
- G4PVDivision is the class defining the division
 - The parameterisation is calculated automatically using the values provided in input

- **G4PVDivision** is a special kind of parameterised volume
 - The parameterisation is automatically generated according to the parameters given in G4PVDivision.
- Divided volumes are similar to replicas but ...
 - Allowing for gaps in between mother and daughter volumes
 - Planning to allow also gaps between daughters and gaps on side walls
- Shape of all daughter volumes must be same shape as the mother volume
 - Solid (to be assigned to the daughter logical volume) must be the same type, but different object.
- Replication must be aligned along one axis
- If no gaps in the geometry, G4PVReplica is recommended
 - For identical geometry, navigation in pure replicas is faster

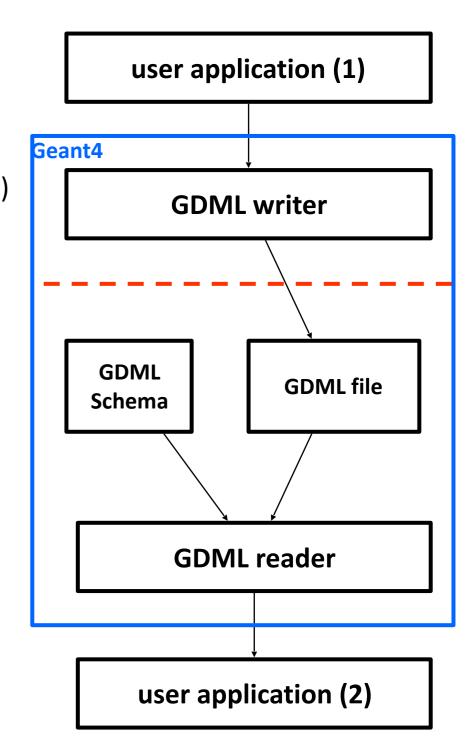

mother volume


```
G4PVDivision(const G4String& pName,
G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4int nDivisions, // both number of divisions
const G4double width, // and width are given
const G4double offset);
```

• *nDivisions* daughters of *width* thickness

Divisions are allowed for the following shapes / axes:

```
-G4Box : kXAxis, kYAxis, kZAxis
-G4Tubs : kRho, kPhi, kZAxis
-G4Cons : kRho, kPhi, kZAxis
-G4Trd : kXAxis, kYAxis, kZAxis
-G4Para : kXAxis, kYAxis, kZAxis
-G4Polycone : kRho, kPhi, kZAxis
-G4Polyhedra : kRho, kPhi, kZAxis
```


- **kPhi** the number of divisions has to be the same as solid sides, (i.e. **numSides**), the width will not be taken into account
- In the case of division along kRho of G4Cons, G4Polycone, G4Polyhedra, if width is provided, it is taken as the width at the -Z radius; the width at other radii will be scaled to this one

GDML

Importing and exporting detector descriptions

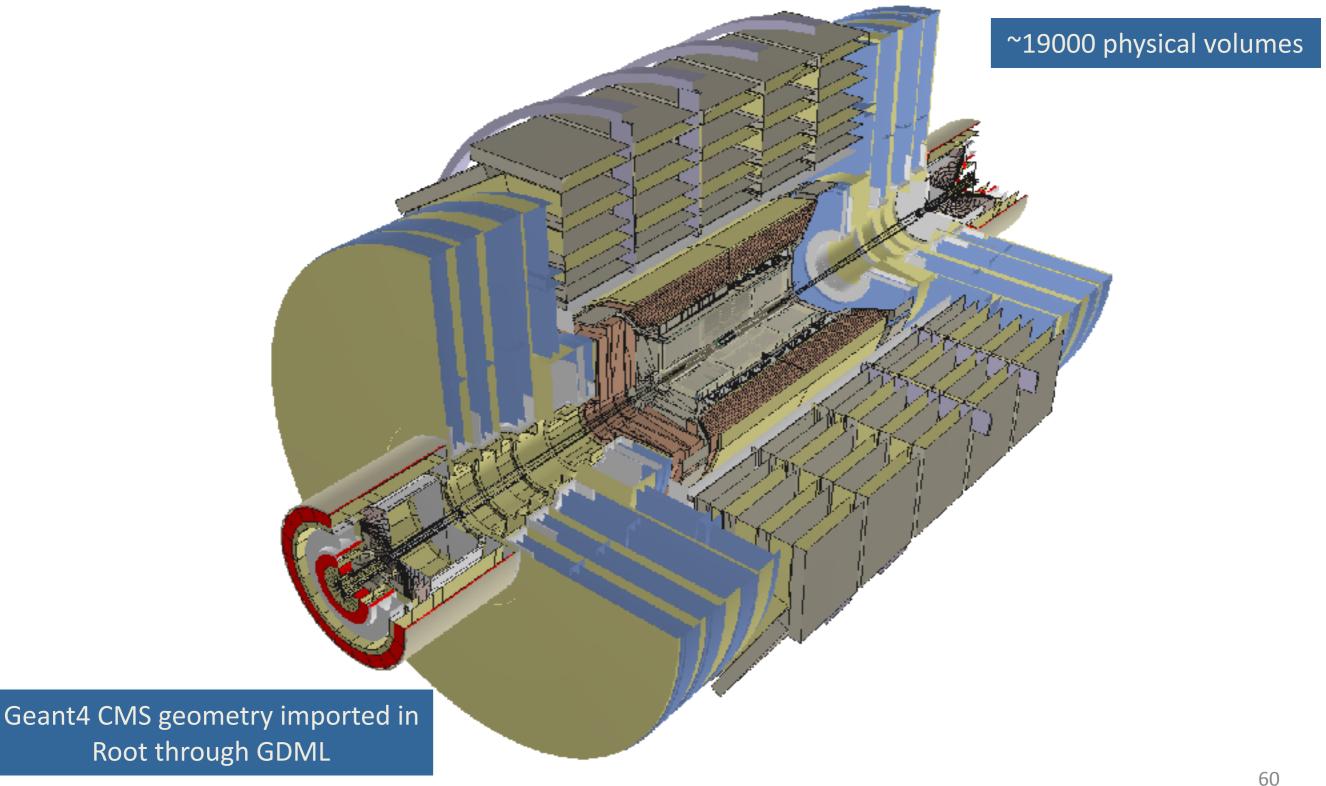
GDML components

- GDML (Geometry Description Markup Language) is defined through XML Schema (XSD)
 - XSD = XML based alternative to Document Type Definition (DTD)
 - defines document structure and the list of legal elements
 - XSD are in XML -> they are extensible
- GDML can be written by hand or generated automatically in Geant4
 - 'GDML writer' allows exporting a GDML file
- GDML needs a "reader", integrated in Geant4
 - 'GDML reader' imports and creates 'in-memory' the representation of the geometry description

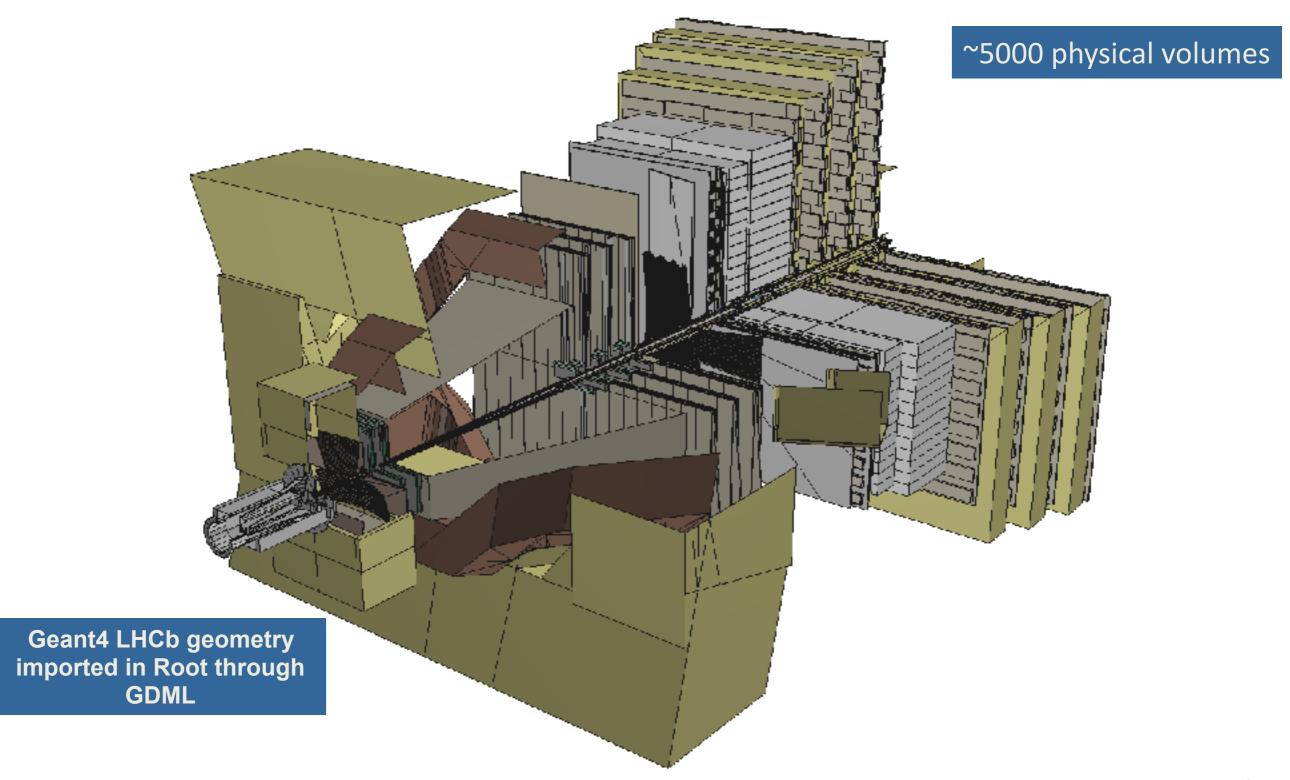
GDML Schema

- defines document structure and the list of legal elements
 - materials
 - material, isotope, element, mixture
 - solids
 - box, sphere, tube, cone, polycone, parallepiped, trapezoid, torus, polyhedra, hyperbolic tube, elliptical tube, ellipsoid
 - boolean solids
 - volumes
 - assembly volumes and reflections
 - replicas and divisions
 - parameterised volumes (position, rotation and size)
 - first implementation

GDML document




```
<?xml version="1.0" encoding="UTF-8"?>
                      <qdml xsi:noNamespaceSchemaLocation="GDMLSchema/qdml.xsd">
                         <define>
   positions,
                                 <position name="TrackerinWorldpos" unit="mm" x="0" y="0" z="100"/>
    rotations
                         </define>
                         <materials>
                                 <element name="Nitrogen" formula="N" Z="7.">
                                 <atom value="14.01"/> </element>
                                 <material formula=" " name="Air" >
                                            <D value="1.290" unit="mg/cm3"/>
   materials
                                                      <fraction n="0.7" ref="Nitrogen" />
                                                       <fraction n="0.3" ref="0xygen" />
                                 </material>
                         </materials>
                         <solids>
     solids
                                 <box lunit="mm" name="Tracker" x="50" y="50" z="50"/>
                         </solids>
                         <structure>
                                 <volume name="World" >
                                            <materialref ref="Air" />
                                                       <solidref ref="world" />
                                                       <physvol>
geometry tree
                                                       <volumeref ref="Tracker" />
                                                       <positionref ref="TrackerinWorldpos"/>
                                                       <rotationref ref="TrackerinWorldrot"/>
                                                       </physvol>
                                 </volume>
                         </structure>
                         <setup name="Default" version="1.0" >
                                 <world ref="World" />
                         </setup>
                      </adml>
     'world'
     volume
```

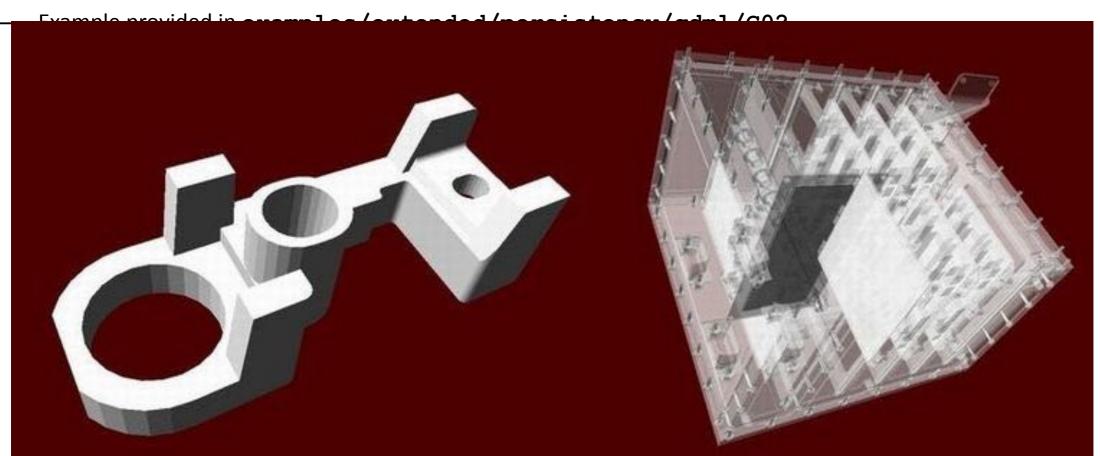

GDML – Geant4 binding

- XML schema available from http://cern.ch/gdml
 - Also available within Geant4 distribution
 - See in geant4/source/persistency/gdml/schema/
 - Latest schema release GDML_3_0_0 (as from 9.2 release)
- Requires XercesC++ XML parser
 - Available from: http://xerces.apache.org/xerces-c
 - Tested with versions 2.8.0 and 3.0.1
- Optional package to be linked against during build
 - G4LIB BUILD GDML and XERCESCROOT variables
 - Examples available: geant4/examples/extended/persistency/gdml

CMS detector through GDML

LHCb detector through GDML

Using GDML in Geant4

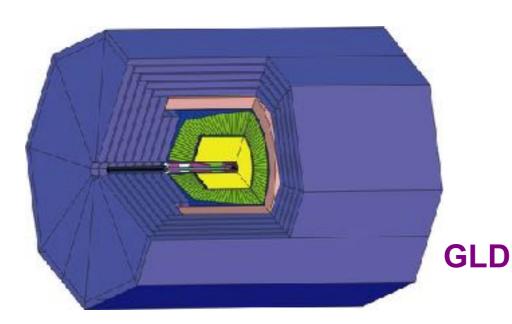

Using GDML in Geant4 - 2

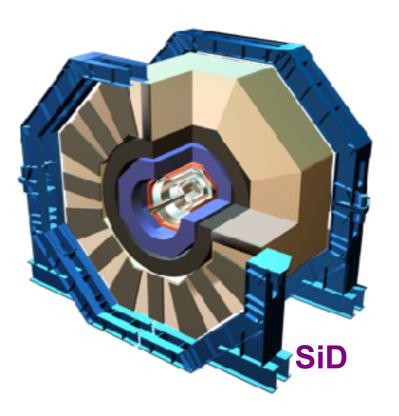
- Any geometry tree can be dumped to file
 - ... just provide its physical volume pointer (pVol): parser.Write("g4test.gdml", pVol);
- A geometry setup can be split in modules
 - ... starting from a geometry tree specified by a physical volume: parser.AddModule(pVol);
 - ... indicating the depth from which starting to modularize: parser.AddModule(depth);
- Provides facility for importing CAD geometries generated through STEP-Tools
- Allows for easy extensions of the GDML schema and treatment of auxiliary information associated to volumes
- Full coverage of materials, solids, volumes and simple language constructs (variables, loops, etc...)

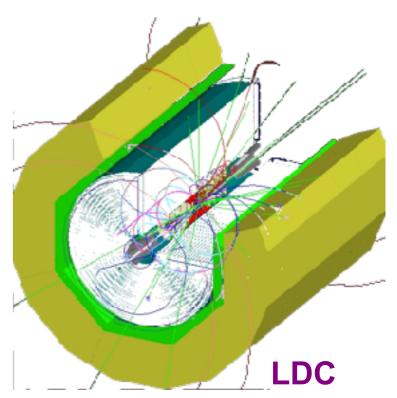
Importing CAD geometries with GDML

CAD geometries generated through STEP-Tools (stFile.geom, stFile.tree files)
 can be imported through the GDML reader:

-parser.ParseST("stFile", WorldMaterial, GeomMaterial);

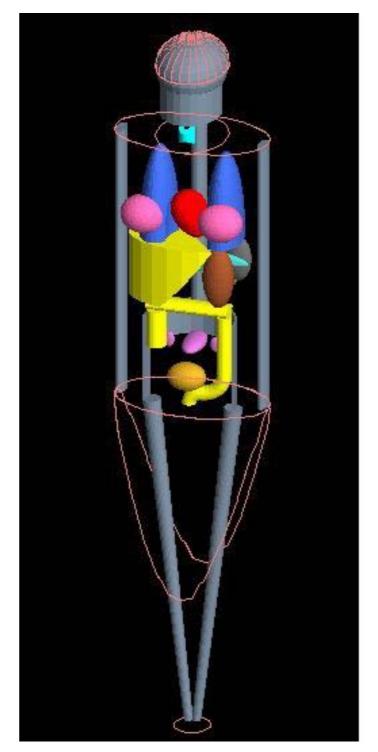

Tools like FastRad allow for importing CAD STEP files and directly convert to GDML


GDML processing performance


- GDML reader/writer tested on
 - complete LHCb and CMS geometries
 - parts of ATLAS geometry
 - full ATLAS geometry includes custom solids
- for LHCb geometry (~5000 physical volumes)
 - writing out ~10 seconds (on P4 2.4GHz)
 - reading in ~ 5 seconds
 - file size ~2.7 Mb (~40k lines)
- for CMS geometry (~19000 physical volumes)
 - writing out ~30 seconds
 - reading in ~15 seconds
 - file size ~7.9 Mb (~120k lines)

GDML as primary geometry source

- Linear Collider
 - Linear Collider Detector Description (LCDD) extends GDML with Geant4-specific information (sensitive detectors, physics cuts, etc)
 - GDML/LCDD is generic and flexible
 - several different full detector design concepts, including SiD, GLD, and LDC, where simulated using the same application


GDML as primary geometry source - 2

- Space Research @ ESA
 - Geant4 geometry models
 - component degradation studies (JWST, ConeXpress,...)
 - GRAS (Geant4 Radiation Analysis for Space)
 - enables flexible geometry configuration and changes
 - main candidate for CAD to Geant4 exchange format

GDML as primary geometry source - 3

- Anthropomorphic Phantom
 - Modeling of the human body and anatomy for radioprotection studies
 - no hard-coded geometry, flexible configuration

