

Interactions of Particles/Radiation with Matter

ESIPAP : European School in Instrumentation for Particle and Astroparticle Physics

Non-exhaustive list of « Particles/Radiation » and « Matter »

PARTICLES

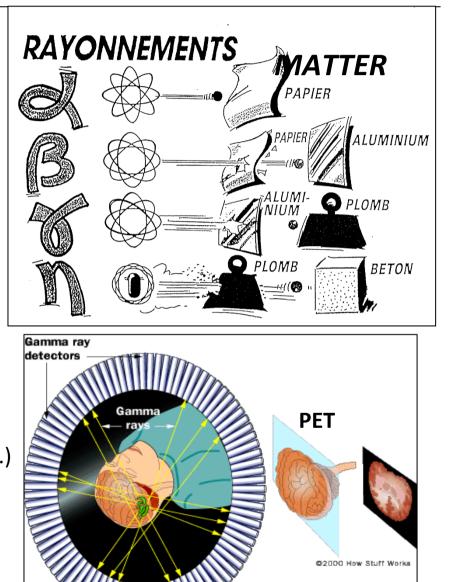
RADIATION

• ⁴ ₂ He	lpha radiation
• e [±]	β^{\pm} radiation
•γ	e.m, X, γ radiation
• μ, γ, e [±] , π, ν ,ρ	cosmic radiation

PARTICLES <--> RADIATION

2 aspects of the same « entity »

De Broglie relation

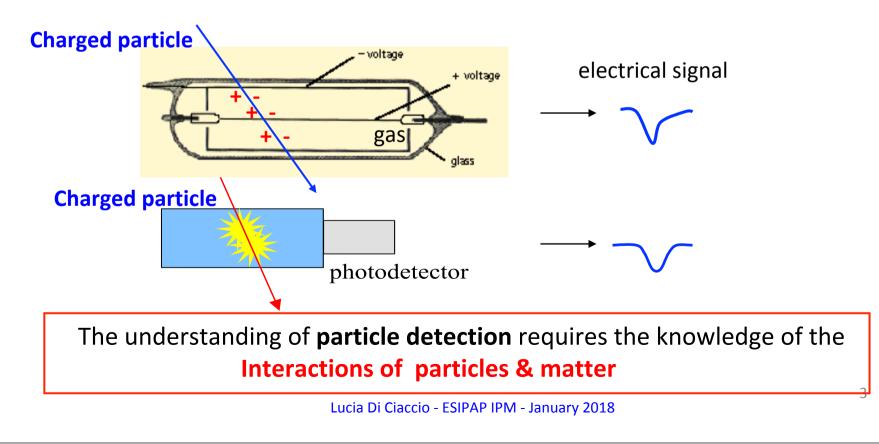

$\lambda = h/p$

(h = Planck constant)

MATTER

- detectors
- humain tissus/body
- electronic circuits
- Louvre paintings
- beauty cream, potatos, ...

(research, medical app.,..) (medical app.)

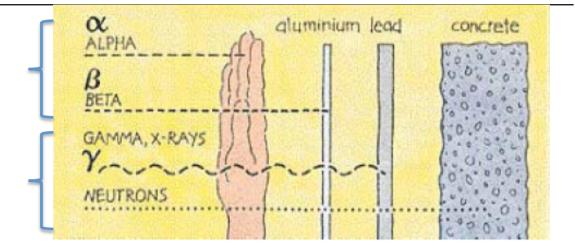


Motivation

- The interaction between particles & matter is at the base of several human activities
- Plenty of applications not only in research and not only in Particle & Astroparticle

Very important for particle detection !

In order to detect a particle, the latter must interact with the material of the detector, and produce 'a (detectable) signal'



Brief outline and bibliography

Two lectures + two tutorials

- Interaction of charged particles
 « heavy » (m_{Pa} >>m_e)
 « light » (m_{Pa} ~ m_e)
- Interaction of neutral particles

Photons Neutral Hadrons: n, π^0 , ...

- Radiation detection and measurement, G.F. Knoll, J. Wiley & Sons
- Experimental Techniques in High Energy Nuclear and Particle Physics, T. Ferbel, World Scientific
- Introduction to experimental particle physics, R. Fernow, Cambridge University Press
- Techniques for Nuclear and Particle Physics Experiments , W.R. Leo, Springer-Verlag
- Detectors for Particle radiation, K. Kleinknecht, Cambridge University Press
- Particle detectors, C. Grupen, Cambridge monographs on particle physics
- Principles of Radiation Interaction in Matter and Detection, C. Leroy, P.G. Rancoita,

World Scientific

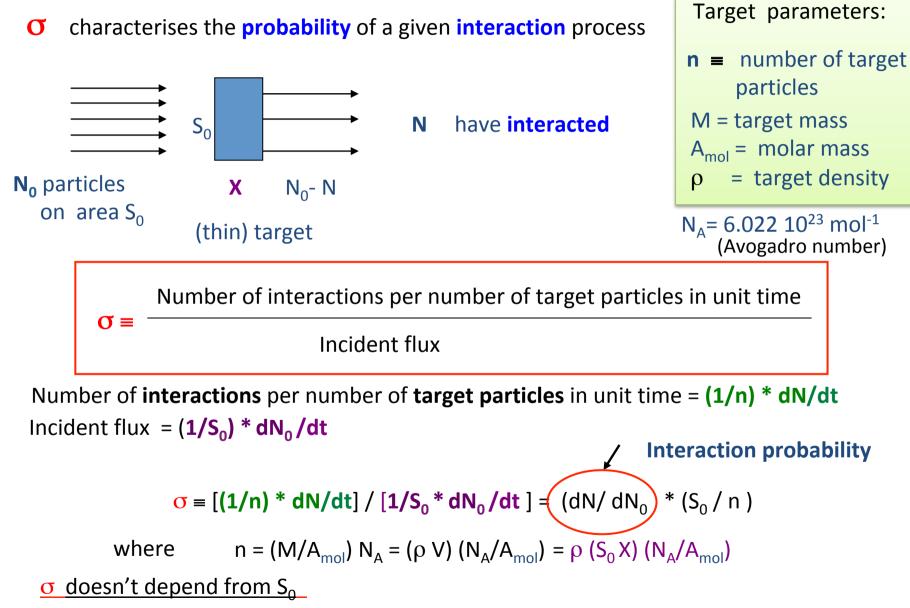
- Nuclei and particles, Emilio Segré, W.A. Benjamin
- High-Energy Particles, Bruno Rossi, Prentice-Hall

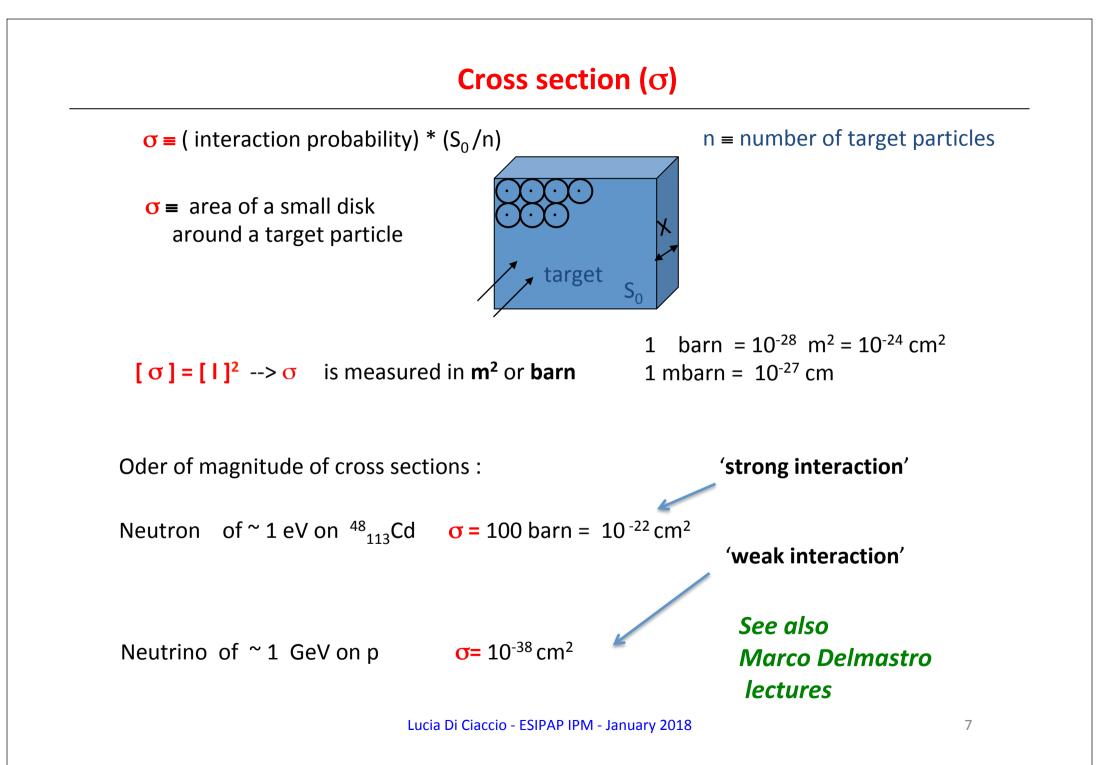
"The classic "

Also: Particle Data Group

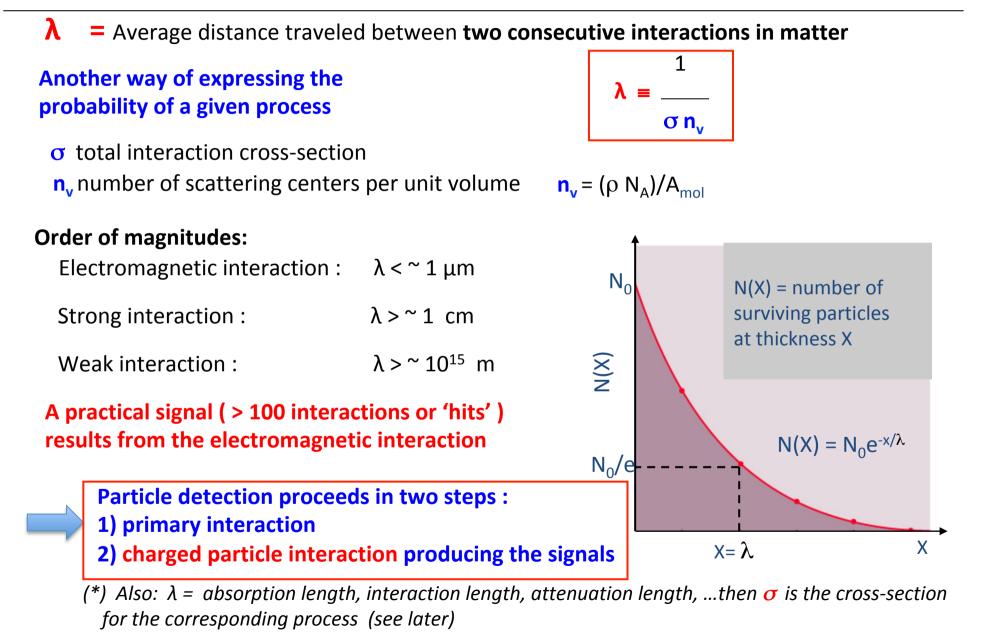
http://pdg.lbl.gov/2017/reviews/rpp2017-rev-passage-particles-matter.pdf

For 'professionals'(*): GEANT4 (for GEometry ANd Tracking) (Platform for the simulation of the passage of the particles through the matter Using Monte Carlo simulation)

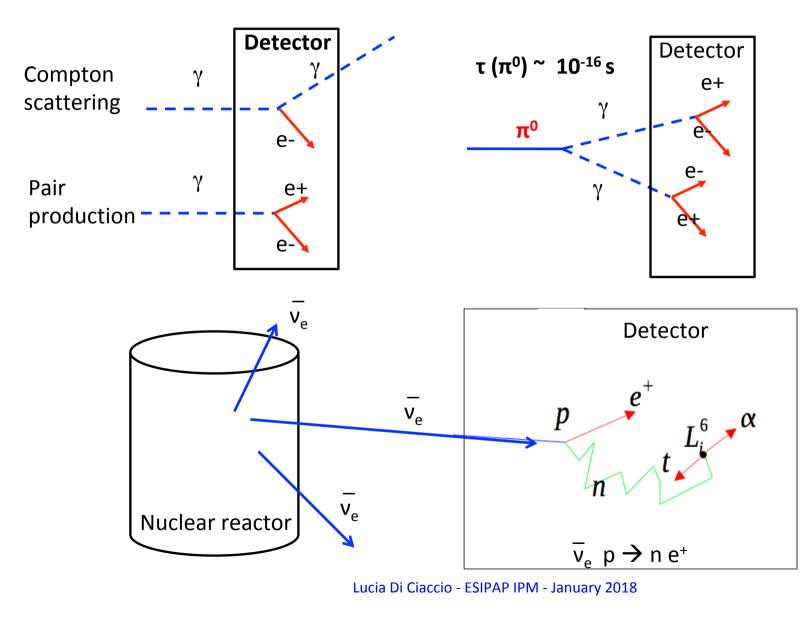

My slides have been inspired by :


Hans Christian Schultz-Coulon's lectures

Johann Collot @ ESIPAP 2014

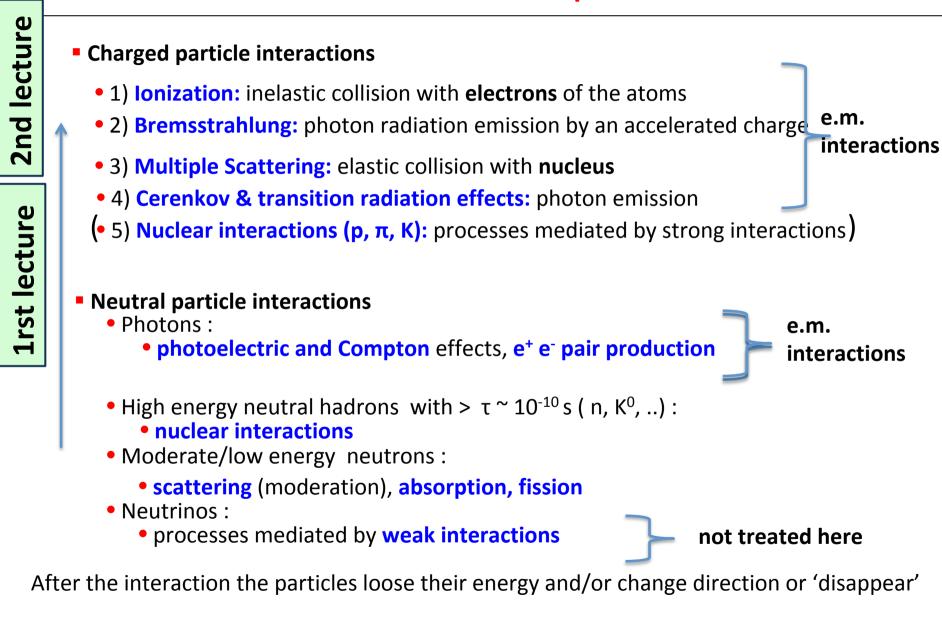

(*) more exists: Fluka Garfield (simulation gas detector)

Interaction Cross Section (σ) definition



Mean free path λ (*)

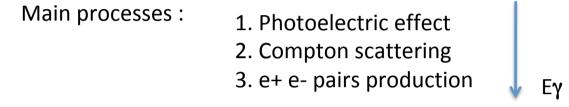
Examples: detection of photons(γ), $\pi^0(2\gamma)$, neutrons(n), neutrinos (v)


Signals are induced by e.m. interactions of charged particles in detectors

Useful relations of relativistic Kinematics and HEP units

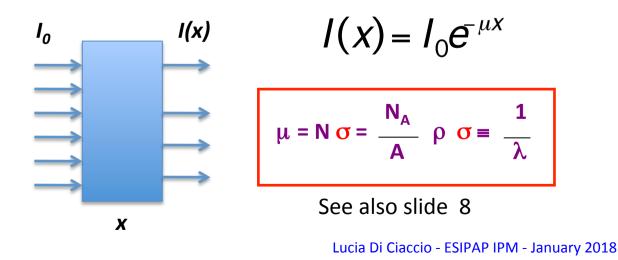
•
$$\overrightarrow{p} = m_0 \gamma \overrightarrow{v}$$
 $\gamma = \frac{1}{\sqrt{1-\beta^2}}$ $\beta = v/c$
• Kinetic energy $E_k = (\gamma-1) m_0 c^2$
• Kinetic energy $E = \sqrt{(pc)^2 + (m_0 c^2)^2}$
• Total energy $E = \sqrt{(pc)^2 + (m_0 c^2)^2}$
• Total energy $E = E_k + m_0 c^2 = m_0 \gamma c^2 = m c^2$ $\gamma = E/(m_0 c^2)$
 $E = m c^2$ « equivalence mass & energy »
Units :
 $[E] = eV$ $[m] = eV/c^2$ $[p] = eV/c$
« Natural units » $h = 1$ $[c] = \frac{[1]}{[t]}$ $[1] = [t]$ See Marco Delmastro
 $lectures$
« Natural units » $h = 1$ $[c] = [m] = [v] = [t]^{-1}$
Units = [E] = [p] = [m] = [v] = [t]^{-1}

Outline: main interaction processes


Neutral particle interactions

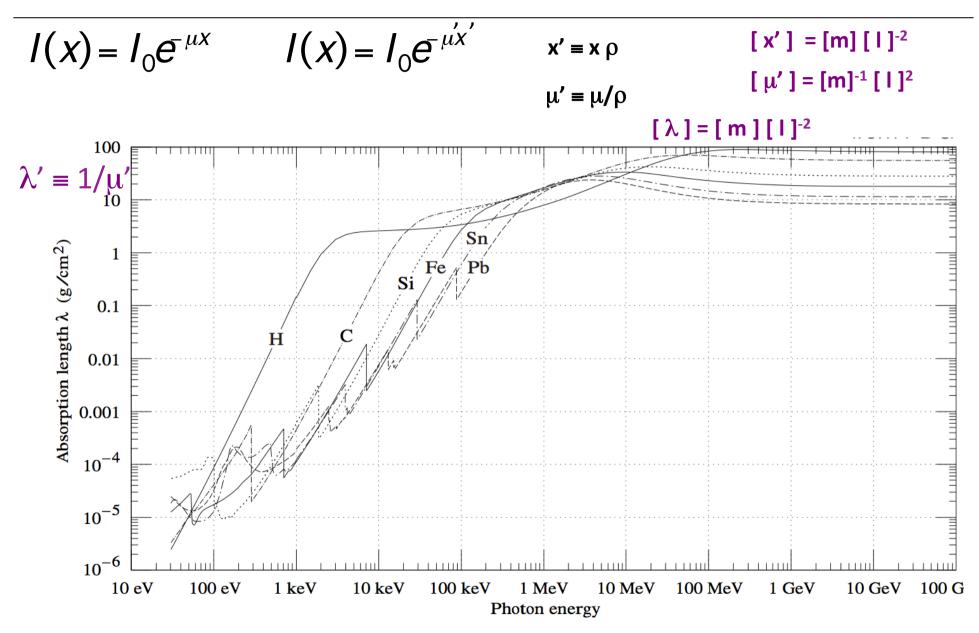
- Photons
- High energy neutral hadrons with > $\tau \sim 10^{-10}$ s (n, K⁰, ..) :
- Moderate/low energy neutrons

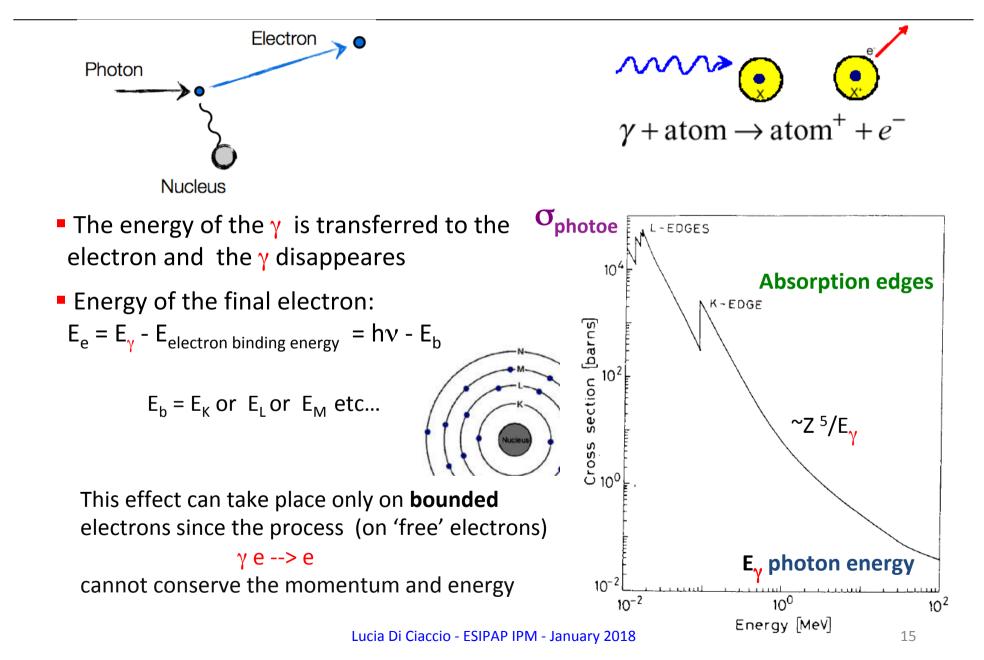
Interactions of photons (y)


 γ : particles with $m_{\gamma} = 0$, $q_{\gamma} = 0$, $J^{PC}(\gamma) = 1^{--1}$

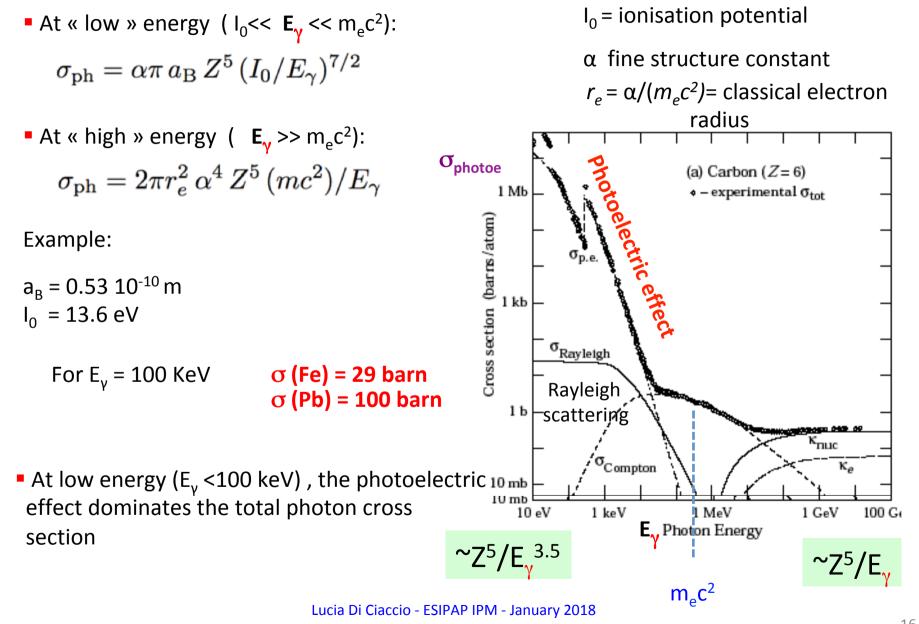
Since $\mathbf{q}_{\gamma} = \mathbf{0}$, the photons are **indirectly** detected : in their interactions they produce **electrons** and/or **positrons** which subsequently interact (**e.m.**) with matter.

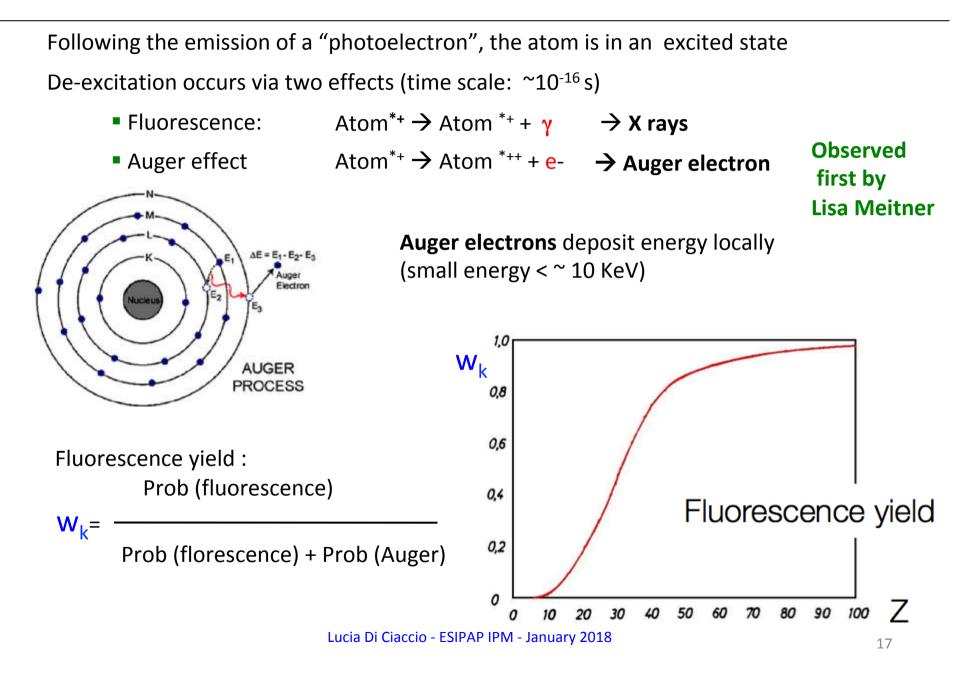
Photons may be **absorbed** (photoelectric effect or e+e- pair creation) or **scattered** (Compton scattering) through large deflection angles.


ightarrow difficult to define a mean range ightarrow an attenuation law is introduced :

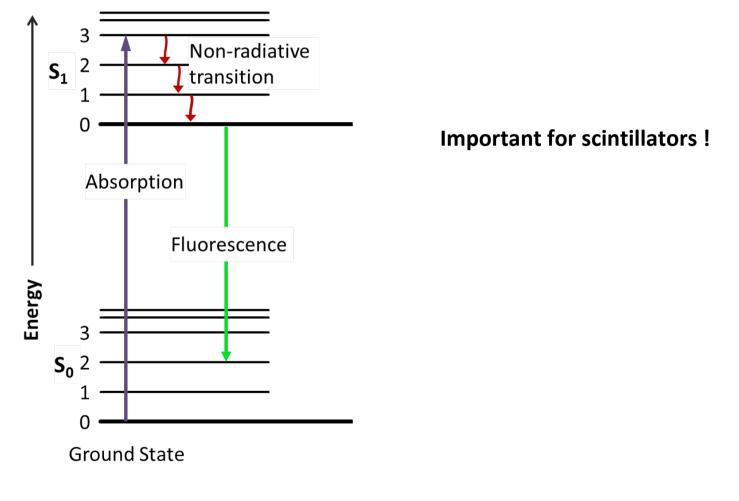

μ absorption coefficient

- N atoms/m³
- A masse molaire
- N_A nombre Avogadro
- ρ density
- σ Photon cross section
- λ Mean free path or absorption lenght


γ Absorption lenght ($\lambda' \equiv 1/\mu'$)

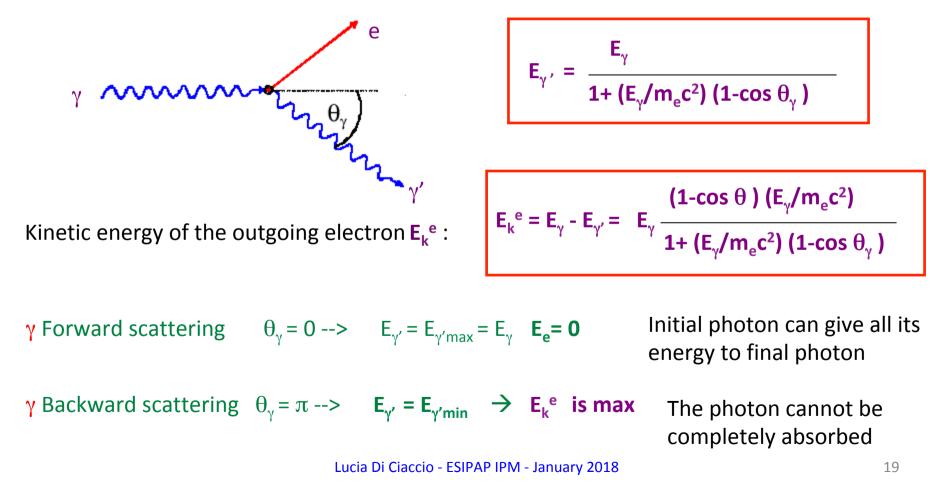

1.Photoelectric effect

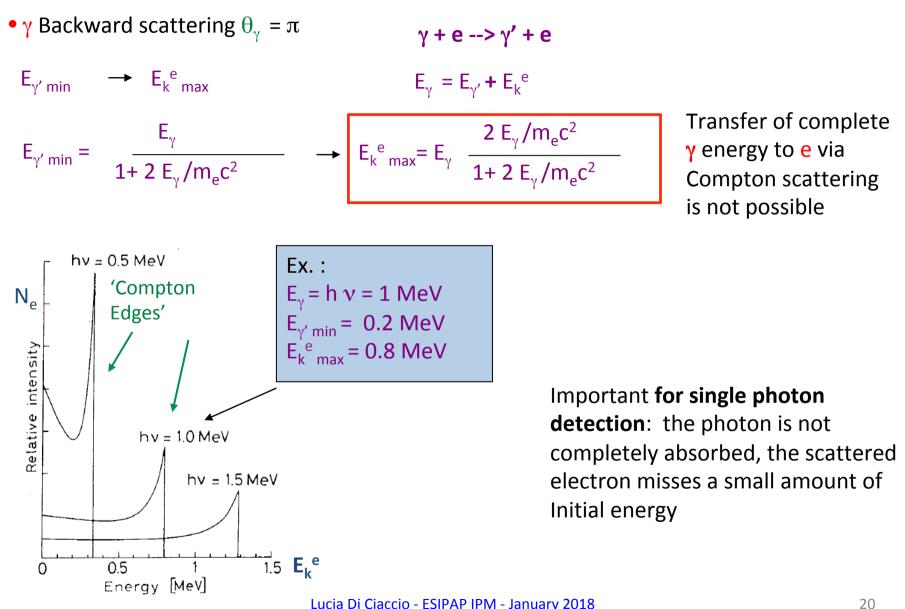
1.Photoelectric effect



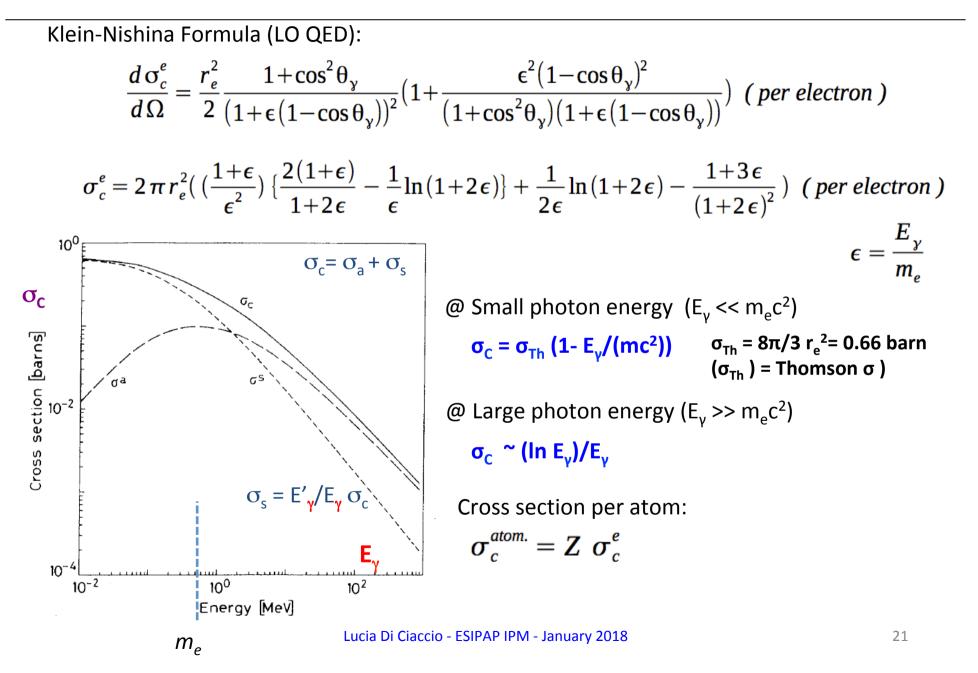
Atom de-excitation (after photoelectric effect)

General definition of fluorescence

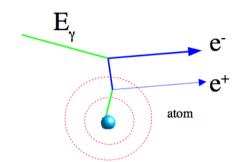

Emission of light by a substance that has absorbed light or other electromagnetic radiation. Energy levels in a molecule :

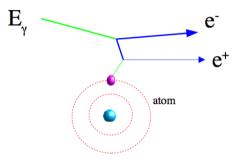

2. Compton scattering

Scattering of γ on « **free** » electrons $\gamma + e - \gamma' + e$


In the matter electrons are bounded. When the γ energy , ${\rm E}_{\gamma}>>$ binding electron energy the electron can be considered as free.

Compton Edges


Compton Cross Section


3. Pair production: $\gamma \rightarrow e+e-$

Called also photon conversion

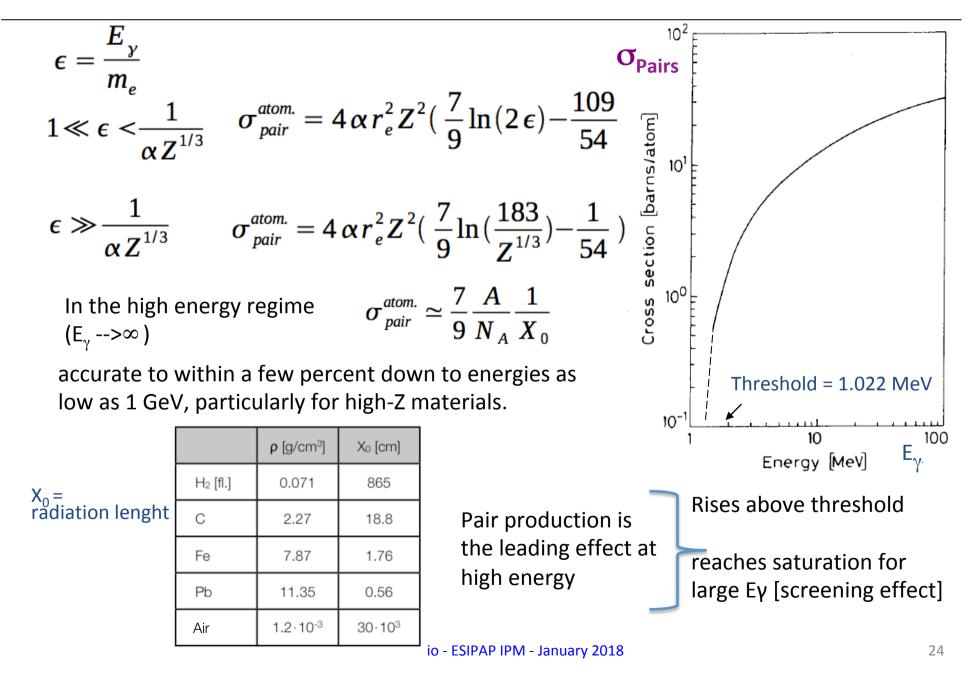
For energy-momentum conservation this process cannot take place in 'vacuum', an interaction with an electromagnetic field is necessary

Pair production in the field of the nucleus

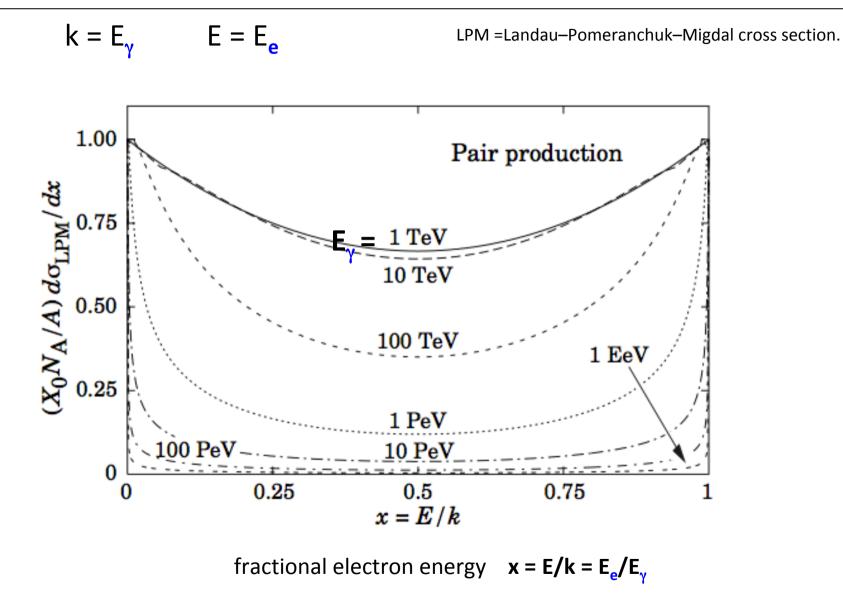
Pair production in the field of **an electron** (smaller probability $\sim 1/Z$)

Threshold process : $\mathbf{E}_{\gamma} > 2 \text{ m}_{e}\text{c}^{2} (1 + \text{m}_{e}/\text{m}_{x})$ $m_{x} = m_{N}$ $m_{x} = m_{e}$

Kinetic energy transferred to the "target" (nucleus or electrons)


First experimental observation of a positron

direction of the

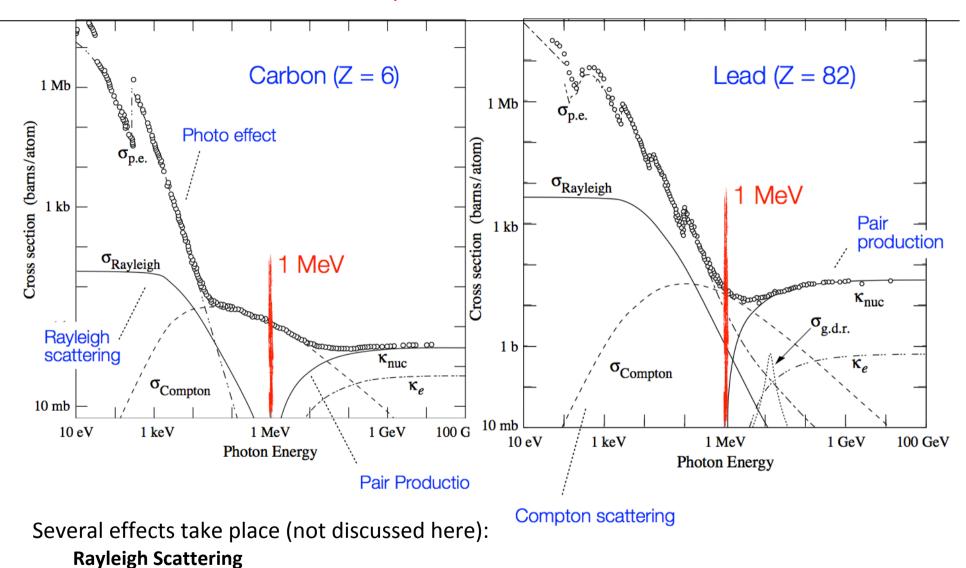
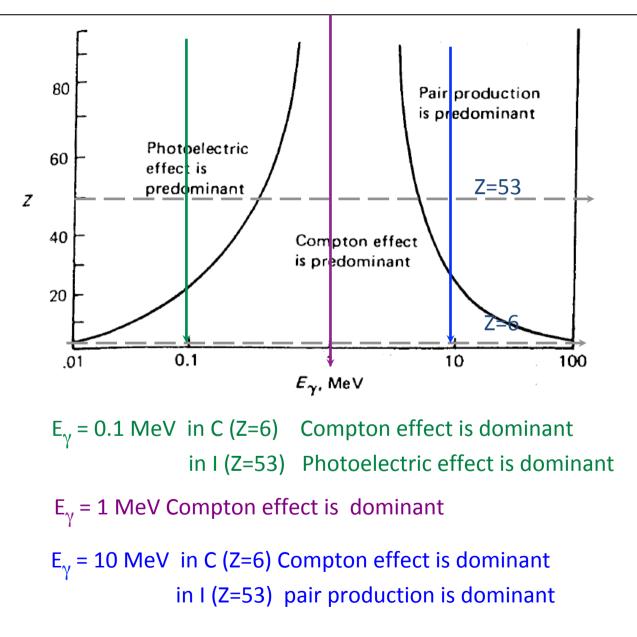

high-energy photon

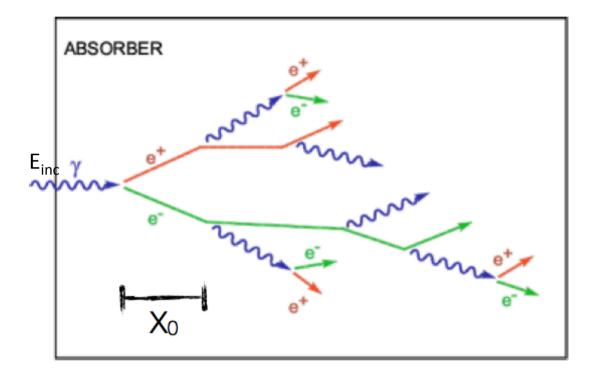
Production of an electron-positron pair by a high-energy photon in a Pb plate

e⁺ e⁻ pair production cross-section

Normalized e⁺ e⁻ pair production cross section

γ total cross section


Photo Nuclear Interactions (giant dipole resonance).

Dependence on Z et on E

Electromagnetic showers

Dominant processes for photons (and electrons) at very high energies

$$t_{max} = \ln \frac{E_{inc}}{Ec} - \frac{1}{0.5} \begin{bmatrix} e - \\ gamma \end{bmatrix}$$

$$L 95\% \approx t_{max} + 0.08 Z + 9.6 [X0]$$

L 95% = longitudinal shower containment

 $t_{\rm max}$ =depth in ratio length units, where the max energy is deposited

 E_{in} = incoming photon energy

 E_c = critical energy

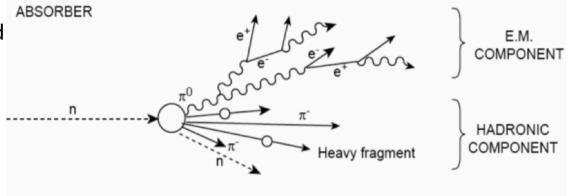
Also electrons can start e.m. showers

Hadron collisions and interaction lengths

The total cross section for very high energy hadrons is expressed as:

$$\sigma_{\rm T} = \sigma_{\rm elastic} + \sigma_{\rm inelastic}$$

The inelastic part of the total cross-section is susceptible to induce a hadron shower (increase of particles multiplicity)


Two mean lengths are introduced

nuclear collision length

$$\lambda_T = \frac{A}{N_A \sigma_T} \mathrm{g} \mathrm{cm}^{-2}$$

nuclear interaction length

$$\lambda_I = \frac{A}{N_A \sigma_{inelastic}} \mathrm{g} \,\mathrm{cm}^{-2}$$

See M. Delmastro slides for more details

95% containment of a hadronic shower is for a thickness of :

L 95%(in units of λ_1) ~ 1+1.35 ln (E(GeV))

→ ~ 10 interaction lengths are needed to contain a 1 TeV hadronic shower

In high A materials $\lambda_1 > X_0$ This explains why hadron calorimeters are after installed electromagnetic

6. ATOMIC ANI) NUCLEAR	PROPERTIES	OF MATERIALS
---------------	-----------	------------	--------------

Table 6.1. Abridged from pdg.lbl.gov/AtomicNuclearProperties by D. E. Groom (2007). Quantities in parentheses are for NTP (20° C and 1 atm), and square brackets indicate quantities evaluated at STP. Boiling points are at 1 atm. Refractive indices n are evaluated at the sodium D line blend (589.2 nm); values $\gg 1$ in brackets are for $(n-1) \times 10^6$ (gases).

Material	Z	Α	$\langle Z/A \rangle$	Nucl.coll.	Nucl.inter.	Rad.len.	$dE/dx _{min}$	n Density	Melting	Boiling	Refract.
				length λ_T	length λ_I	X_0	{ MeV	$\{g \ cm^{-3}\}$	point	point	index
					$\{g \text{ cm}^{-2}\}$	$g \text{ cm}^{-2}$			(K)	(K)	(@ Na D)
				{g cm -}	{g cm -}	g cm -}	g -cm-}	$(\{g\ell^{-1}\})$	(N)	(K)	(@ Na D)
H_2	1	1.00794(7)	0.99212	42.8	52.0	63.04	(4.103)	0.071(0.084)	13.81	20.28	1.11[132.]
D_2	1	2.01410177803(8)	0.49650	51.3	71.8	125.97	(2.053)	0.169(0.168)	18.7	23.65	1.11[138.]
He	2	4.002602(2)	0.49967	51.8	71.0	94.32	(1.937)	0.125(0.166)		4.220	1.02[35.0]
Li	3	6.941(2)	0.43221	52.2	71.3	82.78	1.639	0.534	453.6	1615.	
Be	4	9.012182(3)	0.44384	55.3	77.8	65.19	1.595	1.848	1560.	2744.	
C diamond	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.725	3.520			2.42
C graphite	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.742	2.210			
N_2	7	14.0067(2)	0.49976	61.1	89.7	37.99	(1.825)	0.807(1.165)	63.15	77.29	1.20[298.]
O_2	8	15.9994(3)	0.50002	61.3	90.2	34.24	(1.801)	1.141(1.332)	54.36	90.20	1.22[271.]
F_2	9	18.9984032(5)	0.47372	65.0	97.4	32.93	(1.676)	1.507(1.580)	53.53	85.03	[195.]
$\begin{array}{c} O_2 \\ F_2 \\ Ne \end{array}$	10	20.1797(6)	0.49555	65.7	99.0	28.93	(1.724)	1.204(0.839)	24.56	27.07	1.09[67.1]
Al	13	26.9815386(8)	0.48181	69.7	107.2	24.01	1.615	2.699	933.5	2792.	
Si	14	28.0855(3)	0.49848	70.2	108.4	21.82	1.664	2.329	1687.	3538.	3.95
Cl_2	17	35.453(2)	0.47951	73.8	115.7	19.28	(1.630)	1.574(2.980)	171.6	239.1	[773.]
Ar	18	39.948(1)	0.45059	75.7	119.7	19.55	(1.519)	1.396(1.662)	83.81	87.26	1.23[281.]
Ti	22	47.867(1)	0.45961	78.8	126.2	16.16	1.477	4.540	1941.	3560.	
Fe	26	55.845(2)	0.46557	81.7	132.1	13.84	1.451	7.874	1811.	3134.	
Cu	29	63.546(3)	0.45636	84.2	137.3	12.86	1.403	8.960	1358.	2835.	
Ge	32	72.64(1)	0.44053	86.9	143.0	12.25	1.370	5.323	1211.	3106.	
Sn	50	118.710(7)	0.42119	98.2	166.7	8.82	1.263	7.310	505.1	2875.	
Xe	54	131.293(6)	0.41129	100.8	172.1	8.48	(1.255)	2.953(5.483)	161.4	165.1	1.39[701.]
W	74	183.84(1)	0.40252	110.4	191.9	6.76	1.145	19.300	3695.	5828.	
Pt	78	195.084(9)	0.39983	112.2	195.7	6.54	1.128	21.450	2042.	4098.	
Au	79	196.966569(4)	0.40108	112.5	196.3	6.46	1.134	19.320	1337.	3129.	
Pb	82	207.2(1)	0.39575	114.1	199.6	6.37	1.122	11.350	600.6	2022.	
U	92	[238.02891(3)]	0.38651	118.6	209.0	6.00	1.081	18.950	1408.	4404.	

								D. alt	
Material Z A	$\langle Z/A \rangle$	Nucl.coll.	Nucl.inter.	Rad.len.	$dE/dx _{min}$		Melting	Boiling	Refract.
		length λ_T	length λ_I	X_0	{ MeV	$\{g \ cm^{-3}\}$	point	point	index
		$\{\sigma \ cm^{-2}\}$	$\{g \text{ cm}^{-2}\}$	$\{g \text{ cm}^{-2}\}$	$g^{-1}cm^2$	$(\{g\ell^{-1}\})$	(K)	(K)	(@ Na D)
1		(g cm)	te cm j	te cm j	g cm j	([8~])	(11)	(11)	(0142)
Air (dry, 1 atm)	0.49919	61.3	90.1	36.62	(1.815)	(1.205)		78.80	
Shielding concrete	0.50274	65.1	97.5	26.57	1.711	2.300			
Borosilicate glass (Pyrex)	0.49707	64.6	96.5	28.17	1.696	2.230			
Lead glass	0.42101	95.9	158.0	7.87	1.255	6.220			
Standard rock	0.50000	66.8	101.3	26.54	1.688	2.650			
Methane (CH_4)	0.62334	54.0	73.8	46.47	(2.417)	(0.667)	90.68	111.7	[444.]
Ethane (C_2H_6)	0.59861	55.0	75.9	45.66	(2.304)	(1.263)	90.36	184.5	
Butane (C_4H_{10})	0.59497	55.5	77.1	45.23	(2.278)	(2.489)	134.9	272.6	
Octane (C_8H_{18})	0.57778	55.8	77.8	45.00	2.123	0.703	214.4	398.8	
Paraffin ($CH_3(CH_2)_{n\approx 23}CH_3$)	0.57275	56.0	78.3	44.85	2.088	0.930			
Nylon (type $6, 6/6$)	0.54790	57.5	81.6	41.92	1.973	1.18			
Polycarbonate (Lexan)	0.52697	58.3	83.6	41.50	1.886	1.20			
Polyethylene ([CH ₂ CH ₂] _n)	0.57034	56.1	78.5	44.77	2.079	0.89			
Polyethylene terephthalate (Mylar)	0.52037	58.9	84.9	39.95	1.848	1.40			
Polymethylmethacrylate (acrylic)	0.53937	58.1	82.8	40.55	1.929	1.19			1.49
Polypropylene	0.55998	56.1	78.5	44.77	2.041	0.90			
Polystyrene ([C ₆ H ₅ CHCH ₂] _n)	0.53768	57.5	81.7	43.79	1.936	1.06			1.59
Polytetrafluoroethylene (Teflon)	0.47992	63.5	94.4	34.84	1.671	2.20			
Polyvinyltoluene	0.54141	57.3	81.3	43.90	1.956	1.03			1.58
Aluminum oxide (sapphire)	0.49038	65.5	98.4	27.94	1.647	3.970	2327.	3273.	1.77
Barium flouride (BaF ₂)	0.42207	90.8	149.0	9.91	1.303	4.893	1641.	2533.	1.47
Carbon dioxide gas (CO_2)	0.49989	60.7	88.9	36.20	1.819	(1.842)			[449.]
Solid carbon dioxide (dry ice)	0.49989	60.7	88.9	36.20	1.787	1.563	Sublimes	s at 194.7	K
Cesium iodide (CsI)	0.41569	100.6	171.5	8.39	1.243	4.510	894.2	1553.	1.79
Lithium fluoride (LiF)	0.46262	61.0	88.7	39.26	1.614	2.635	1121.	1946.	1.39
Lithium hydride (LiH)	0.50321	50.8	68.1	79.62	1.897	0.820	965.		
Lead tungstate (PbWO ₄)	0.41315	100.6	168.3	7.39	1.229	8.300	1403.		2.20
Silicon dioxide (SiO ₂ , fused quartz)	0.49930	65.2	97.8	27.05	1.699	2.200	1986.	3223.	1.46
Sodium chloride (NaCl)	0.55509	71.2	110.1	21.91	1.847	2.170	1075.	1738.	1.54
Sodium iodide (NaI)	0.42697	93.1	154.6	9.49	1.305	3.667	933.2	1577.	1.77
Water (H_2O)	0.55509	58.5	83.3	36.08		1.000(0.756)	273.1	373.1	1.33
Silica aerogel	0.50093	65.0	97.3	27.25	1.740	0.200	(0.03 H ₂	O, 0.97 Si	O ₂)

Neutron interactions

Electric charge of the neutron \mathbf{n} : $\mathbf{q}_{n} = \mathbf{0}$

⇒ The n interacts via « strong interaction » with nuclei (short range force ~ 10⁻¹³ cm)

Classification of neutrons:

Cold or ultracold neutrons $E_n < 0.025 \text{ eV}$ Thermal or slow neutrons $E_n \sim 0.025 \text{ eV}$ Intermediate neutrons $E_n \sim 0.025 \text{ eV} \div 0.1 \text{ MeV}$ Fast neutrons $E_n \sim 0.1 \div 10-20 \text{ MeV}$ High energy neutrons $E_n > 20 \text{ MeV}$

Additional classification:

Slow neutrons	(absorbed)	E _n < ~ 0.5 MeV	
Fast neutrons		E _n > ~ 0.5 MeV	E = 0.5 MeV = 'cadmium cutoff'

Main interaction processes of **n**: scattering (elastic and inelastic), absorption, fission hadron shower production depending on the neutron energy

Neutron interactions

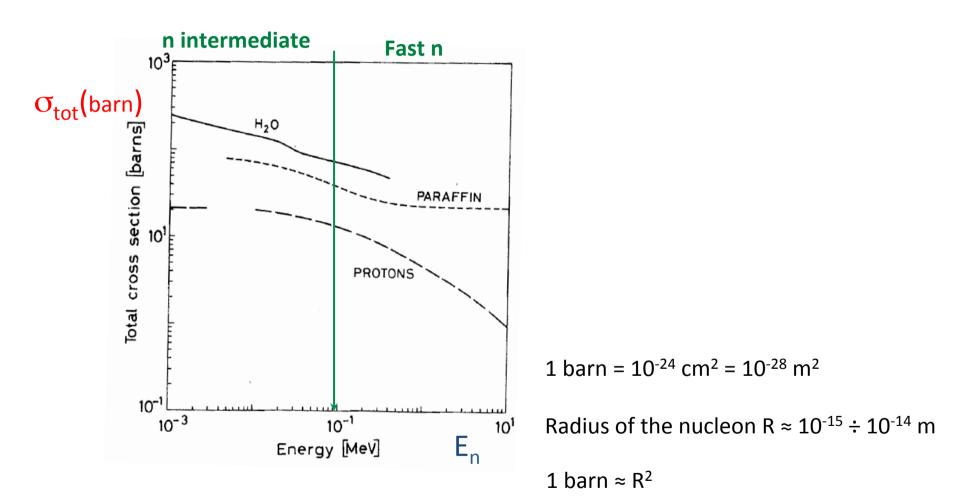
Scattering with nuclei : $n + {}^{A}_{Z}X \rightarrow {}^{A}_{Z}X^{(*)} + n$ Elastic \rightarrow important for moderation Inelastic

Absorption & Nuclear reactions:

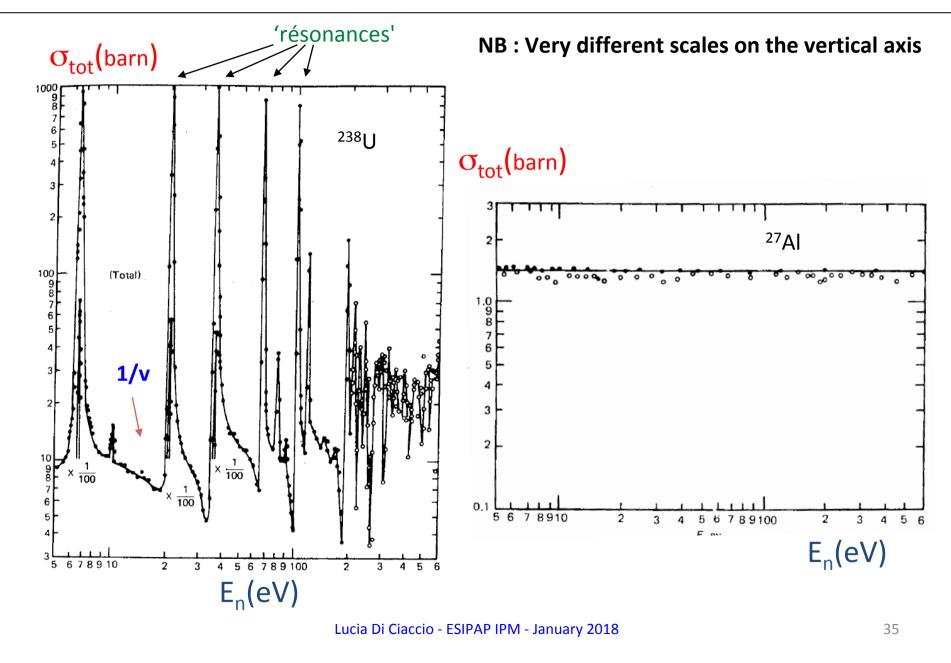
$$n + {}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + p$$

$$n + {}^{A}_{Z}X \rightarrow {}^{A-3}_{Z-2}Y + {}^{4}_{2}H_{e}$$

$$n + {}^{A}_{Z}X \rightarrow {}^{A-1}_{Z}X + 2n$$


$$n + {}^{A}_{Z}X \rightarrow {}^{A-1}_{Z}X + \gamma$$
radiative capture of n
$$n + {}^{A}_{Z}X \rightarrow {}^{A+1}_{Z}Y + {}^{A2}_{Z2}Y + n + n + ...$$
Fission:
$$n + {}^{A}_{Z}X \rightarrow {}^{A1}_{Z2}Y + {}^{A2}_{Z2}Y + n + n + ...$$
fission

Cross section $\approx 1/v_n$ (more probable for low energy) + resonant peaks

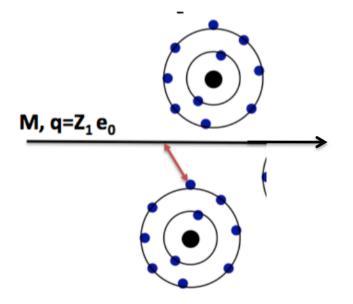

Hadron shower $E_n > \sim 100 \text{ MeV}$

Cross section of low energy neutrons (n)

Neutron cross section on H₂O, paraffine and protons

Low energy neutron (n) cross section

Charged particle interactions

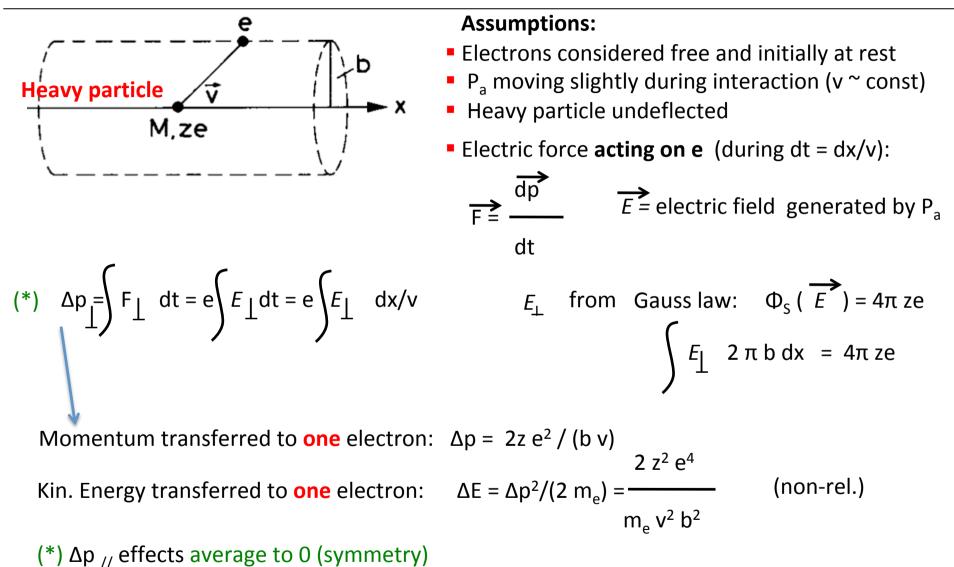

- 1) Ionization: inelastic collision with electrons of the atoms
- 2) Bremsstrahlung: photon radiation emission by an accelerated charge
- 3) Multiple Scattering: elastic collision with nucleus
- 4) Cerenkov & transition radiation effects: photon emission
- (• 5) Nuclear interactions (p, π , K): processes mediated by strong interactions)

1) Inelastic collision with electrons of the atoms

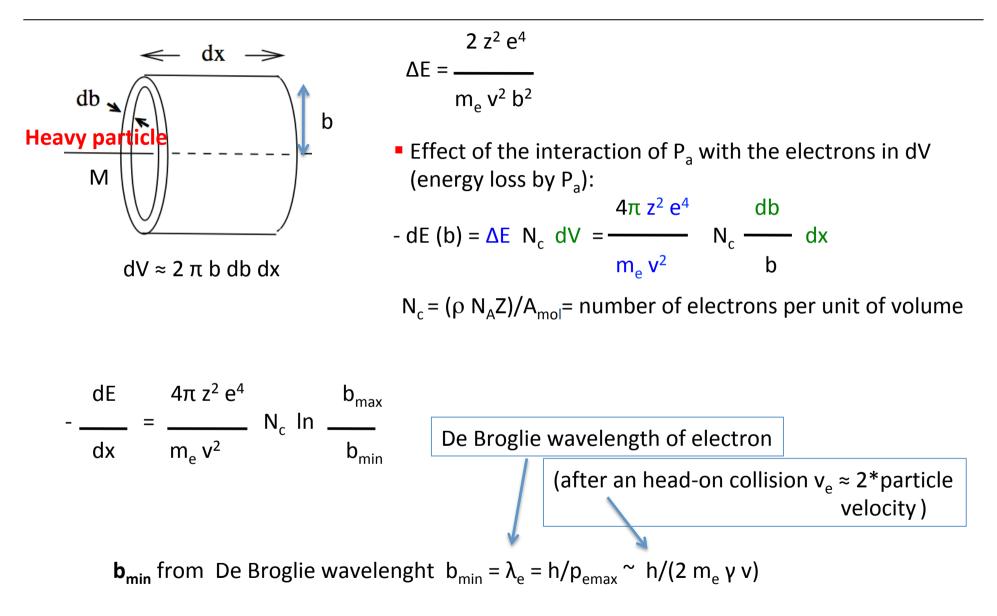
Main e.m. process for heavy ($M_{Pa} >> m_e$) charged particles P_a (ex. μ) ionisation +Ze P_a + atom ---> atom⁺ + e⁻ + P_a excitation Ρ P_a + atom ---> atom* + P_a ___ atom + γ

- Both processes together (ionization & excitation) can also happen
- Inelastic collisions on nucleus(N) are much less frequent (since the energy transfer depends inversely on the target mass and m_N >> m_e)
- The particle P_a looses a bit of its energy (in each of the many collisions), its directions is ~ unchanged.

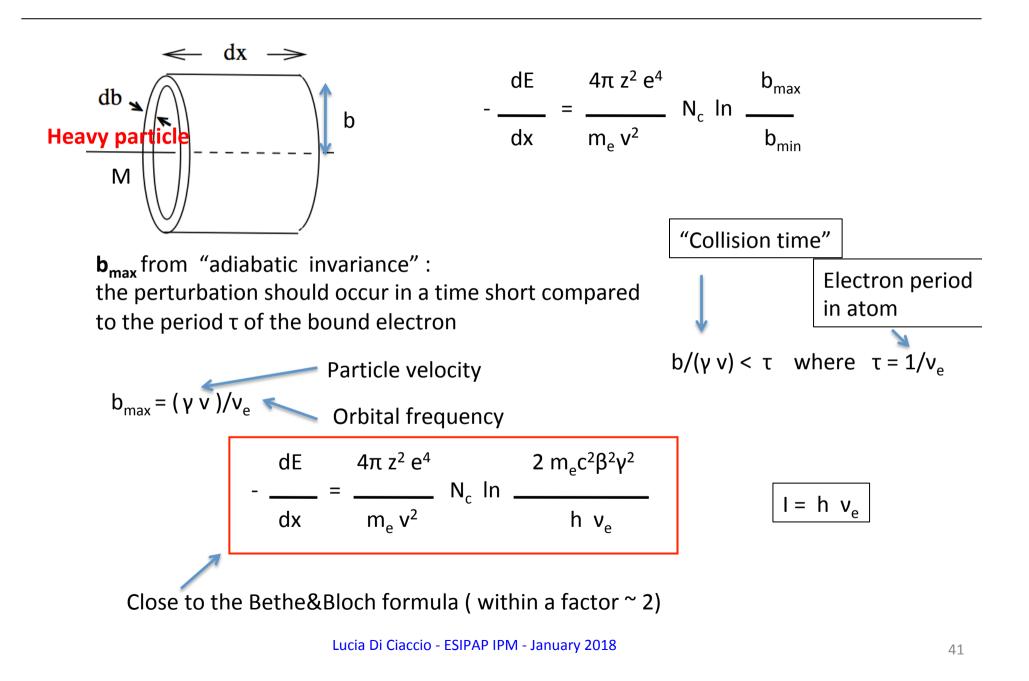
Average energy loss per unit of lenght (- dE/dx) of P_a due to inelastic collisions with electrons of the atom



Analytic formula: Bethe & Bloch formula


let'us derive here a simplified 'semi-relativistic' expression for - dE/dx

Simple computation of the average energy loss of particle P_a


(derivation of the B&B formula)

Simple computation of the average energy loss

Simple computation of the average energy loss

<u>Average</u> energy loss by a charged particle ($m_{Pa} >> m_e$) in matter

Incident charged 'heavy' particle P_a of energy E, M dx matter (e.x. gaz of a detector) Bethe-Bloch formula (B & B)

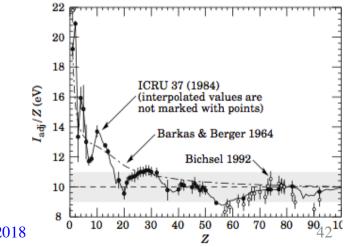
$$-\frac{dE}{dx} = K\rho \frac{Z}{A} \frac{z^2}{\beta^2} \int \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{l^2} - 2\beta^2 - \delta - 2\frac{C}{Z}$$

$$r_e$$
 = classic radius of electron = $\alpha/(m_e c^2)$ = 2.8 fm

- m_e = electron mass = 511 KeV
- *z* = charge of incident particle in unit of e
- β = particle speed in unit of c

$$\gamma = 1/\sqrt{1-\beta^2}$$

- T_{max} = maximum Kin energy transferred in a collision)
- ρ = density of the matter
- **Z**, **A** = atomic number, atomic weight of the matter
- I = effective excitation potential of the matter Difficult to compute --> obtained from dE/dx/(eV) = (12+7/Z) Z $(Z \le 12)$


$$I (eV) = (9.76 + 58.8 Z^{-1.19}) Z (Z \ge 12)$$

Lucia Di Ciaccio - ESIPAP IPM - January 2018

2 K = 4 $\pi N_A r_e^2 m_e c^2$ = 0.307 MeV g⁻¹ cm²

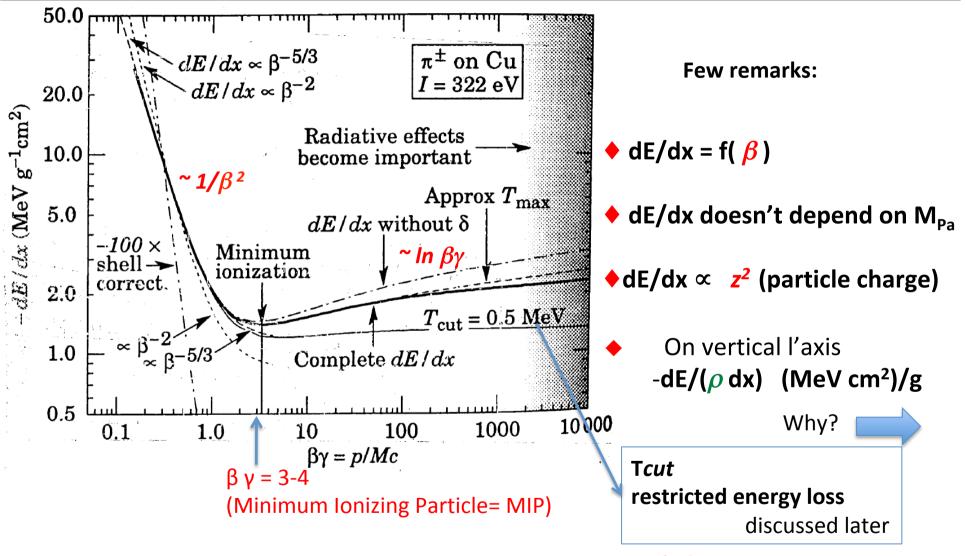
$$T_{max} = E_e^{max} - m_e = \frac{2m_e\beta^2\gamma^2}{(E_{CM}/M)^2}$$

$$T_{max} \sim 2 m_e c^2 \beta^2 \gamma^2$$
 for $\gamma << m_{Pa} / (2 m_e)$

Shell (C) and Density(δ) effect corrections

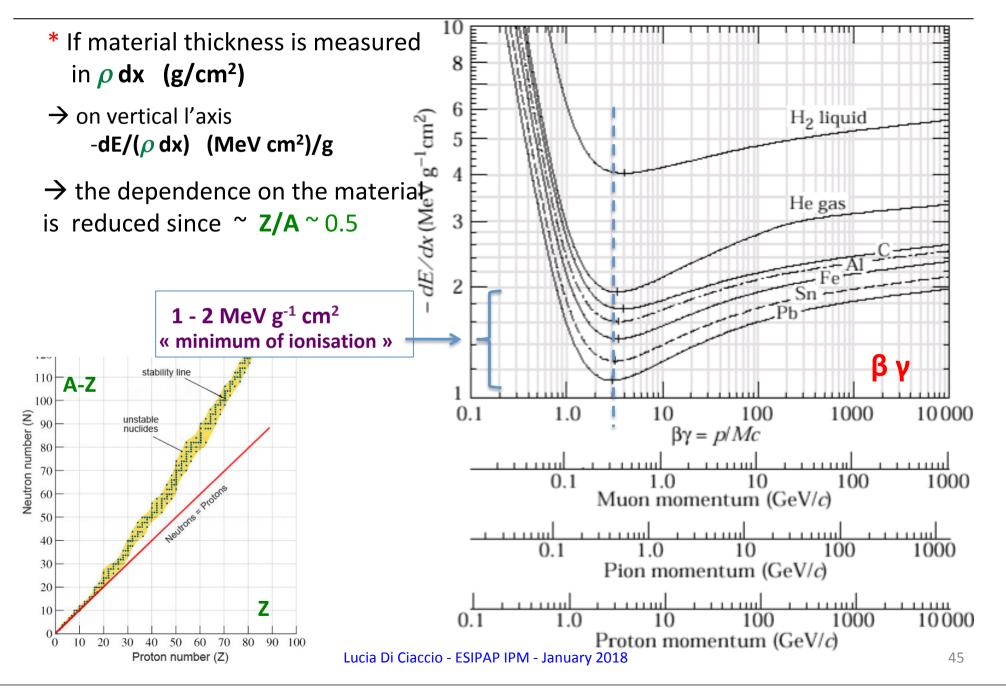
C = Relevant at low energy. Small correction. The particle velocity ~ orbital velocity of e
 → the assumption that atomic electrons initially are at rest breaks.
 Takes into account binding energy. The energy loss is reduced.
 The capture process of the particle is possible

δ = "Density effect". Relevant at high energy.

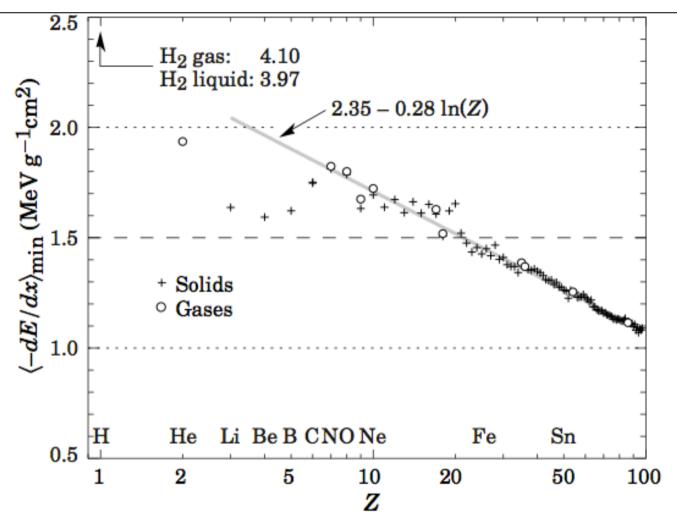

The electric field of the particle polarise the atoms of the matter

→ The energy loss is reduced since shielding of electrical field far from the particle path → moderation of the relativistic rise It depends on the particle speed and on the matter density

Density effect leads to "saturation" at high energy

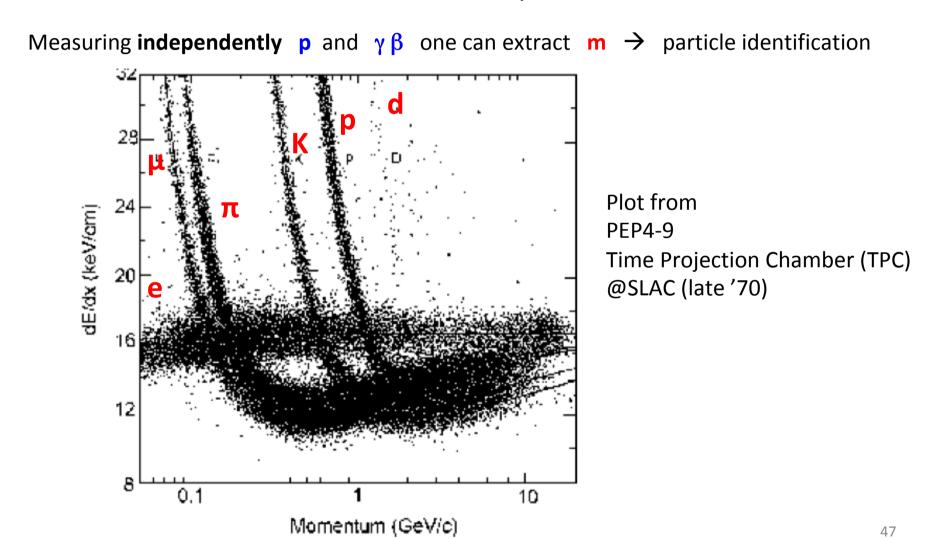

For high energy: $\delta/2 \rightarrow \ln(\hbar\omega_p/I) + \ln\beta\gamma - 1/2$ $\hbar\omega_p \text{ "Plasma energy"}$ $\sqrt{\rho \langle Z/A \rangle} \times 28.816 \text{ eV}$ $(\rho \text{ in g cm}^{-3})$ $Polarisation effect (correction <math>\delta$) \rightarrow reduction of the energy loss

Stopping power or mean specific energy loss = dE/dx ($M_{Pa} >> m_e$)



See Marco Delmastro lectures for explanation of $1/\beta^2$ and $\ln \beta \gamma$

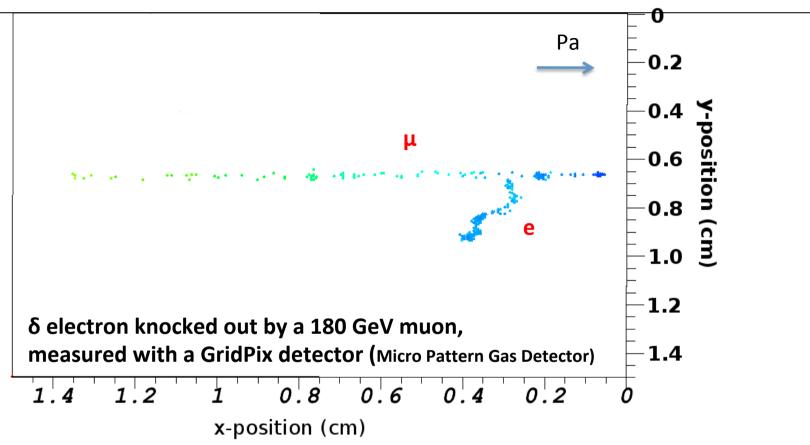
Stopping power



Stopping power at the minimum of ionization in greater detail

Use of dE/dx for particle identification

•
$$\vec{p} = m \gamma c \vec{\beta}$$
 $\gamma \equiv \frac{1}{\sqrt{1-\beta^2}}$


Knock-on electrons or delta(δ) rays or secondary electrons

High energy transfers generates secondary electrons (delta rays)
Distribution (prob.) of
$$\delta$$
 with kinetic energies $T \gg I$:

$$\frac{d^2N}{dTdx} = \frac{1}{2} Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \frac{F(T)}{T^2} \qquad MeV^{-1}cm^2g^{-1}$$

$$K = 0.307 \qquad F(T) = \text{Spin dependent factor}$$
 $\beta, m_{P_a} = \text{speed and mass of primary particle}$
 $x = \text{``mass thickness''} (\rho^*t)$
Spin 0 $F(T) = F_0(T) = (1 - \beta^2 \frac{T}{T_{max}})$
Spin 1/2 $F(T) = F_{1/2}(T) = F_0(T) + \frac{1}{2}(\frac{T}{E})^2$
Spin 1 $F(T) = F_1(T) = F_0(T)(1 + \frac{1}{3} \frac{Tm_e}{m_{P_a}^2}) + \frac{1}{3}(\frac{T}{E})^2(1 + \frac{1}{2} \frac{Tm_e}{m_{P_a}^2})$
For $T << T_{max} \& T << m_{P_a}^2/m_e \& F(T) = 1$:
approximate probability to generate a δ with $T > T_s$
in a thin absorber of thickness x:
 $w(Ts, E, x) \simeq 0.3071 x \frac{z^2Z}{A(g)\beta^2} \frac{1}{T_s}$

Delta(δ) rays in Micro Pattern Gas Detector

 δ rays produce ionization. This is called secondary to distinguish from the primary (impinging particle)

For a $\beta \approx 1$ particle, on average **one** collision with **T > 10 keV** along a path length of **90 cm** of **Ar** gas

δ rays are ~ rare, why to care?

Restricted energy loss

- δ rays that may escape the detector if it is too thin
 - → The average energy deposits are very often much smaller than predicted by Bethe & Bloch

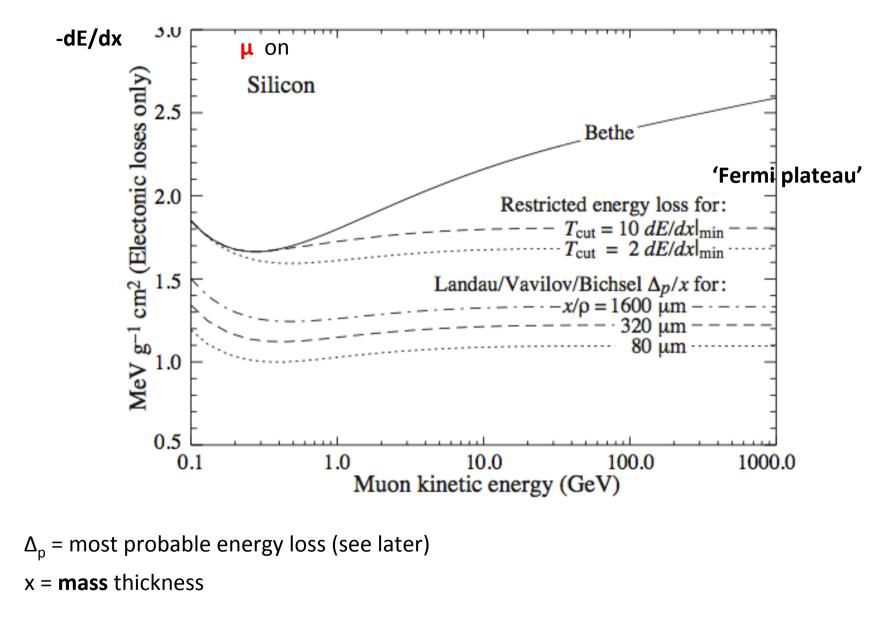
If the energy transferred is restricted to $T \leq T_{\mathrm{cut}} \leq T_{\mathrm{max}}$ \rightarrow "restricted energy loss"

$$-\frac{dE}{dx}\bigg|_{T < T_{\rm cut}} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \bigg[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\rm cut}}{I^2} - \frac{\beta^2}{2} \left(1 + \frac{T_{\rm cut}}{T_{\rm max}} \right) - \frac{\delta}{2} \bigg]$$

The difference between the **restricted energy loss** formula and the **B & B** is given by the contribution of the (escaping) δ rays

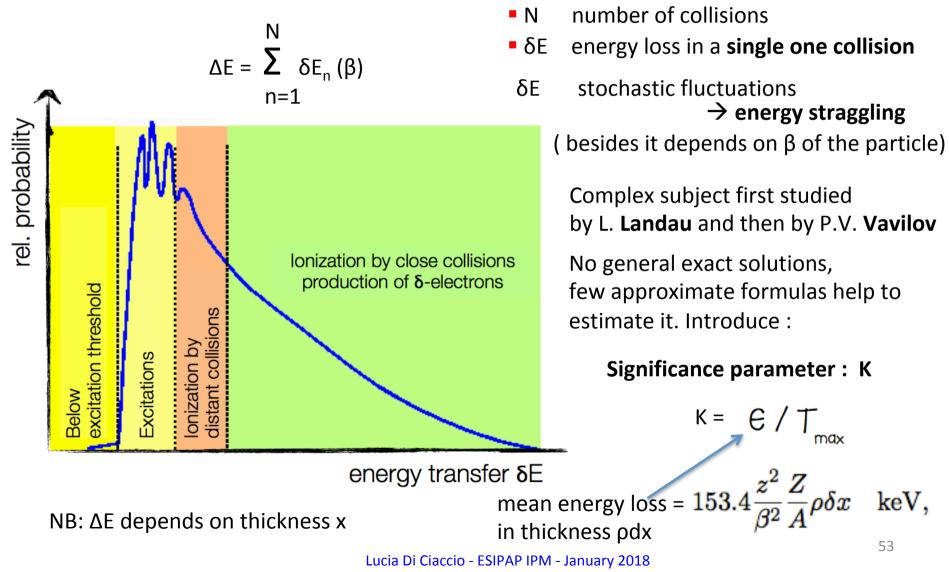
At very high energies ($\beta \gamma > 10^{51}$, $S1 \sim 2-5$) the stopping power reaches a constant called "Fermi plateau":

$$-\left(\frac{dE}{dx}\right)\left[\frac{MeV}{g/cm^{2}}\right]=0.3071\frac{z^{2}Z}{2.A(g)}\ln\left(\frac{2m_{e}T_{cut}}{(hv_{p})^{2}}\right)$$

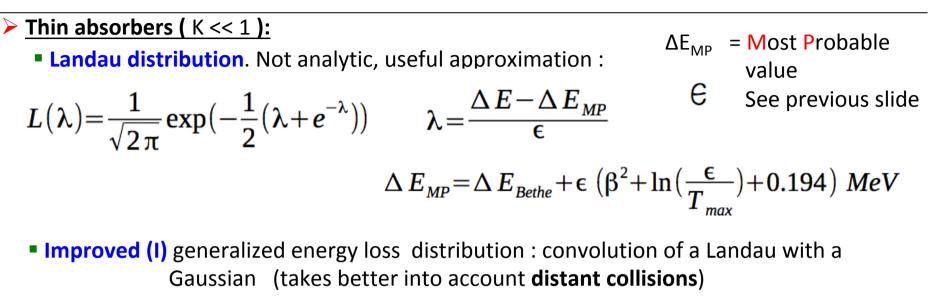

S1 , hv_p = "density effect" parameters

h v_p = $\hbar \omega_p$ #Plasma energy"= $\sqrt{\rho \langle Z/A \rangle} \times 28.816 \text{ eV}$ ($\rho \text{ in g cm}^{-3}$)

Density effect parameters


El.	Z	Z/A	I eV	ρ	$h\nu_p$ eV	S_0	S_1	a	md	δ_0
He	2	0.500	41.8	$1.66 \\ 10^{-4}$	0.26	2.202	3.612	0.134	5.835	0.00
Li	3	0.432	40.0	0.53	13.84	0.130	1.640	0.951	2.500	0.14
0	8	0.500	95.0	$\frac{1.33}{10^{-3}}$	0.74	1.754	4.321	0.118	3.291	0.00
Ne	10	0.496	137.0	$8.36 \\ 10^{-4}$	0.59	2.074	4.642	0.081	3.577	0.00
Al	13	0.482	166.0	2.70	32.86	0.171	3.013	0.080	3.635	0.12
Si	14	0.498	173.0	2.33	31.06	0.201	2.872	0.149	3.255	0.14
Ar	18	0.451	188.0	$\frac{1.66}{10^{-3}}$	0.79	1.764	4.486	0.197	2.962	0.00
Fe	26	0.466	286.0	7.87	55.17	-0.001	3.153	0.147	2.963	0.12
Cu	29	0.456	322.0	8.96	58.27	-0.025	3.279	0.143	2.904	0.08
Ge	32	0.441	350.0	5.32	44.14	0.338	3.610	0.072	3.331	0.14
Kr	36	0.430	352.0	$3.48 \\ 10^{-3}$	1.11	1.716	5.075	0.074	3.405	0.00
Ag	47	0.436	470.0	10.50	61.64	0.066	3.107	0.246	2.690	0.14
Xe	54	0.411	482.0	$5.49 \\ 10^{-3}$	1.37	1.563	4.737	0.233	2.741	0.0
Ta	73	0.403	718.0	16.65	74.69	0.212	3.481	0.178	2.762	0.14
W	74	0.403	727.0	19.30	80.32	0.217	3.496	0.155	2.845	0.14
Au	79	0.401	790.0	19.32	80.22	0.202	3.698	0.098	3.110	0.14
Pb	82	0.396	823.0	11.35	61.07	0.378	3.807	0.094	3.161	0.14
U	92	0.387	890.0	18.95	77.99	0.226	3.372	0.197	2.817	0.14

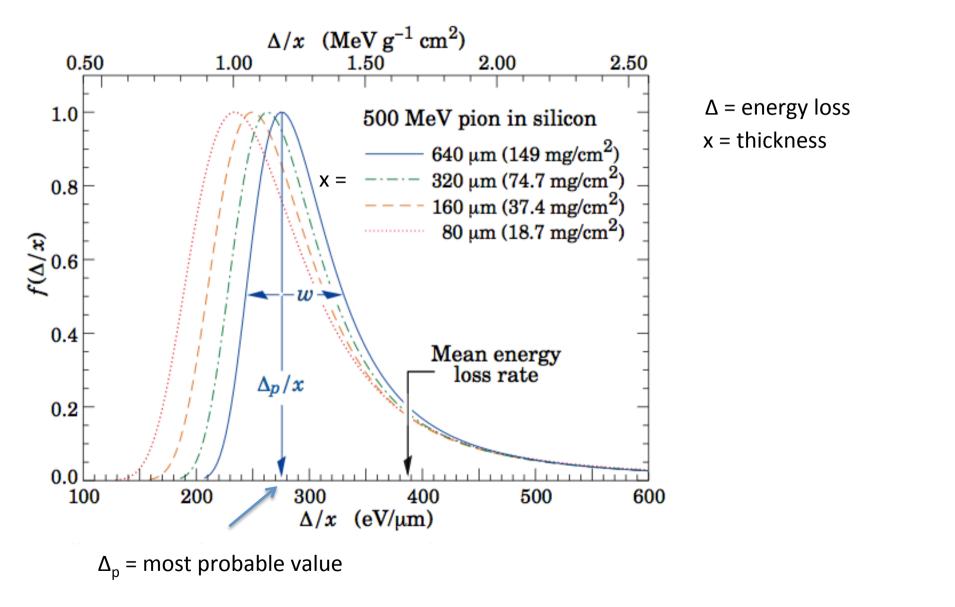
Data are from [Sternheimer, Berger and Seltzer (1984)]



-dE/dx Fluctuations → Energy straggling

Bethe-Bloch formula describes mean energy loss per unit of lenght.
 The actual energy loss ΔE in a material of thickness x is:

ΔE distribution


$$f(\Delta E, x)_{I} = \frac{1}{\sqrt{2\pi\sigma_{I}^{2}}} \int_{-\infty}^{+\infty} L(\Delta E - \Delta E', x) \exp(\frac{-\Delta E'}{2\sigma_{I}^{2}}) d(\Delta E')$$

 σ_{I} = inelastic collisions cross section

Thick absorbers (K >> 1):

The distribution tends to a
Gaussian
$$f(\Delta E, x) \simeq \frac{1}{\sqrt{2\pi T_{max}}\epsilon(1-\frac{\beta^2}{2})} \exp\left(-\frac{(\Delta E - \Delta E_{Bethe})^2}{2T_{max}}\epsilon(1-\frac{\beta^2}{2})\right)$$

Energy loss (Δ) distribution

Stopping power of a compound medium

• For a compound of f elements:

$$-\frac{dE}{\rho \, dx} = \sum_{1}^{f} w_{i} \quad \frac{dE}{\rho_{i} \, dx}$$

 ρ_i = density of element i

 $\frac{dE}{\rho_i dx}$ = stopping power of element i

 w_i = mass fraction of element i

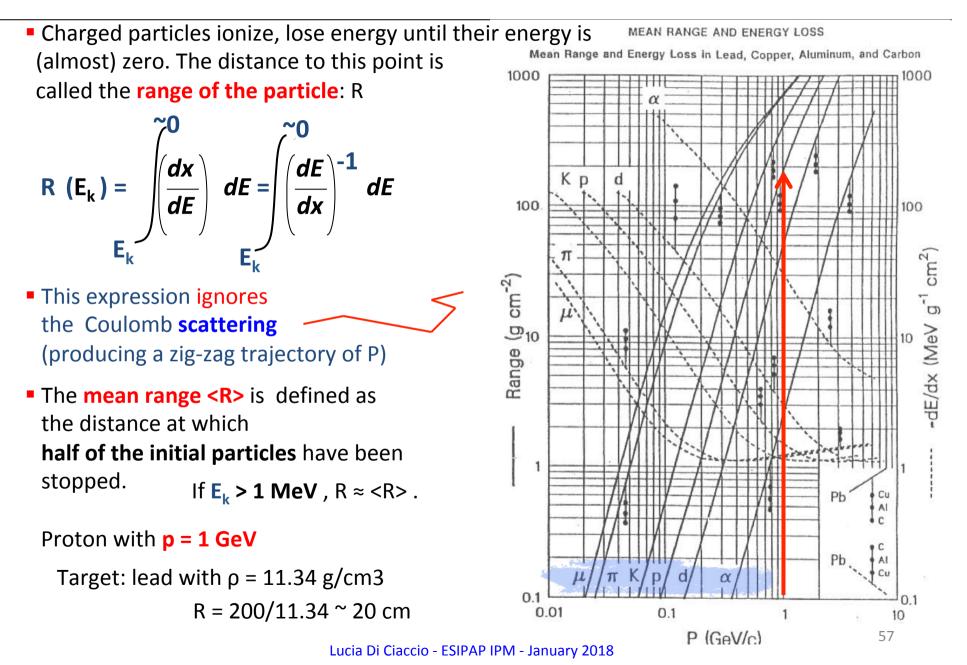
$$w_i = (N_i A_i)/A_m$$

 N_i = number of atoms of element i A_i = atomic weight of element i A_m = molar mass of compound

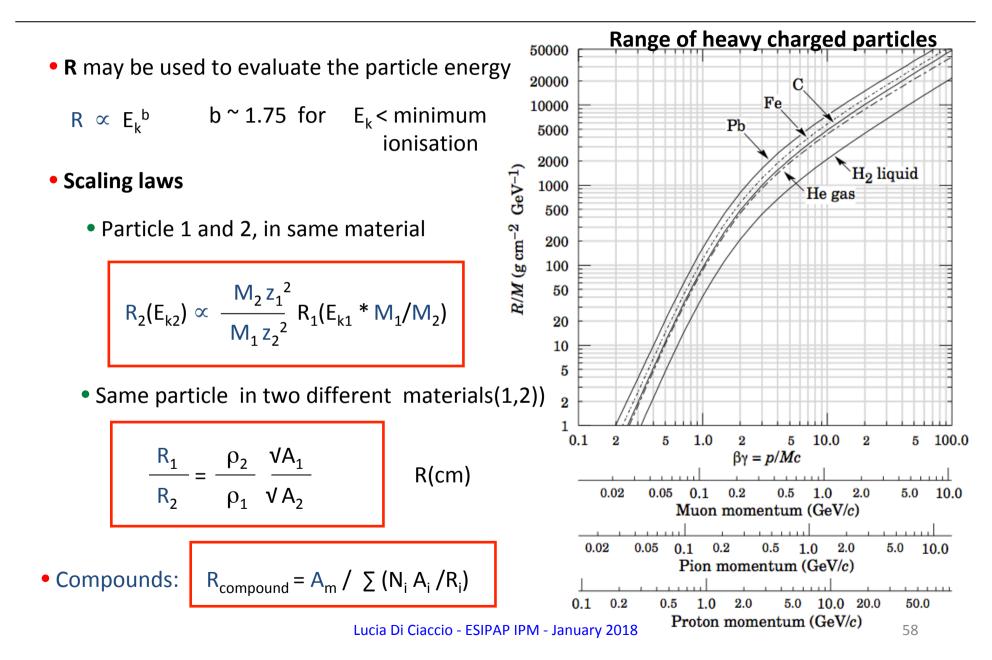
 $A_m = \sum N_i A_i$

• It is also possible to use effective quantities (empirical):

$$Z_{eff} = \sum N_i Z_i$$


$$A_{eff} = \sum N_i A_i$$

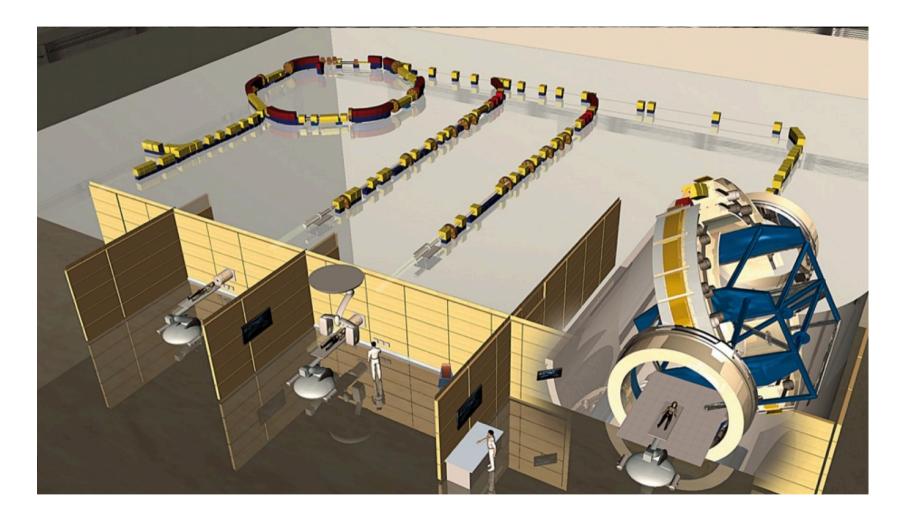
$$\ln I_{eff} = (\sum N_i Z_i \ln I_i) / Z_{eff}$$


$$\delta_{eff} = (\sum N_i Z_i \delta_i) / Z_{eff}$$

$$C_{eff} = \sum N_i C_i$$

Particle Range in matter : R

Particle Range in matter : R



Mean Particle Range

 If the medium is thick enough, a particle will progressively decelerate while increasing its stopping power (β^{-5/3}) until it reaches a maximum (called the Bragg peak).

Heidelberg Ion-Beam Therapy Center (HIT)

~ 50 centers around the world

Stopping power of e[±] by ionization and excitation in matter

For **e[±]** the **Bethe-Bloch formula** must be **modified** since:

For

- 1) the change in direction of the particle was neglected; for e^{\pm} this approximation is not valid (scattering on particle with same mass)
- 2) Pauli Principle : the incoming and outgoing particles are the identical particles

$$\frac{dE}{dx} = 2 \pi N_A r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \frac{\tau^2 (\tau + 2)}{(t^2 / m_e c^2)^2} + F(\tau) - \delta - 2 \frac{C}{Z} \right]$$

For electrons: $F(\tau) = 1 - \beta^2 + \frac{(\tau^2 / 8) - (2 \tau + 1) \ln 2}{(\tau + 1)^2} \qquad \tau = \frac{1}{\sqrt{1 - \beta^2}} - 1 = E_k / (mc^2)$
For positrons : $F(\tau) = 2 \ln 2 - \frac{\beta^2}{12} \left[23 + \frac{14}{\tau + 2} + \frac{10}{(\tau + 2)^2} + \frac{4}{(\tau + 2)^2} \right]$

- e[±] loose more energy wrt heavier particles since they interact with particles of the same mass
- When a positron comes to a rest it annihilates : $e^+ + e^- \rightarrow \gamma \gamma$ of 511 keV each
- A positron may also undergo $\sigma(Z,E) = \frac{Z\pi r_e^2}{\gamma+1} \left[\frac{\gamma^2 + 4\gamma + 1}{\gamma^2 - 1} \ln(\gamma + \sqrt{\gamma^2 - 1}) - \frac{\gamma+3}{\sqrt{\gamma^2 - 1}} \right]$ an annihilation in flight: with a cross section :

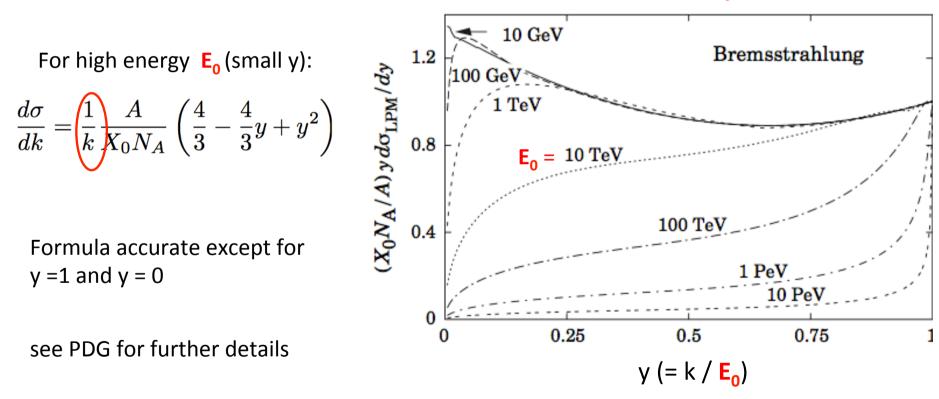
2. Bremsstrahlung. Mean radiative energy loss.

- An accelerated (or decelerated) charged particle (P_a) emits electromagnetic radiation (γ)
- Very fundamental process !
- Here the process takes place in the Coulomb field of the nucleus. The amount of screening from the atomic electrons plays an important role
- Relevant in particular for e[±] due to their small mass

$$-\left(\frac{dE}{dx}\right) = N \int_{\sim 0}^{v_0 = E_o/h} hv \frac{d\sigma}{dv} dv = N E_0 \phi(Z^2)$$

If P_a = electron:

If
$$E_0 >> m_e c^2$$
 et $E_0 << 137 m_e c^2 / Z^{1/3}$ $\phi(Z^2) = 4\alpha Z^2 r_e^2 \ln(2E_0 / m_e c^2 - 1/3 - f(Z))$
If $E_0 >> 137 m_e c^2 / Z^{1/3}$ $\phi(Z^2) = 4\alpha Z^2 r_e^2 \ln(183 Z^{-1/3} - 1/18 - f(Z))$
 $r_e = \alpha / (m_e c^2)$


See W.R. Leo

f(*Z*)= *Coulomb correction*

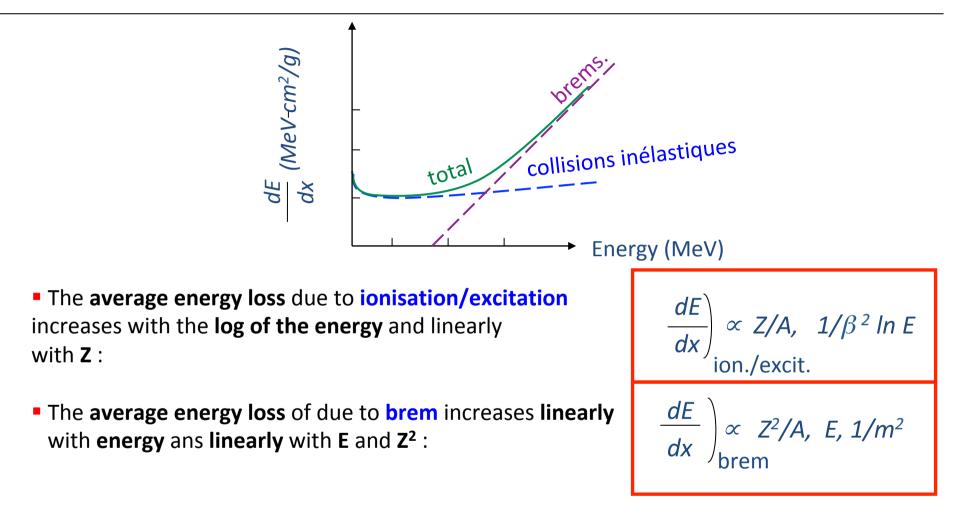
2. Bremsstrahlung – Energy Spectrum

Normalized bremsstrahlung cross section vs y (= k / E_0) where k = E_γ \rightarrow y = fraction of the electron energy (E_0) transferred to the radiated γ

 $K d\sigma/dk = \nu d\sigma/d\nu$ (for given E₀)

LPM =Landau–Pomeranchuk–Migdal cross section.

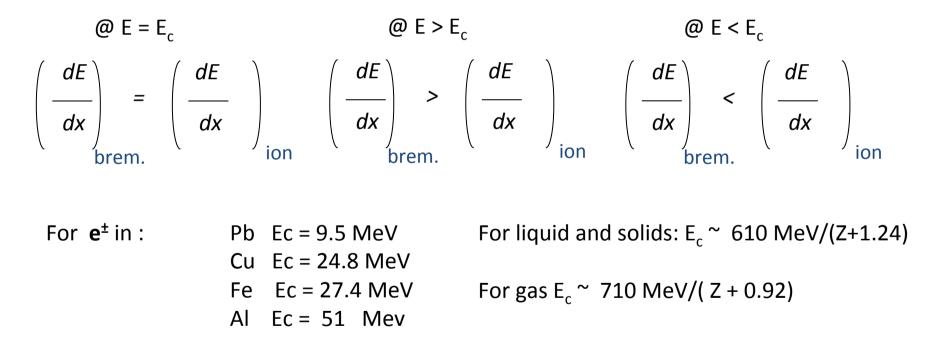
Bremsstrahlung. Mean radiative energy loss


For a particle of charge z and mass m:

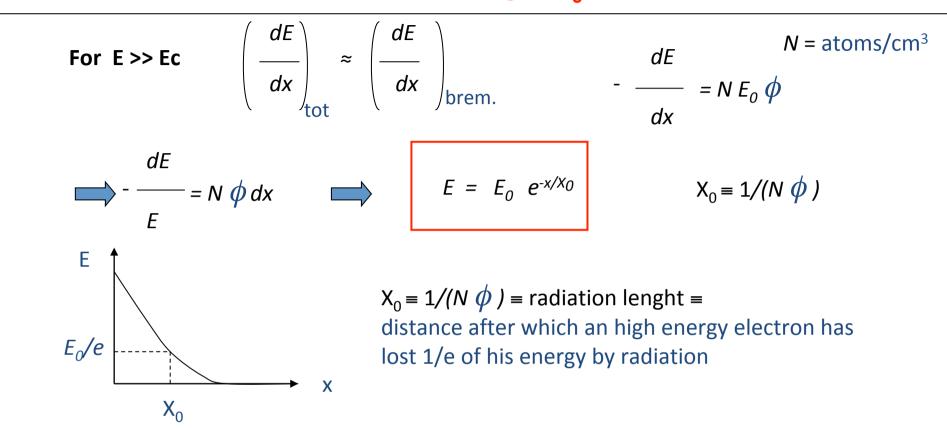
$$\frac{dE}{dx}_{\text{brem}}(z,m) = \left(\frac{m_e}{m}\right)^2 z^2 \frac{dE}{dx}_{\text{brem}}(e^-)$$

Relevant in particular for e[±] due to their small mass

- Shown so far is the mean energy loss due interaction in the field of the nucleus
- Contribution also from radiation which arises in the fields of the **atomic electrons**.
- Cross section are given by the above formula but replacing Z² with Z.
- The overall contribution can be approximated by replacing Z² by Z (Z+1) in all the above formulas


Comparison -dE/dx Bremsstrahlung vs ionisation/excitation

Energie loss due to **brem** is a discrete process: results from the emission of $\sim 1 \gamma$ ou 2γ --> fluctuations


Critical energy (E_c)

- The relevance of bremsstralung wrt ionisation depends on the critical energy (E_c) of the particle P_a in the material
- The critical energy (E_c) is the energy at which the ionization stopping power is equal to the mean radiative energy loss.

For other particles E_c would scale according to the square of their masses with respect to the electron mass.

Radiation lenght X₀

Mean radiated energy of an electron over a path x in the medium:

 $E_{\rm bren}(e^{-}) = E(1 - e^{-x/X_0})$

Radiation lenght X₀

 X_0 $\begin{cases} Pb = 0.56 \text{ cm} \\ Fe = 1.76 \text{ cm} \\ Air = 30050 \text{ cm} \end{cases}$

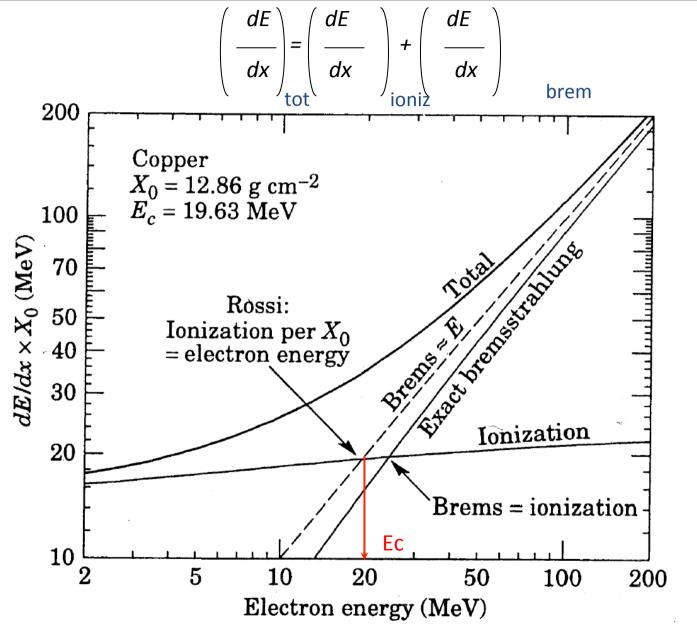
$$X'_0 \equiv X_0 \rho$$
 $X'_0 = \frac{716.4 \text{ g cm}^{-2} A}{Z(Z+1) \ln(287/\sqrt{Z})}$

Expressing the mean radiated energy in unit of X_0'

 \rightarrow The probability of the process becomes less dependent on the material

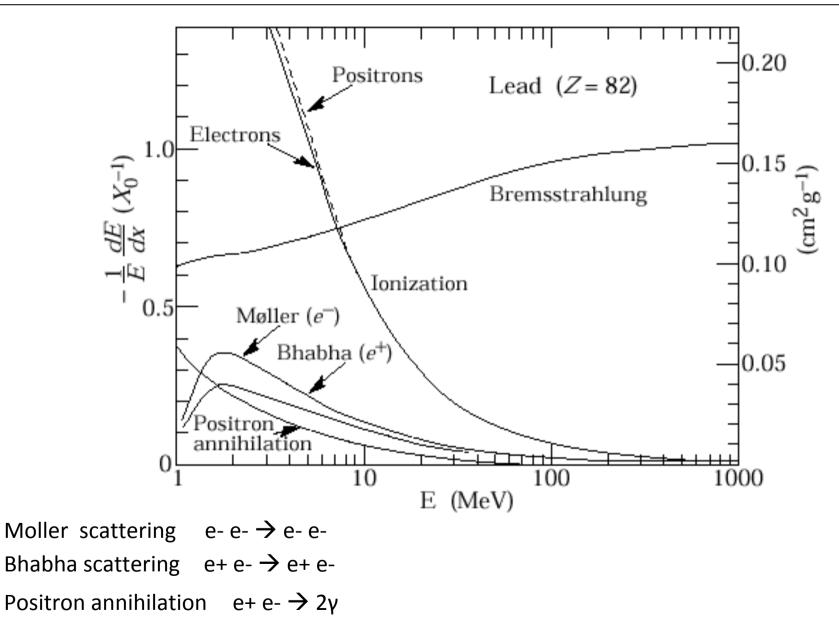
Pour un composé de N éléments :

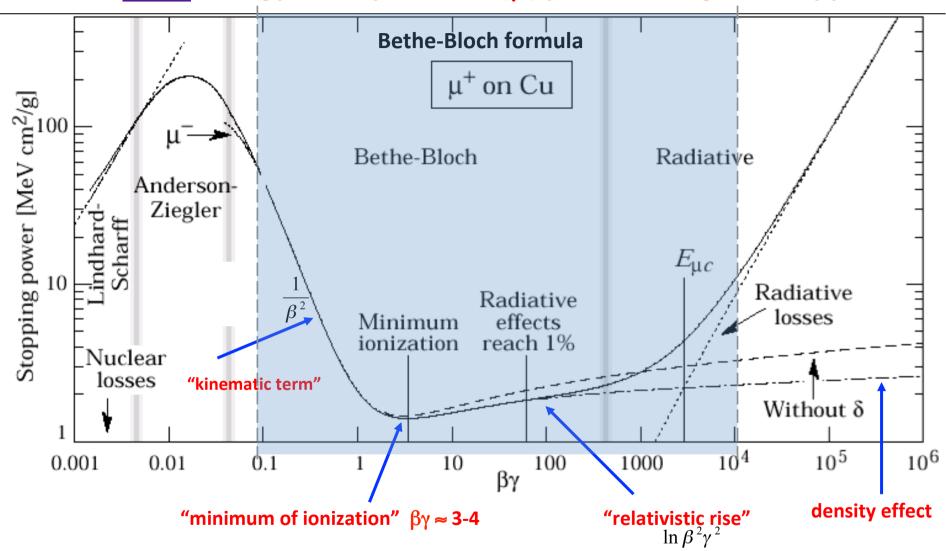
$$\frac{1}{X_0} = \sum_i w_i \frac{1}{X_{0i}}$$


$$w_i = \text{ fraction in mass of element i}$$

$$X_{0i} = \text{ radiation lenght of element i}$$

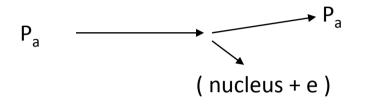
For electrons


medium	Z	A	X_{θ} (g/cm ²)	X ₀ (cm)	E _C (MeV)
hydrogen	1	1.01	63	700000	350
helium	2	4	94	530000	250
lithium	3	6.94	83	156	180
carbon	6	12.01	43	18.8	90
nitrogen	7	14.01	38	30500	85
oxygen	8	16	34	24000	75
aluminium	13	26.98	24	8.9	40
silicon	14	28.09	22	9.4	39
iron	26	55.85	13.9	1.76	20.7
copper	29	63.55	12.9	1.43	18.8
silver	47	109.9	9.3	0.89	11.9
tungsten	74	183.9	6.8	0.35	8
lead	82	207.2	6.4	0.56	7.4
air	7.3	14.4	37	30000	84
silica (SiO ₂)	11.2	21.7	27	12	57
water	7.5	14.2	36	36	83


Electron interactions in copper : higher energies

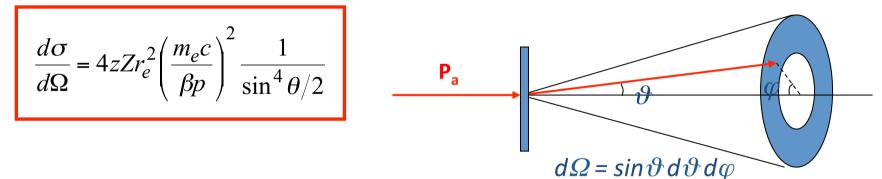
Lucia Di Ciaccio - ESIPAP IPM - January 2018

Interactions of electrons in lead: a more complete picture



Total energy lost by a muon (μ) per unit length in copper

At very low energy the **Bethe-Bloch** formula is not valid since the speed of the interacting particle is ~ speed of electrons in the atoms. For $\beta\gamma < 0.05$ there are only phenomenological fitting formulae Lucia Di Ciaccio - ESIPAP IPM - January 2018 72

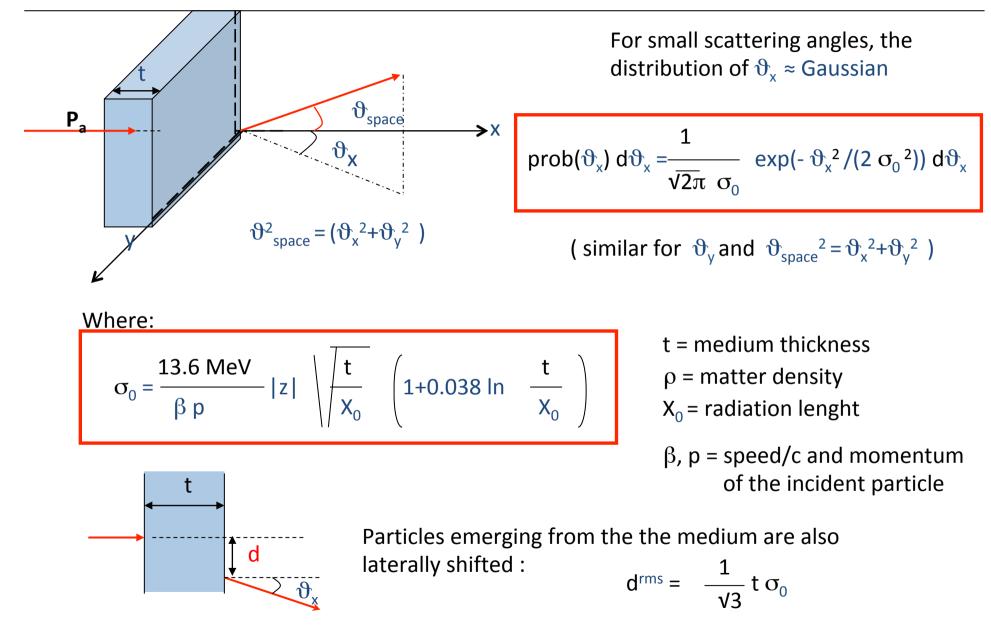

3. Elastic scattering with nuclei

A **charged particle** P_a traversing a medium is deflected many times (mainly) by small-angles essentially due to **Coulomb scattering** in the electromagnetic field of **the nuclei**.

The **energy loss** (or transferred to the nuclei) is small ($m_{nucleus} >> m_{Pa}$) therefore **neglected**, The change of direction is important.

• A single collision is described by the Rutherford formula (ignores spin and screening effects)

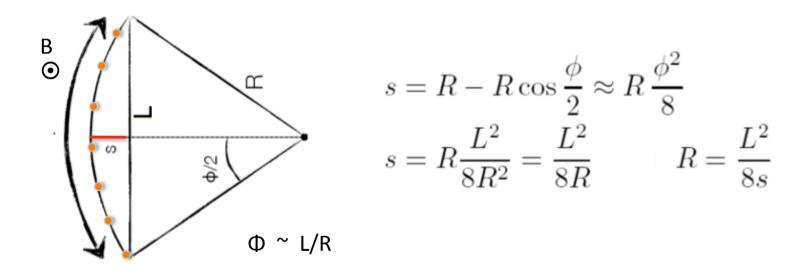
• Multiple scattering: N_{collisions} > 20


The particle follows a zig-zag trajectory

Deflection angles are described by the Molière theory

H. A. Bethe" "Molière's Theory of Multiple Scattering" Phys. Rev. 89, 1256 - Published March 1953

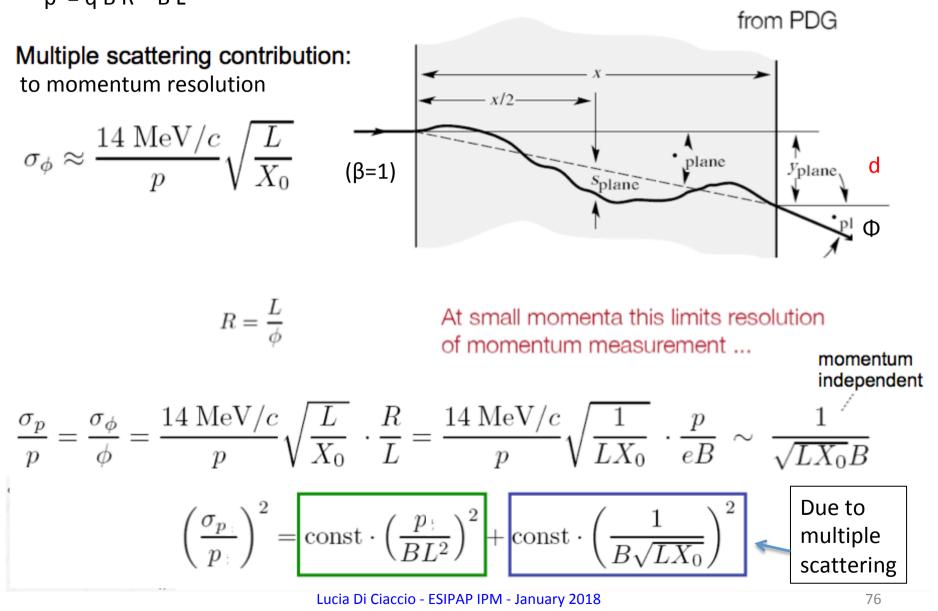
3. Multiple scattering through small angles (< ~10⁰)

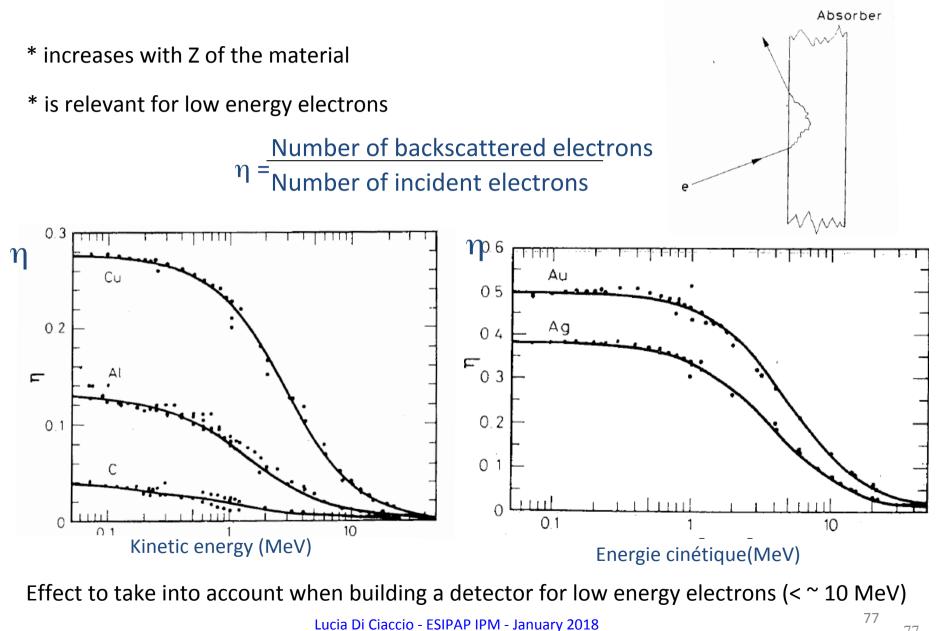


Momentum resolution

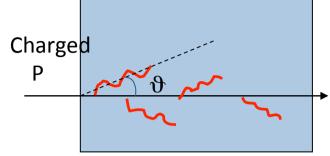
Multiple scattering impacts the measurement of the momentum Assume $B \mid v$ particle:

 $Mv^2/R = q | \overrightarrow{v} \overrightarrow{B} |$ $\mathbf{p} = B \mathbf{R}$ (q = 1)


The momentum is measured from R, which is obtained from L and s

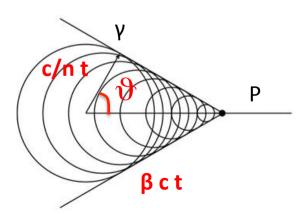

The precision on the momentum will depend on the precision on the track reconstruction and also on the **multiple scattering that the particle undergoes**

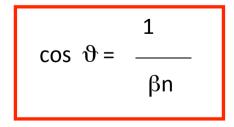
Momentum resolution

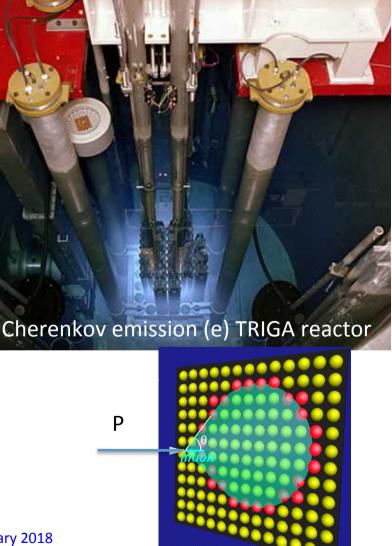

 $p = q B R \sim B L^2$

3. Back-scattering of electrons

4.Cherenkov light emission




Radiation emitted when a charged particle crosses a medium at a speed > than the **phase velocity of light** in the medium


 $v_{particle} > c/n$

n = refracting index

- The medium is electrically polarized by the particle's electric field (oscillating dipoles)
- When the particle travels fast this effect is left in the wake of the particle.
- The emitted energy radiates as a coherent shockwave

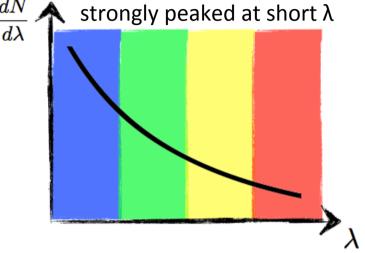
4.Cerenkov light emission

Number of photons N emitted per unit path length and unit of wave length

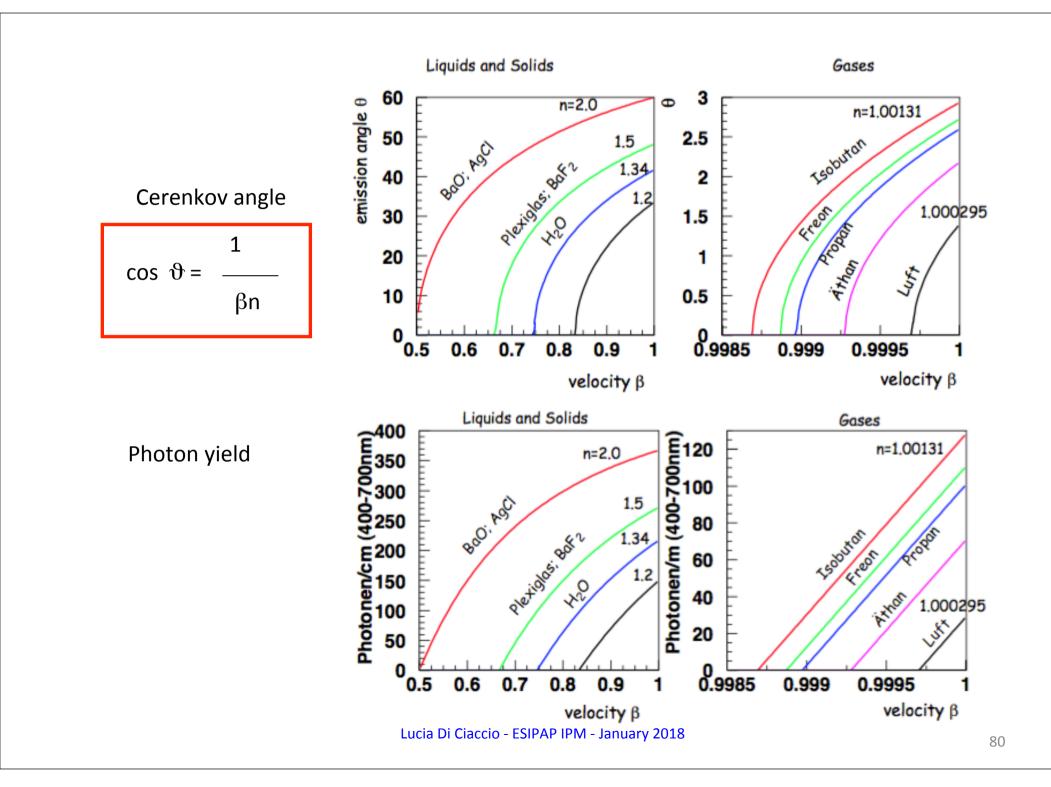
$$\frac{dN}{dx d \lambda} = 2\pi \alpha \frac{1}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2}\right)^{z^2}$$

Number of photons per unit path length is:

$$\frac{dN}{dx} = 2\pi \alpha z_{\beta n>1}^2 \left(1 - \frac{1}{\beta^2 n^2}\right) \frac{d\lambda}{\lambda^2}$$


Assuming $n \sim const$ over the wavelength region detected

$$\frac{dN}{dx} = 2\pi \alpha \sin^2 \theta \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right) z^2$$

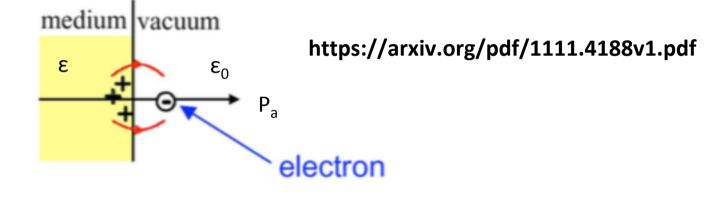

in λ range 350-500 nm (photomultiplier sensitivity range),

$$\frac{dN}{dx} = 390 \sin^2 \theta \ photons/cm$$

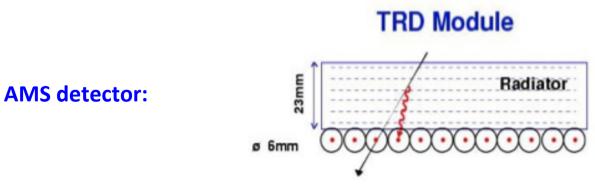
dE/dx due to Cherenkov radiation is small compared to ionization loss (< 1%) and much weaker than scintillating output. It can be neglected in energy loss of a particle, but is Important for particle detection

n = refracting index

4.Cerenkov light emission


Parameters of Typical Radiator

Medium	n	$oldsymbol{eta}_{ ext{thr}}$	θ _{max} [β=1]	Nph [eV ⁻¹ cm ⁻¹]
Air	1.000283	0.9997	1.36	0.208
Isobutan	1.00127	0.9987	2.89	0.941
Water	1.33	0.752	41.2	160.8
Quartz	1.46	0.685	46.7	196.4


4.Transition radiation

When a relativistic charged particle crosses a boundary between media of different dielectric properties radiation is emitted, mostly in the X- ray domain

The electric field generated by the particle is different on the two sides

- The radiation is emitted in a cone at an angle $\cos \theta = 1/\gamma$
- The probability of radiation per transition surface is low ~ $1/2 \alpha$ (fine structure constant)

4.Transition radiation

 The energy of radiated photons increases as a function of particle momentum

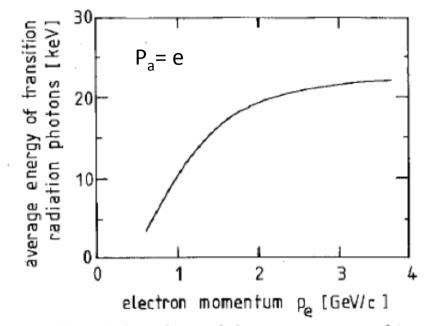
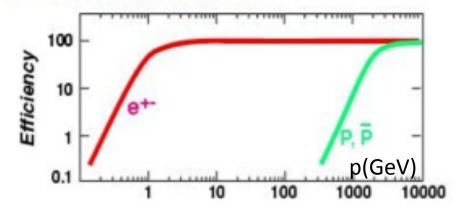
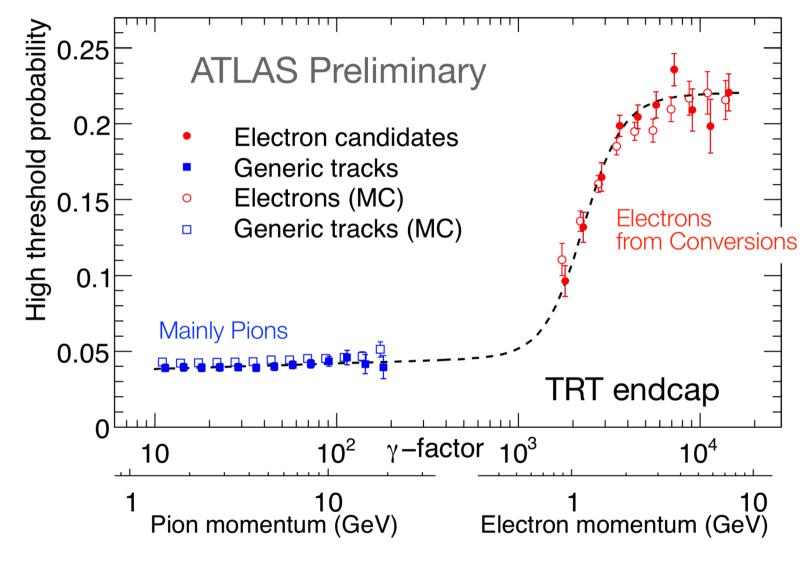




Fig. 6.21. Typical dependence of the average energy of transition radiation photons on the electron momentum for standard radiator arrangements [450].

Useful for particle identification

END