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Overview

• Detectors in General

– Where and What are they

• Tracking Detectors Overview 

– Stability and Mass Requirements

– Detecting Elements

– Thermal Management

• Global Support Structures
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Synchrotron Colliders—two examples

• RHIC (Relativistic Heavy Ion Collider)

at Brookhaven National Lab

• LHC (Large Hadron Collider) at CERN

• Counter-rotating beams cross at 

defined interaction regions

• Experiments placed at these points in 

underground or buried caverns
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Particle Detectors: ATLAS and STAR

• Detector size is defined by resolution requirements to peek into new and 

different physics frontiers—they are size appropriately for their goals

• STAR was aimed at discovering Quark Gluon Plasma, qualifying its 

properties and enhancing further Nuclear Science understanding

• ATLAS was aimed at discovering the Higgs Boson, then later expanding the 

frontier of fundamental particle physics—perhaps Dark Matter

• Both achieved their initial goals and will be upgraded in the future

Scale

ATLAS
STAR

~8m

19952005

Tracking Volume
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ATLAS Cavern and Surface Buildings at CERN

100m



Engineering DivisionJune 2005

ATLAS Detector

Tracking Detector

Calorimeter

Solenoid

Muon Tracker

Toroid 
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ATLAS Detector
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ATLAS Inner Detector
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ATLAS Inner Detector
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ATLAS Pixel Detector

Barrel Supports

Disk Supports

1.5m

Pixel Detector is the 

innermost detector 

Global Support

Dissipates 15kW
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How do Detectors Work?

• Tracks are debris from collision events

• Magnetic Field bends charged particles

• Tracking detectors measure position at 

discrete locations determining Charge 

and Momentum—also displaced vertices

• Stopping distance (position) in 

Calorimeter measures track Energy

Calorimeter

Solenoid Magnet

Tracking Volume

Beam Pipe

Track
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Detectors are layered like Onions

• The Tracking Detector is several layers inside Calorimeter

• Multiple detection points in the tracking volume are recorded and 

used to determine trajectory of tracks

• Resolution is graded as a function of radius (tracks spread from 

collision)

• The Calorimeter has multiple layers to determine the 

energy of a track 

• Each layer has some spatial resolution to determine position of a 

track in 3D 

• Linking tracks from the tracking volume to energy deposition in 

the Calorimeter is important to quantify the nature of the track 

particle

• Calorimeters are necessarily High mass (W & Cu)

• Tracking Detector volumes have low mass requirements
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Very Simplified Track Reconstruction

• Multiple layers help statistics 

(ATLAS has 9+ Tracking Layers)

• Finer resolution detectors at 

lower radius (track separation is 

small)

• Tracking in XY plane gives track 

curvature (charge/momentum)

• Material of detecting elements 

their services and supports cause 

Coulomb Scattering, detracting 

from precision of measurement

• Small angle change at low 

Radius leads to large projected 

tracking errors at higher radii

• Displaced vertices are short lived 

particle decays (important to ID)

Actual

Displaced Vertex

Tracking Layers

Vertex Tracking Error

Collision Point

Re-constructed

Displaced Vertex

R = 5cm

10cm

20cm

Scatter angle (random)

X-Z plane (Z is Beam Axis)

Grey Dashed tracks are 

scattered but measured 

at higher radii
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Mass affects precision of Measurements

• Radiation length X0 is a fundamental property of a material

• In 1 Radiation Length 1/e of the particles will scatter

• Requirements are set in “ % X0 ” to normalize against 

various materials for example:

– X0 Si = 9.4cm, X0 CFRP = 24.7cm;  1% X0 is equivalent to either 

2.5cm CFRP or 0.9cm Si.

• Above plot for current ATLAS detector shows 2.5% X0 per 

layer; The upgrade is looking for under 1% X0 per layer to 

improve resolution…

Conversion map showing 

reconstructed secondary vertices

Structures are clearly visible in the 

data and corrected for as much as 

possible

This is not ‘metrology;’ this is an 

experiment.  Statistics dominate, but 

metrology is the inroad to understand 

the requirements; mass detracts 

from resolution in a measurable way.

0.5mm CFRP Support Shells



Engineering Division

Pixel Detector Sensor Technologies

• Hybrid Pixels are fast—used in P-P detectors (ATLAS, CMS) low temp 

operation due to high radiation dose>500Mrad  Speed requires 

higher mass dual layer sensors to meet requirements

• MAPS used in Heavy Ion experiments (STAR, ALICE) low power, 

lower radiation dose <2Mrad allows RT operation  Physics requires 

very low mass

• Boxed Values Drive mechanical requirements on Structures

200m

150m

20m

1000V

50m

‘Hybrid Pixel’ ‘Monolithic Active Pixel’

50X50 m pixel 15X15 m pixel

>6kW/m2 <1kW/m2

40MHz 10kHz

Biased Drift

Un-Biased Drift

Room Temp Operation-30C Operation

0.4% X0 0.05% X0
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Mechanical Requirements on 

Structures

• Stability tied to Pixel Size e.g. 50m Pixel

– RMS of Square distribution = (1/root(12))*pixel size

– Vibration, Varying heat-loads, Cooling System, 

– Ultimately tied to tracking resolution

• Cooling (Heat Load, Operating Temp)

– Auxiliary requirement is maximum Sensor temp; as 

radiation accumulates, leakage current increases 

and is dependent on temperature.  If Max temp is 

exceeded, thermal runaway is possible

• Structures must provide sufficient stability and 

cooling capacity at the lowest possible mass
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Silicon Detectors

• Detector is an array reverse biased Diodes that are well 

surveyed/calibrated for location and held stable

• Particles traversing any given diode ionize the 

semiconductor releasing electrons which are amplified 

and read out giving ‘hits’ based on location

• Saturated diodes have a leakage current which heats 

the substrate and is also temperature dependent

• Depletion voltage depends on Radiation dose

• There exists a temperature at which this goes unstable 

leading to thermal runaway

• Detectors dissipate ~0.6W/cm^2 which must be 

extracted and the temperature must always stay below 

the thermal runaway Temp (with goodly margin)
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Detector Local Supports

• Silicon Detector Supports with 

integrated Cooling

• High Stability requirements—under 

50mm motion for 50C DT for 1m 

long structures dissipating 250W

• Integrated R&D supporting 

structured engineering approach
Design  Fabricate  Test, Feedback results into new Design

• Integrated IR Thermography and 

Speckle Holography allow direct 

comparison with FEA results

• Used in developing materials with 

industry via SBIR (Conductive 

Carbon Foam)

• Deliver highly stable Detector local 

supports to HEP customers with 

high production quality
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Integrated Design Problem

• Nominal Structures are beam-like with foam/other core

• Integrated cooling channel for heat extraction

• Bi-metallic effects from various CTE mis-matches

– Si is ~4ppm/C (grease interface or very rigid structure)

– Tubes range from 9-22ppm/C

– C-Foam ~1ppm/C; CFRP/CC -1.5 to -.25ppm/C

• 1.2-2.5m long structures, DT 50-60C—airy stresses resolve 

at extremities (adhesive joint stresses)

• Detector supports need to be stable on order of 

resolution 

• Thermal performance is as important as structural, both 

are coupled to reduce material
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Pixel Disk Sector Circa ‘02

Modules

• Modules mounted on CC face sheets for thermal control

• Internal Tubing with evaporative cooling is used to extract heat from Modules

• Carbon Foam is used internally as a structural core (not conductive back in ‘02)
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Carbon Foam (20-40W/mK)

Heat Flow paradigm change

• Dog on Beach Problem

• Sector used ‘thick’ CC 

facing to move heat to 

cooling tube

• Relied on 40W/mK

transverse conductivity 

to ‘get’ heat into section 

via 200W/mK in-plane K

• New development uses 

C-Foam with larger net 

section, but lower K

• Section*K ~ equivalent

• Lower overall mass

0.6W/cm^2 @-7C
Thermal Grease 1.4W/mK

CC 40 X 200W/mK (0.5mm)

-20C

0.6W/cm^2 @-15C
Thermal Grease 1.4W/mK

-30C

CFRP 1 X 200W/mK (0.075mm)

Buried tube (higher pressure)

Flat Tube—

increase 

area
Sector ‘05

Current 

Concept
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Custom Foam Developed via SBIR

• Allcomp developed a foam (K9) using different method from Klett patents

• Our interest is in lower mass foams where ‘foaming’ yields poor uniformity

• Compared to Reference 0.5mm Carbon-Carbon heat-spreader, 0.2g/cc 

@30W/mK can be 5mm thick for equivalent X0, and gives performance near 

to the CC heat spreader, but more shape optimization is possible (see later)
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Interfaces are Important

• Many interfaces between heat source and coolant

• Si to face-sheet well understood and tested

• HTC of coolant to Tube studied elsewhere but known

• Face-sheet to Foam and Foam to Tube introduce less 

well qualified thermal impedances that need study

• Thermal interfaces are also structural

• Joining materials (adhesive) have very low K (<1W/mK) 

and E (~0.5Msi) compared to Graphite or Metals

• Foam is not isotropic volumetrically at interface scale

– Von Mises useless at scales under cell size (for example)

– FEM can be tuned to bulk properties, but sub-models 

required

• Some of this has been studied via SBIR with Allcomp
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Standardized Prototypes and Tests

• Development of FEM properties is required

• Standardized samples allow quick turn 

prototypes and testing (tooling/test stand)

• ‘Bulk’ properties are well understood, e.g. 

Laminate, Foam K, E

• Interface Properties can dominate giving 

offsets in T (DT to Silicon)

• Interface modeling is ‘frontier’ work
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Foam Cross Sections versus Material

• Thickness of foam can be tailored to heat flux—edges here are 

thicker than required—note uniform gradient to tube

• Foam for both is K9 130ppi ~30W/mK

• Hard to reduce cross-section of Inner Foam

– Could go back to K7 100ppi foam ~20W/mK to reduce material, but increase DT

• This could not be done with CC facings which are uniform thickness

25
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Thermal Performance Outer Face

Average

DT Range Max to  Coolant

A1 7.6 2.5 8.5

A2 8 2 8.9

A3 8 2 8.9

A4 8.1 2.4 9

A5 8.6 2.1 9.5

A6 8.1 1.9 8.9

Average 8.1 2.2 8.95

• Increased Edge Thickness of Top Foam to 

improve thermal performance; plus larger 

tube

• Model calculated temp to silicon w/SE4445 

but did not include conductivity from the Si 

(better width range than 5C)

• Results within 10% of expected

26

Coolant Temp 19.4

0.458W/cm2

9.4C

Max DT from Coolant

Avg DT 8C
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Detector Global Supports

• Hold and locate local 

supports

• Precision Assembly of 

large structures (4-8m)

• Position~100m within 

detector volume 
(survey or build tolerance)

• Generally achieved 

with precise bonding

• Very few components 

are thick enough to 

‘machine’ for precision
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STAR HFT

• HFT is a new inner tracking 
system for STAR, with 4 layers 
of silicon and 6 gem disks

• Timeline:
– Nov 2011 main support 

structures + FGT were 
installed

– July-Dec 2012 PXL support 
and PXL for engineering run

– Summer 2013 full PXL + IST + 
SSD

• Key component is PXL:
– 2 innermost silicon layers

– Truly rapid insertion/removal

– Very low mass

– TPC is great; PXL will much 
improve pointing

• At LBL we’re building / have 
built:

– All the support structure 
(IDS)

– All of PXL

– IST local supports

TPC 
Volume

OFC
Outer Field Cage

IFC
Inner Field Cage

SSD
IST
PXL

HFT

28
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STAR HFT Inner Detector Support (IDS)

29

4.6 m

0.8 m

Structure Mass = 35kg

Applied Load = 200kg
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WSC/ESC Mandrel WSC/ESC Layup

Cone Layup Flange Layup

Insertion Rail Bonding Assembled Structure at LBNL Just before insertion at BNL

Cone Machining Flange Bonding

30
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Some Unique Requirements

• The IDS was installed into STAR 

Time Projection Chamber

• TPC is a High Voltage (30kV) field 

cage—electrostatics of composite 

structure is important

• Qualified ‘anti-static’ veil to 

assure conductive surface

http://www-eng.lbl.gov/~jhsilber/photos/STAR_IDS_Installation_Nov2011/

Shroud

Cone

WSC

http://www-eng.lbl.gov/~jhsilber/photos/STAR_IDS_Installation_Nov2011/
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E-Field Shroud Segmented Design

• Design changed to segmented to 

allow for assembly order

• Detailed Electro-static analysis 

required to assure no ‘corona’ or 

surface breakdown

• Tested key geometry (small radii) 

in previous installations

• Non-traditional use of of structural 

composites

As installed ‘11
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Conclusion

Joseph Silber  JHSilber@lbl.gov

Eric Anderssen  ECAnderssen@lbl.gov
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