From 2 D projections to 3D Image

2D projection Several angles Reconstruction 3D Volume

Tomographic acquisition

• More than a single projection is required in order to obtain the radiotracer distribution.

– Many possibilities for the solution

Increasing the number of projections
 – Reduce the number of possibilities

Uniqueness of the solution for an infinity of projections

Positionning the problem

• Emission imaging

- Injection of a radiopharmaceutical
- Marker/tracer coupling

Observables

- Distribution of γ emitters in the field of view of the camera.
- f(x,y): Estimation of the number of photons emitted at (x,y).

• Hypothesis:

- f(x,y) is proportional to the concentration of the injected product.

Principle of acquisition

$$\begin{aligned} x_I - x &= t \sin \theta \\ y_I - y &= t \cos \theta \end{aligned}$$

 $s = x\cos\theta + y\sin\theta$ $t = -x\sin\theta + y\cos\theta$

All points
$$M(x,y)$$
 describing the LOR

Illustration 2D

Radon Transform

In mathematics, the projection operation is defined by the Radon transform

Radon transform $g(s,\theta) =$ Integral of f(x,y) along the line D'

$$g(s,\theta) = \int_{-\infty}^{+\infty} f(s\cos\theta - t\sin\theta, s\sin\theta + t\cos\theta) dt$$

Continuous to discrete

Matrix representation

Definitions

- A: Projection operator
- *a_{ij}:* Weight factor representing the contribution of pixel j to the number of counts detected in bin i.
- In other words: probability that a photon emitted from pixel j is detected in bin i.

Problem inversion

In theory, direct methods exist to solve the equation:

$$g = Af$$

These methods, called direct inversion consist in finding A^{-1}

$$f = A^{-1}g$$

Many difficulties

- $\left\{ \begin{array}{l} \bullet \text{ Inversion of } A \\ \bullet A^{-1} \text{ does not exist} \\ \bullet A^{-1} \text{ is not unique} \end{array} \right.$

In practice: inverse problem are badly conceived

- Solution is not unique and A is unstable:
 - Data contamination by noise
 - Finite number of projections
- Approached solution

Problem:

Knowing the sinogramm, What is the radioactive distribution f(x,y)?

Analytic algorithms

- Backprojection operation
- Central slice theorem
- Backprojection + filtering
- Backprojection of filtered projections
- Fourier domain (space)

Operator: Back Projection

Inverse operrator

$$b(x,y) = \int_{0}^{\pi} g(s,\theta) d\theta$$

$$\widetilde{b}(x,y) = \sum_{k=1}^{p} g(s_k,\theta_k) \Delta \theta$$

p: number of projections $\Delta \theta$: Sampling (π/p)

Back projection: Artifacts

p=4

p=8

p=64

p=256

Central slice theorem

$$g(s,\theta) = \int_{-\infty}^{+\infty} f(x,y) dt$$

$$\mathsf{TF}(g)$$
$$G_{10}(\upsilon_{s},\theta) = \int_{-\infty}^{+\infty} g(s,\theta) e^{-2i\pi \upsilon_{s} s} ds$$

$$G_{10}(v_s,\theta) = \int_{-\infty-\infty}^{+\infty+\infty} f(x,y) e^{-2i\pi v_s s} ds dt$$
$$s = x \cos \theta + y \sin \theta$$
$$v_x = v_s \cos \theta$$
$$v_y = v_s \sin \theta$$

$$G_{10}(\upsilon_s,\theta) = \int_{-\infty-\infty}^{+\infty+\infty} f(x,y) e^{-2i\pi(x\upsilon_x+y\upsilon_y)} dxdy$$

$$\left|F_{11}(\upsilon_x,\upsilon_y)\right|_{\upsilon_t=0}=G_{10}(\upsilon_s,\theta)$$

Graphical illustration

Sampling

Proof

$$f(x, y) = \int_{-\infty-\infty}^{+\infty+\infty} F_{11}(\upsilon_x, \upsilon_y) e^{2i\pi(x\upsilon_x + y\upsilon_y)} d\upsilon_x d\upsilon_y$$
 TF 2D
$$f(x, y) = \int_{-\infty-\infty}^{+\infty+\infty} G_{10}(\upsilon_s, \theta) e^{2i\pi(x\upsilon_x + y\upsilon_y)} d\upsilon_x d\upsilon_y F_{11}(\upsilon_x, \upsilon_y) = G_{10}(\upsilon_s, \theta)$$

Changement of variables:
$$(v_x, v_y) \rightarrow (v_s)$$

 $-\infty -\infty$

$$f(x,y) = \int_{0}^{\pi + \infty} \int_{-\infty}^{\infty} G_{10}(v_s,\theta) |v_s| e^{2i\pi v_s s} dv_s d\theta$$

$$f(x,y) = \int_{0}^{\pi} \int_{-\infty}^{\pi} g'(s,\theta) d\theta$$

$$s = x\cos\theta + y\sin\theta$$

$$|\mathrm{d}\upsilon_{x}\mathrm{d}\upsilon_{y} = |\upsilon_{s}|\mathrm{d}\upsilon_{s}\mathrm{d}\theta$$

Filtering

- Exact inversion is not possible for two reasons:
 - Discrete sampling -> Limited space
 - Shannon: fréquency max. reconstructed : Nyquist=1/2∆s
 - Presence of statistical noise
 - Utilization of « ramp » filter -> Noise amplification

Utilisation of an apodisation window

Apodisation window

- Cut-off frequency influence:
 - The resolution of the reconstructed image
 - Noise properties

Hann Filter

Fourier Transform

http://culturesciences.chimie.ens.fr/nodeimages/images/ dossiers-dossierstransversaux-Imagerie_Medicale-IRM_RMN_Demirdjian-4.png

02/03/18

Image space

Fourier space

Real domain

Frequency domain

Fourier Transform

02/03/18

http://polgm.free.fr/petitescuriesdunet/public/images/fourier.png

Cut-off frequency: Resolution

 v_c

Cut-off frequency: Noise

$$\nu_c$$

Back projection + Filtering

 $f(x, y) = b(x, y) \otimes psf(x, y)$

- Drawback: requires an entire huge back projection matrix b(x,y)
 - Otherwise, tuncation artifacts

 $f(x,y) \qquad \qquad b(x,y)$

Drawback of fourier methods

- Sensitivity to noise
- Interpolation kernel in Fourier

Multiplication in real space

$$\int_{\mathbb{C}} \int_{\mathbb{C}} F_{11}(v_x, v_y) \otimes W(v_x, v_y) \to f(x, y) \cdot w(x, y)$$

Iterative algorithms

• Find the *f* vector, solution of the equation

$$g = Af$$

- Iterative algorithms are based on the principle of finding a solution by successive estimations.
- The projection corresponding to the current estimation is compared to the acquired projections.
- The comparison result is used to modify the estimation and create a new one.

Algebraic methods: ART

ART: « Algebraic Reconstruction Technique »

Example ART-1 $f_{j}^{(k+1)} = f_{j}^{(k)} + \frac{g_{i} - \sum_{j=1}^{N} f_{ji}^{(k)}}{N}$

3,5	4,5
6,5	1,5

Example ART-2 $f_{j}^{(k+1)} = f_{j}^{(k)} + \frac{g_{i} - \sum_{j=1}^{N} f_{ji}^{(k)}}{N}$

Why using statistical methods?

Advantages:

- Constraints on the object: non negativity, support...
- Incorporation of physics models
 - Photons transportation / geometrical efficiency...
- Appropriated statistical model (Noise reducing).
- Flexibility regarding geometry.
- Incorporation of anatomical information.

Drawbackss:

- Computation time.
- Complex model.
- Tedious implementation.

Investigating the object

Realize the image of the radiotracer distribution

Imaging system: provide $X_k(t)$?

<u>First hypothesis</u>: $X_k(t)$ Independent random variables distributed according to the same probability density function $f_{\vec{x}(t)}(\vec{x})$

Imaging system:provide $f_{\vec{x}(t)}(\vec{x})$!!

Secone hypothesis: Atoms distribution follows a Poisson law

Radioactive decay

An atom can only be observed when it deexcitates and emits photons. The deexcitation time af an atom *k*th is a random variable T_k .

<u>Third hypothesis</u>: The T_k are independent random variables

<u>Fourth hypothesis</u>: Each T_k has an exponential distribution whose mean is $\mu_T = t_{1/2}/\ln 2$

 $t_{1/2}$ = « half-life »

The photon emission is a statistical processus that follows a Poisson law

Statistics of an ideal counter

K(t, V): number of atomes @ time *t*, located in a volume *V* K(t, V): counting process following a Poisson law with a mean

with

$$\lambda(\vec{x},t) = \mu_N \frac{\mathrm{e}^{-t/\mu_T}}{\mu_T} \cdot f_{\vec{X}(t)}(\vec{x})$$

Detection element

For example: one element of the sinogram (bin)

 \Rightarrow does not correspond necessarily to a physical element of the detector

Fifth hypothesis: Each desintegration produce a detected event in one bin at least.

If a fraction of the event is attributed to 1 bin \Rightarrow Counting statistics follows a law different than Poisson.

Detection efficiency

Probability of detecting in bin i, an event coming from position x

PSF: Impulse response of the detection system « Point Spread Function »

$$s_i(\vec{x}) = h\left(\vec{k}_i \cdot \vec{x} - \tau_i\right)$$

 $s) = \delta(s)$ Ideal detector

Detection efficiency

Including:

- The geometry / solid angle of detection
- The collimation
- The scatter
- The attenuation
- Detector response
- Detection efficiency of the detector
- Positon range, acolinearity, etc...

Examples

Detection efficiency for an Anger gamma camera

Acquisition

- Register events
 - for t between t_1 and t_2
- *Y_i*: number of events registered by the *i*th detector element
- $\{Y_i: i=1, ..., n_d\}$ represents the sinogram data.

In summary,

$$Y_i \sim Poisson\left\{\int s_i(\vec{x})\lambda(\vec{x})d\vec{x}\right\}$$

With

$$\lambda(\vec{x},t) = \mu_N \frac{\mathrm{e}^{-t/\mu_T}}{\mu_T} \cdot f_{\vec{X}(t)}(\vec{x})$$

$$\lambda(\vec{x}) = \mu_N \int_{t_1}^{t_2} f_{\vec{X}(t)}(\vec{x}) \frac{e^{-t/\mu_T}}{\mu_T} dt$$

= Emission density

Poisson Statistical Model

Measurements = real events + noise

Sources of noise:

- cosmic rays
- ambient (surrounding) noise
- All counts not taken into account in $s_i(x)$

$$Y_i \sim Poisson\left\{\int s_i(\vec{x})\lambda(\vec{x})d\vec{x} + r_i\right\}, \quad i = 1, ..., n_d$$

Mean number of events originated from a noise source in bin *i*

Problem posed by reconstruction

Estimate the emission density λ using:

$$Y_i \sim Poisson\left\{\int s_i(\vec{x})\lambda(\vec{x})d\vec{x} + r_i\right\}, \quad i = 1, ..., n_d$$

 $\{Y_i = y_i\}_{i=1}^{n_d}$ $S_i(\vec{x})$

 r_i

Events collected in bin i

Detection efficiency in bin i

Noise source in bin i

In summary: five multiple choice parts

 $\lambda(\vec{x})$

 $S_i(\vec{x})$

 Y_{i}

- -1- Object description
- -2- Physical model of the system
- -3- Statistical model of the measurement
- -4- Optimization criteria
- -5- Used algorithm

-1- Object description

With

basis function

- Fourier series
- Wavelette
- Kaiser-Bessel
- B-splines

- Rectangular pixels
- Basis on the organes

•...

Examples

-1- Projection algorithm

$$g(s,\theta) = \int_{-\infty}^{+\infty} f(x,y) dt$$

$$g_i = a_{i1}f_1 + a_{i2}f_2 + \dots + a_{im}f_m = \sum_{j=1}^m a_{ij}f_j$$

$$g(s,\theta) = \int S_i(\vec{x})\lambda(\vec{x})d\vec{x} = \int S_i(\vec{x}) \left[\sum_{j=1}^{n_p} \lambda_j b_j(\vec{x})\right]d\vec{x}$$

$$= \sum_{j=1}^{n_p} \left[\int S_i(\vec{x}) b_j(\vec{x}) d\vec{x} \right] \lambda_j = \sum_{j=1}^{n_p} a_{ij} \lambda_j$$

-1- Discrete Reconstruction

$$Y_{i} \sim Poisson\left\{\int S_{i}(\vec{x})\lambda(\vec{x})d\vec{x} + r_{i}\right\}, \quad i = 1,...,n_{d}$$
$$\bigcup$$
$$Y_{i} \sim Poisson\left\{\sum_{j=1}^{n_{p}} a_{ij}\lambda_{j} + r_{i}\right\}, \quad i = 1,...,n_{d}$$

-2- Physical model of the Système

 $a_{ij} = \int S_i(\vec{x}) b_j(\vec{x}) d\vec{x}$

- The geometry / solid angle of detection
- The collimation
- The scatter
- The attenuation
- Detector response
- Detection efficiency of the detector
- Positon range, acolinearity, etc...

Improving the physical model enables:

Better quantification results Better spatial resolution

Model measuring:

No approximation in the analytical calculation Long time acquisition Storage

. . .

. . .

-2- Integration line

 a_{ij} = intersection length

 $s_i(\vec{x}) = \delta\left(\vec{k}_i \cdot \vec{x} - \tau_i\right)$

$$a_{ij}$$
 = area of intersection

 a_{ij} = interpolation

-2- Examples...

-2- Matched/Mismatched Projector/BackProjector operators

-3- Statistical mode of measurement

$$Y \approx A\lambda + r$$
Statistical model

- Good model:
 - Variance reduction in image
 - Increasing computing time
 - Algorithm complexity
- Incorrect model
 - Statistics (dead time)
 - Model (transmission log)

-3- Choice of the Statistical model

• No model: $Y - r = A\lambda$

0

Resolve algebraically in order to find λ .

• Uniform gaussian noise: Least squares method, minimize

$$\left\|Y - A\lambda\right\|_{w}^{2} = \sum_{i=1}^{n_{d}} w_{i} \left(y_{i} - \left[A\lambda\right]_{i}\right)^{2}, \quad \left[A\lambda\right]_{i} \cong \sum_{j=1}^{n_{p}} a_{ij}\lambda_{j}$$

• Poisson Model:
$$Y_i \sim Poisson\{[A\lambda]_i + r_i\}$$

$$\left\|Y-A\lambda\right\|^2$$

-4 & 5- Optimized criteria and used algorithm

Example:

Most used method: ML-EM

Two steps per iteration

- 1st Step: E (« Expectation »)
 Calculate the likelihood expectation
- 2nd Step: M (« Maximisation »)
 Maximise the expectation.

Definition:

Mean number of desintegration in pixel j

Probability that a photon emitted in pixel j is detected in bin i

Mean number of photons emitted from pixel j and detected in bin i

Mean number of photons detected in bin i

We have proved that g_i is a variable which statistics follows the Poisson law

The probability of detecting g_i photons is:

$$P(g_i) = \frac{e^{-\overline{g}_i} \overline{g}_i^{g_i}}{g_i!}$$

Example: Probability of detecting 5 with 3 as mean number of events

$$P(5) = \frac{e^{-3}3^5}{5!} \approx 0.101$$

- Hypothesis on acquired data
 - The variables *i* are independents

Probability of observing the vector g when the emission vector is $~\lambda$

Product of the individual probabilities

Likelihood function

- Find the maximum value $\Rightarrow L(\lambda)$
- Calculate its derivative
- In order to maximize the likelihood, we use the following algorithm

$$l(\lambda) = \ln(L(\lambda))$$

$$l(\lambda) = \ln\left(\prod_{i=1}^{n} \frac{e^{-\overline{g}_i} \overline{g}_i^{g_i}}{g_i!}\right) = \sum_{i=1}^{n} \ln\left(\frac{e^{-\overline{g}_i} \overline{g}_i^{g_i}}{g_i!}\right) = \sum_{i=1}^{n} \left(-\overline{g}_i + g_i \ln(\overline{g}_i) - \ln(g_i!)\right)$$

$$l(\lambda) = \sum_{i=1}^{n} \left(-\overline{g}_i + g_i \ln(\overline{g}_i) - \ln(g_i!) \right) \quad \text{avec} \quad \overline{g}_i = \sum_{j=1}^{m} a_{ij} \lambda_j$$

$$l(\lambda) = \sum_{i=1}^{n} \left(-\sum_{j=1}^{m} a_{ij} \lambda_j + g_i \ln\left(\sum_{j=1}^{m} a_{ij} \lambda_j\right) - \ln(g_i!) \right)$$

 \Rightarrow Probability to observe a projection from a mean image.

We want the image with the maximum probability of having g

In other words, the vector λ for which $l(\lambda)$ is maximum and considered as the best estimation of the solution.

• It was proved that $l(\lambda)$ has a unique maximum.

$$\frac{\partial l(\lambda)}{\partial \lambda_{j}} = 0 \implies \text{maximum}$$
$$\frac{\partial l(\lambda)}{\partial \lambda_{j}} = -\sum_{i=1}^{n} a_{ij} + \sum_{i=1}^{n} \frac{g_{i}}{\sum_{j'=1}^{m} a_{ij'} \lambda_{j'}} = 0$$

$$l(\lambda) = \sum_{i=1}^{n} \left(-\sum_{j=1}^{m} a_{ij}\lambda_j + g_i \ln\left(\sum_{j=1}^{m} a_{ij}\lambda_j\right) - \ln(g_i!) \right)$$

$$\frac{\partial l(\lambda)}{\partial \lambda_j} = -\sum_{i=1}^n a_{ij} + \sum_{i=1}^n \frac{g_i}{\sum_{j'=1}^m a_{ij'} \lambda_{j'}} a_{ij} = 0$$

$$\lambda_{j} \frac{\partial l(\bar{f})}{\partial \bar{f}_{j}} = -\lambda_{j} \sum_{i=1}^{n} a_{ij} + \lambda_{j} \sum_{i=1}^{n} \frac{g_{i}}{\sum_{j'=1}^{m} a_{ij'} \lambda_{j'}} = 0$$

$$\lambda_j = \frac{\lambda_j}{\sum_{i=1}^n a_{ij}} \sum_{i=1}^n \frac{g_i}{\sum_{j'=1}^m a_{ij'} \lambda_{j'}} a_{ij}$$

Iterative form

Description

Measured Projection

Normalization factor

Estimated projection

ML-EM Algorithm

- Multiplicative method
- Positive or null solution
 - Initial values at 0 remain 0
 - Positive initial value remain positive
- Conservation of the global activity in the image
- Slow convergence
- For a low number of iterations
 - Cold zones: excellent reconstruction
 - Hot zones: reconstruction < FBP
- For a high number of iterations
 - Cold zones: excellent reconstruction
 - Hot zones: Noisy images (bias near to 0)

Noise at Convergence

- At convergence,
 - « Perfect » reconstruction of the counts number in each pixel
- However,
 - No correlation between neighbouring pixels.
 - High Poisson noise level \Rightarrow Chessboard effect
- Corrections
 - Stop the iterations (need to define a stop criteria...)
 - Penalization function

Research domains

- Convergence acceleration
- Problem regularization
 - -Penality function
 - Introduction of an A PRIORI knowledge

Convergence acceleration

Algorithm OS-EM

$$\lambda_{j}^{(k+1)} = \frac{\lambda_{j}^{(k)}}{\sum_{i=1}^{n} a_{ij}} \sum_{i=1}^{n} \frac{g_{i}}{\sum_{j'=1}^{m} a_{ij'} \lambda_{j'}^{(k)}} a_{ij}$$

OS-EM = ML-EM applied on a subset S $S=1 \Rightarrow$ ML-EM

Convergence has not been proved but seems to be similar to that of ML-EM.

Adequate choice of subsets

Acceleration factor $\sim S$

Regularization

- Criteria:
 - Estimate projection ~ measured projection.
- Replaced by:
 - (a) Estimated projection ~ measured projection.
 - (b) Low noise obtained image.
- The introduction of an a priori knowledge on the image = regularization
 - Promote convergence!

Find λ to maximize (a) and (b)

Mathematics derivation

Bayes theorem:

Algorithm MAP: Maximum a Posteriori

Consider the logarithm:

MAP = ML penalized, the penality being the a priori knowledge.

A priori example

Gibbs a priori \Rightarrow local image smoothing

$$P(\lambda) = C e^{-\beta U(\lambda)}$$

U: Energy function of λ β : A priori weighting C: Normalization constant

$$\ln P(\lambda|g) = \sum_{i=1}^{n} \left(-\sum_{j=1}^{m} a_{ij}\lambda_j + g_i \ln\left(\sum_{j=1}^{m} a_{ij}\lambda_j\right) - \ln(g_i!) \right) - \beta U(\lambda) + K$$
$$K = \ln C - \ln P(g) \quad \text{: Constant independent of } \lambda$$

Maximize likelihood

• Derive the likelihood in order to maximize λ

$$\frac{\partial P(\lambda|g)}{\partial \lambda_{j}} = -\sum_{i=1}^{n} a_{ij} + \sum_{i=1}^{n} \frac{g_{i}}{\sum_{j'=1}^{m} a_{ij'} \lambda_{j'}} a_{ij} - \beta \frac{\partial}{\partial \lambda_{j}} U(\lambda_{j}) = 0$$

Example of function U

• A quadratic a priori:

$$\frac{\partial}{\partial \lambda_{j}^{(k)}} U\left(\lambda_{j}^{(k)}\right) = \sum_{b \in N_{j}} w_{jb} \left(\lambda_{j}^{(k)} - \lambda_{b}^{(k)}\right)$$

 N_j : set of points neighbouring pixel j

Si $b \sim j \Rightarrow$ the term is zero $\Rightarrow \lambda^{(k+1)}$ same to ML-EM Si $j > b \Rightarrow$ the term >0 $\Rightarrow \lambda^{(k+1)} <$ a ML-EM Si $j < b \Rightarrow$ the term is <0 $\Rightarrow \lambda^{(k+1)} >$ a ML-EM

Examples

Some remarks

Illustrations

Illustrations

A. Sohlberg et al, Eur J Nucl Med (2004) 31:986-994

References

- F. Beekman, *Discrete Reconstruction Methods*, NSS-MIC 2000.
- J. A. Fessler, *Statistical Method for Image Reconstruction*, NSS-MIC 2001.
- P.P. Bruyant, Analytic and Iterative Reconstruction Algorithms in SPECT, JNM 2002.

Type of tomographic studies

- Heart
 - Myocarde (thallium, MIBI...)
 - Ventricular cavities
 - Gated SPECT
- Brain
- Lungs
- Bone
- Others (peptides, antibodies...)

Slices plans in myocardiac imaging

Small axis

Big axis

Horizontal

Representation of 3D contours

Cerebral tomography

Sujet normal

Maladie d'Alzheimer

Endocrine tumor in the liver

