Digital Signal Processing Techniques

 to Monitor Bunch-by-bunch Beam Positions in the LHC for Machine Protection PurposesJan Pospisil, O. Bjorkqvist, A. Boccardi, M. Wendt

BE-BI-QP, CERN 8. 12. 2017

Outline

Introduction

Chosen Approach

Performance Estimation

Prototype Performance

Introduction

- LHC interlock BPM system
- Protects beam dump, by continuously monitoring the beam position
- Real time, bunch-by-bunch, failsafe system
- Limitations of present system
- Bunch spacing needs to be > 25 ns (20-5 ns doublets are not covered!)
- Sometimes unstable beam position (due to aging, temperature drifts)

- Beam position offset at low bunch intensity
- May cause an unnecessary beam abort

System Requirements

- Bunch-by-bunch measurement

Single bunch:

- Protons $1.5 \times 10^{9}-3 \times 10^{11} \mathrm{cpb}$
- Ions
$1 \times 10^{9}-5 \times 10^{10} \mathrm{cpb}$
- Cover bunch intensity range throughout a LHC fill
- Single fill without gain switching: $1 \times 10^{10}-2 \times 10^{11} \mathrm{cpb}$
- Position
- Beam-abort threshold: ~3 mm
- Position range to be covered: $\pm 7.5 \mathrm{~mm}$
- Resolution for a given intensity range setting: <100 $\mu \mathrm{m}$

Chosen Approach

Chosen Approach - Overview

- Single processing chain for both electrodes
- Minimize drifts and aging problems

- Direct signal digitization by an ADC
- Prototype with Texas Instruments ADC12J4000 12 bits, 3.2 GSa/s, ~ 8.7 ENOB

Band-pass Comb Filter

Expected ADC data

Single bunch (measured)

Doublet bunch (simulated)

Performance Estimation

Simulation Results (1)

- Sensitivity to intensity
- Resolution $<100 \mu m$ for I $>1.6 \mathrm{e} 10$ for AVG algorithm

Sim. parameters:

- 12 bits @ 3.2 GHz
- Random position
- Random time shift
- $\sigma_{\text {noise }}=380 \mu \mathrm{~V}$

Simulation Results (2)

Prototype Performance

Test Setup

- Conditions
- SPS point 4

- Acquisition at flat-top
- Two measurement campaigns
- M1: One electrode split - emulated beam position
- M2: Both electrodes - real beam position scan
- Hardware \& Software
- SPS button pick-up, vertical plane
- Prototype of comb filter
- Commercial ADC mezzanine (Vadatech FMC225)
- CERN BE-BI VME carrier (VFC-HD)
- Python script for read-out, MATLAB for analysis

Measurement Details

- Typical single-turn acquisition (first 100 ns):

- Position calculated by RMS algorithm
- Position mean and std. dev. calculated in [mm] from >2000 turns.

M1: Test Setup

M1: Results

Calculated position vs. expected position

Single bunch filter response (LHCINDIV, avg. over 2048 bunches)

M2: Test Setup

M2: Results

Crosscheck With Simulation

Position resolution from simulations and measurements

Comb BP Filter: Proof of Concept

- Initial design for system evaluation:
- Successful tests.
- Beam measurements in the LHC and SPS.
- Improper to use this design for final system

Fig 1. Interlock BPM system architecture.

- Difficult to reproduce (hand made)
- Possibly too low power handling capacity

Fig 2. Proof of concept filter installed in rack box.

Fig 3. Filter frequency response.

Fig 4. Beam measurement with filter.

Comb BP Filter: PCB Design

- Development of power dividers with proper power rating
- Development of full filter in PCB configuration
- First prototype manufactured
- Beam measurement show promising results
- Improved impulse response without ringing!

Fig 3. Frequency response of PCB filter.

Fig 4. LHC beam measurement of PCB filter at 1.35 e 11 bunch intensity.

Summary of a new LHC interlock BPM system

- Single-channel scheme with direct digitization
- Bunch-by-bunch measurements
- Single-bunch, single-pass resolution
- With 25 ns spaced bunches: $9-167 \mu \mathrm{~m}$
- With 5 ns spaced doublets: (to be measured)
- Lower resolution expected, but still compatible with the interlock system requirements

Discussion

- Calibration / heartbeat signal
- Is a centered beam calibration signal sufficient?
- A calibration signal with beam offsets would require attenuators or/and switches plus extra cabling!
- ...and adds more complexity to the system.
- Prototype electronics test end of 2018
- Where, how, goals?
- Old -> new electronics transition after LS2
- How? Old/new systems in parallel? 50-50 split?
- Beam dump procedures (failure modes)
- Position thresholds, bunch/ turn count windows
- Fail-safe operation

