Digital Signal Processing Techniques to Monitor Bunch-by-bunch Beam Positions in the LHC for Machine Protection Purposes

Jan Pospisil, O. Bjorkqvist, A. Boccardi, M. Wendt

BE-BI-QP, CERN

Outline

Introduction

Chosen Approach

Performance Estimation

Prototype Performance

Introduction

- LHC interlock BPM system
 - Protects beam dump, by continuously monitoring the beam position
 - Real time, bunch-by-bunch, failsafe system
- Limitations of present system
 - Bunch spacing needs to be > 25 ns (20-5 ns doublets are not covered!)
 - Sometimes unstable beam position (due to aging, temperature drifts)
 - Beam position offset at low bunch intensity
 - May cause an unnecessary beam abort

System Requirements

Bunch-by-bunch measurement

- Single bunch:
- Protons
 1.5×10⁹ 3×10¹¹ cpb
- lons

 $1 \times 10^9 - 5 \times 10^{10}$ cpb

- Cover bunch intensity range / throughout a LHC fill
 - Single fill without gain switching: 1×10¹⁰ 2×10¹¹ cpb
- Position
 - Beam-abort threshold: ~3 mm
 - Position range to be covered: ±7.5 mm
- Resolution for a given intensity range setting: <100 μm

Chosen Approach

Chosen Approach – Overview

- Single processing chain for both electrodes
 - Minimize drifts and aging problems

- Direct signal digitization by an ADC
 - Prototype with Texas Instruments ADC12J4000 12 bits, 3.2 GSa/s, ~ 8.7 ENOB

Band-pass Comb Filter

CERN

Single bunch (measured)

Doublet bunch (simulated)

Performance Estimation

Simulation Results (1)

- Sensitivity to intensity
 - Resolution $< 100 \ \mu m$ for I > 1.6e10 for AVG algorithm

Simulation Results (2)

Prototype Performance

8.12.2017

156th MPP

Test Setup

- Conditions
 - SPS point 4
 - Acquisition at flat-top
 - Two measurement campaigns
 - M1: One electrode split emulated beam position
 - M2: Both electrodes real beam position scan
- Hardware & Software
 - SPS button pick-up, vertical plane
 - Prototype of comb filter
 - Commercial ADC mezzanine (Vadatech FMC225)
 - CERN BE-BI VME carrier (VFC-HD)
 - Python script for read-out, MATLAB for analysis

Measurement Details

• Typical single-turn acquisition (first 100 ns):

- Position calculated by RMS algorithm
- Position mean and std. dev. calculated in [mm] from >2000 turns.

M1: Results

M2: Results

Position Scan in SPS

Crosscheck With Simulation

Position resolution from simulations and measurements

Comb BP Filter: Proof of Concept

- Initial design for system evaluation:
 - Successful tests.
 - Beam measurements in the LHC and SPS.
- Improper to use this design for final system
 - Difficult to reproduce (hand made)
 - Possibly too low power handling capacity

Fig 1. Interlock BPM system architecture.

Fig 2. Proof of concept filter installed in rack box.

Fig 3. Filter frequency response.

Fig 4. Beam measurement with filter.

Comb BP Filter: PCB Design

- Development of power dividers with proper power rating
- Development of full filter in PCB configuration
 - First prototype manufactured
 - Beam measurement show promising results
 - Improved impulse response without ringing!

1.35e11 bunch intensity.

Summary of a new LHC interlock BPM system

- Single-channel scheme with direct digitization
- Bunch-by-bunch measurements
- Single-bunch, single-pass resolution
 - With 25 ns spaced bunches: $9-167\ \mu\text{m}$
 - With 5 ns spaced doublets: (to be measured)
 - Lower resolution expected, but still compatible with the interlock system requirements

Discussion

- Calibration / heartbeat signal
 - Is a centered beam calibration signal sufficient?
 - A calibration signal with beam offsets would require attenuators or/and switches plus extra cabling!
 - ...and adds more complexity to the system.
- Prototype electronics test end of 2018
 - Where, how, goals?
- Old -> new electronics transition after LS2
 - How? Old/new systems in parallel? 50-50 split?
- Beam dump procedures (failure modes)
 - Position thresholds, bunch/ turn count windows
 - Fail-safe operation

