

Ease of use of radiation transport tools for dose rate calculations

Daniel Murphy

Introduction and Aims

• My aims today are:

- Remind you about the significance of dose rate calculations.
- Describe the differences in context between radiation transport simulation in nuclear physics and in dose rate calculations.
- Show you how we can make our lives easier with more userfriendly software for predicting dose rates and get you to appreciate the importance of ease of use in nuclear codes.

Why caculate dose rates?

• Plan ahead and make sure doses to workers are ALARA (as low as reasonably achievable).

Image: Halden reactor, IFE

Why caculate dose rates?

• Optimise design of shielding.

Dose Rate at 1 m from 100 MBq of Co60 through lead shield

Why caculate dose rates?

Radiation therapy – deliver the correct dose to the right place (i.e. a tumor)

Radiation Transport Calculations in Nuclear Physics

 Radiation transport means modelling the way particles move through and interact with their environment

Image: ATLAS Experiment/CERN

Differing contexts – Nuclear Physics vs Dose Rate Assessment

• The context of radiation transport calculations – and therefore the priorities – are not the same in nuclear physics as opposed to dose rate assessments.

Nuclear Physics Research	Dose Rate Calculations
High accuracy	"Good enough" accuracy
Less time sensitive	Fast answers needed
Expert users	User expertise varies
Detailed models	Simplified models

Tools for radiation transport – Monte Carlo codes

- Uses random numbers to generate particles and move them through the user defined geometry.
- Count particles reaching your detector to calculate detector response, or dose rate, or reaction rate.
- Common codes: GEANT4, MCNP, etc...

Monte Carlo downsides...

• Tedious text input

inp (~/advantg/files/slant_benchmark/lead/20cm/output) - + ×	
File Edit View Search Tools Documents Help	
	dm@deca ~/advantg/files/slant_benchmark/lead/20cm/output – + ×
<pre>oblique penetration for benchmarking VRdose c 99 0 10 imp:p 0 \$ The void 100 5 -0.00125 -10 20 409 imp:p 1 \$ Air 101 5 -0.00125 400 -301 imp:p 1 \$ Air 102 5 -0.00125 401 -302 imp:p 1 \$ Air 103 5 -0.00125 402 -303 imp:p 1 \$ Air 104 5 -0.00125 403 -304 imp:p 1 \$ Air 105 5 -0.00125 404 -305 imp:p 1 \$ Air 106 5 -0.00125 405 -306 imp:p 1 \$ Air 107 5 -0.00125 406 -307 imp:p 1 \$ Air 108 5 -0.00125 408 -309 imp:p 1 \$ Air 109 5 -0.00125 408 -309 imp:p 1 \$ Air 20 4 -11.34 -20 imp:p 1 \$ the shield c 300 5 -0.00125 301 -401 imp:p 1 301 5 -0.00125 302 -402 imp:p 1 302 5 -0.00125 303 -403 imp:p 1 303 5 -0.00125 306 -406 imp:p 1 305 5 -0.00125 307 -407 imp:p 1 306 5 -0.00125 307 -407 imp:p 1 307 5 -0.00125 308 -408 imp:p 1 308 5 -0.00125 308 -408 imp:p 1 309 5 -0.00125 308 -408 imp:p 1 309 5 -0.00125 308 -408 imp:p 1 309 5 -0.00125 308 -408 imp:p 1</pre>	He Edit View Search Terminal Help warning. material 1 is not used in the problem. m2 001000 -0.022100 \$ concrete warning. material 2 is not used in the problem. m3 026000 1 \$ iron warning. material 3 is not used in the problem. comment. 40 surfaces were deleted for being the same as others. warning. energy of top photon weight-window bin set to 100. warning. 1 materials had unnormalized fractions. print table 40. comment. 1 materials had unnormalized fractions. print table 40. comment. threading will be used when possible in portions of mcnp6. comment. threading will be used for n/p/e table physics. comment. threading will generally not be used for model physics. imcn is done runtpe already exists. runtpf is created instead. warning. material 4 has been set to a conductor. ctm = 0.00 nrn = 0 dump 1 on file runtpf nps = 0 coll = 0 xact is done cp0 = 0.04
10 rpp -1300.0 1300.0 -1300.0 1300.0 -10.0 210.0 \$ 20 rpp -1300.0 1300.0 -1300.0 1300.0 90.0 110.0 c 400 rcc 0.0 0.0 200.0 0.0 0.0 1.0 17.46 301 rcc 0.0 0.0 200.0 0.0 0.0 1.0 29.87 401 rcc 0.0 0.0 200.0 0.0 0.0 1.0 40.67 302 rcc 0.0 0.0 200.0 0.0 0.0 1.0 66.86 402 rcc 0.0 0.0 200.0 0.0 0.0 1.0 78.73 303 rcc 0.0 0.0 200.0 0.0 0.0 1.0 188.49 403 rcc 0.0 0.0 200.0 0.0 0.0 1.0 122.45 304 rcc 0.0 0.0 200.0 0.0 0.0 1.0 158.89 404 rcc 0.0 0.0 200.0 0.0 0.0 1.0 176.75	Exterior \$ Wall Plain Text - Tab Width: 4 - Ln 1, Col 1 INS

9

IF2

Monte Carlo downsides...

Clunky visualisation

10

IF2

Monte Carlo downsides...

• Difficult to use and slow

- Discretise a large source and treat it as a collection of point sources.
- Compute the contribution from each point with the equation:

- Discretise a large source and treat it as a collection of point sources.
- Compute the contribution from each point with the equation:

- Discretise a large source and treat it as a collection of point sources.
- Compute the contribution from each point with the equation:

- Discretise a large source and treat it as a collection of point sources.
- Compute the contribution from each point with the equation:

VRdose – A point kernel code from IFE!

 Make things easy for dose assessors with modern GUI, visualisation, and instant results.

16

VRdose – A point kernel code from IFE

• VR = Vritual Reality. Wokers can practise a task in VR and see how much dose they would receive.

VRdose demonstration

ring ring

Hello, is this the shielding assessment department? We have a problem – we were transporting a sample for analysis and we spilled about 2 litres of it on the floor. It contains about 5 GBq of 137Cs per litre.

Access has been restricted and we are working on a cleanup strategy, but in the meantime there is a corridor adjacent to the room which operators use regularly to access their work area elsewhere in the facility. Is it safe for them to continue using the corridor?

I have emailed you a drawing of the situation.

VRdose demonstration

VRdose demonstration

Within a few minutes, we can reply...

I expect the maximum dose rate inside the corridor due to the spill to be around 14 μ Sv/hr.

I recommend entering the corridor to perform a detector survey - if an elevated dose rate is found directly opposite the location of the spill, then I suggest installing temporary mazel shielding (or similar) equivalent to 1 cm of lead.

Also, in the room with the spill, the dose rate directly above it is likely to be around 400 μ Sv/hr and around 100 μ Sv/hr 2m away. What are the options for cleaning it? Let's cooperate on the cleaning strategy.

MCNP for comparison

Conclusions

- My aims today were:
 - Remind you about the significance of dose rate calculations.
 - Describe the differences in context between radiation transport simulation in nuclear physics and in dose rate calculations.
 - Show you how we can make our lives easier with more userfriendly software for predicting dose rates and get you to appreciate the importance of ease of use in nuclear codes.

With thanks to...

- Istvan Szoke and Tom-Robert Bryntesen VRdose development
- Bill Beere and Sunniva Siem My PhD supervisors
- You Remaining awake

Comments or questions?

