

Studies of the atomic nuclei by the MAGISOL collaboration at ISOLDE and HIE-ISOLDE

IDS Isolde Decay Station: ⁸B beta decay SEC Scattering Experiment Chamber: ¹⁵C+²⁰⁸Pb → elastic & break-up

O. Tengblad

Instituto de Estructura de la Materia - CSIC, Madrid, Spain

MAGISOL

Light Nuclei & Nuclear Structure

ISOLDE: Isotope Separation On-Line @ CERN

CERN accelerator complex PS Booster → ISOLDE

Beam: Protons 1.4 GeV Intensity: 3 10¹³ p/p pulse: 3μs frecuency: 0.5-1Hz

ISOLDE Decay Experiments

KU LEUVEN

neutron-wall

IDS – ISOLDE Decay Station

http://isolde-ids.web.cern.ch/isolde-ids/#setup

ретв

5 DSSD Si-telescopes

4 HPGe clover-detectors, each consisting in 4 crystals.

Fast timing set-up

Tape-transport

Set-up: conversion - e under study

Another important TOOL for the experiment is the TARGET and ion production

B react with most materials, get stuck

makes extraction of ⁸B difficult

19911

Forming volatile compounds of ⁸B within a porous target material, makes the situation better

J. Ballof & C. Seiffert, contribution to the ISOLDE workshop 2015

IS633: ⁸B Decay modes

O. Kirsebom et al., Phys. Rev. C 83 (2011) 065802 The 1⁺ at 17.640 MeV IGISOL 2008 – α-emission for ⁸B neutrino spectrum accessible only via EC J^π, T $E_{n} = 337 \text{ keV}$ 17.9798 $2^+; 1$ 1⁺; 1 EC 17.64017.2551 $2m_ec^2$ 8**B** $2^+;$ 16.0052⁷Li + p ⁸Li 16.922 $2^+; 0+1$ The high-lying, isospin-mixed, $4^+; 0$ 11.416.626 $2^+; 0+1$ 2⁺ doublet is allowed \rightarrow 2 alphas $\alpha + \alpha$ β⁺ β^{-} $\alpha + \alpha$ coincidences α coincidences with E₄=0 Events/20 keV 103 10² 10 ⁸B Predominantly β^+ decay $^{3} \alpha + \alpha^{e}$ 15 18 E_{*} (MeV) $2^+; 0$ 3.0via 3.03 MeV state ///////// \rightarrow 2 alphas $\alpha + \alpha$ $0^+; 0$ 0.0-0.0918 $^{8}\mathrm{Be}$ $^{4}\text{He} + {}^{4}\text{He}$ O. Tengblad Nordic Meeting 2018 Longyearbyen

For the 1⁺ at 17.640 MeV the case is the opposite: we localize the main strength of the decay to the core and the halo-p constitutes the non-decaying spectator;

T. Nilsson et al., Hyperfine Int. 129 (2000) 67

 $\mathcal{O} \mid c + h \rangle = \mathcal{O}(\mid c \rangle \mid h \rangle) = (\mathcal{O} \mid c \rangle) \mid h \rangle + \mid c \rangle (\mathcal{O} \mid h \rangle)$

The decay through the 1⁺ level is described by the first term thus the strength can be estimated from the known decay of the ⁷Be core nucleus.

Expected branching ratio based on the *p*-halo spectator + ⁷Be core - decay 2.3 10⁻⁸

IS633: Experimental setups

16.6-16.9 MeV alpha break up states

17.6 MeV p emitting state

Analysis of the 1st experiment: α - α coincidences

Sílvia Viñals i Onsès – Electron Capture of ⁸B into the highly excited states of ⁸Be

Sum α- α energies observed in opposite detectors

Coincidences in 60um detectors P-side

O. Tengblad Nordic Meeting 2018 Longyearbyen

17.6 MeV state and p-branch

Energy on the DE detector

Sílvia Viñals i Onsès

The main activity of ${}^{8}B - \beta^{+} -> \langle \langle determines the upper limit of the branching ratio i.e. on how many events in coincidence compared to how free from background in the [250 – 400] KeV.$

The theoretical upper limit is 2.310⁻⁸ calculated the wave function as a proton halo.

Up to now, (**10% of the data analysed**). an experimental upper limit of 4.4.10⁻⁶

HIE-ISOLDE @ 7.5 MeV/u 2017

SEC @ XT03 HIE ISOLDE

http://isolde-sec.web.cern.ch

SCATTERING EXPERIMENT CHAMBER

LUND

J. Cederkall joakim.cederkall@nuclear.lu.se

Expt.	Spokesperson, institution	Beam	Description
<u>IS619</u>	<u>I. Martel</u> GEM Huelva O. Tengblad IEM Madrid	¹⁵ C	Effects of the neutron halo in ¹⁵ C scattering at energies around the Coulomb barrier
<u>IS616</u>	<u>A. Di Pietro</u> INFN Catania	⁸ B	Reaction mechanisms in collisions induced by ⁸ B beam close to the barrier.
<u>IS607</u>	<u>C. Lederer</u> Univ. Edinburgh	⁵⁹ Cu	The ⁵⁹ Cu(p,alpha) cross section and its implica for nucleosynthesis in core collapse supernova
<u>IS561</u>	<u>K. Riisager</u> IFA Univ. Aarhus	⁹ Li	Transfer reactions at the neutron dripline with triton target
<u>IS554</u>	<u>D. Gupta</u> Bose Inst. Kolkata	⁷ Be	Search for higher excited states of ⁸ Be [*] to study the cosmological ⁷ Li problem.
<u>IS550</u>	<u>S. Heinz</u> GSI <u>E. Kozulin</u> JINR <u>Dubna</u>	⁹⁴⁹⁵ Rb	Study of the Dinuclear System ^A Rb + ²⁰⁹ Bi (Z1 + Z2 = 120).
IS629	C. Mazzocchi	¹¹ Be	Beta decay of ¹¹ Be in TPC

O. Tengblad olof.tengblad@csic.es

Univ. Warsaw

SEC - Scattering Experiment Chamber

Beam

SAND n-Array 32x 10x10x10cm³ Plastic TPS-1000 PM tubes Photonis XP4312 Power supply CAEN SY1527

12 11

A STATION IN

100.00

			9 mm ²	$\Delta \Theta {=}~ \mathbf{3^o}$			
DSSD S3	1	32x24			768	768	
			4 mm ²	$\Delta \Theta = 2^{\circ}$			
DSSD BB7	2	32x32			1024	2048	
					Total	4096	
					рілсіз	4050	
O. Tengblad Nordic Meeting 201							
Longvearbyen							

SI619: Effects of the neutron halo in ¹⁵C scattering at energies around the Coulomb barrier

I. Martel GEM Huelva O. Tengblad IEM Madrid

Studying the low energy dynamics of the halo nucleus ${}^{15}C$ (S_n=1215 keV, S_{2n}=9395 keV) by measuring the angular distribution of the elastic scattering and ${}^{14}C$ production cross sections at Coulomb barrier energies.

The carbon isotope ¹⁵C is a rather unique nucleus as its ground state exhibits the only known pure s-wave halo configuration. The halo structure favors breakup and neutron stripping to bound states, and these effects should be observable as a sudden decrease in the angular distribution of the elastic channel around the grazing angle.

This is the first dynamical study carried out so far for the halo nucleus ¹⁵C at low collision energies.

This should bring information on the coupling between elastic, neutron transfer and breakup channels, and the role of the continuum.

Theoretical calculations: ${}^{15}C + {}^{208}Pb \rightarrow {}^{14}C + n$

CRC

coupled reaction channel calculations including 1n stripping

CDCC

Continuum Discretised Couple Channel including breakup and inelastic scattering

elastic scattering, normalized to Rutherford

The ¹⁵C halo modeled as neutron plus inert ¹⁴C core, given that the first excited state of ¹⁴C is high lying > 6 MeV. solid line - the full calculation dashed line - without couplings dotted line - nuclear couplings

the effects on the elastic cross section due to breakup and 1-n stripping are quite different. If the breakup dominates the scattering process, we should observe a strong absorption in the elastic yield even at very forward angles, ranging from 10% to 40% between 40° to 90° degrees.

HIE ISOLDE 2017 → 2018

Previouse study Experiment S393: ¹⁴B(p,2p)¹³Be @ GSI

O. Teng

¹³Be data from S393 @ GSI

Can we settle this problem via the two-neutron transfer reaction, ¹¹Be(t, p)¹³Be @ HIE-ISOLDE IS606 Beamtime 2018!?

IS606 Studies of unbound states N= 8 shell closure

- (telescopes)
- Additionally
 - 1 HpGe detector at beamdump
 - Stopper foil after the CD 22

Studies of Light exotic nuclei by the MAGISOL at ISOLDE and HIE-ISOLDE

Introducing new tools

- Target development leading to high yields to study ⁸B
- **IDS ISOLDE Decay Station**
- IS633: on EC in ⁸B to excited states in ⁸Be
- **SEC Scattering Experiment Chamber HIE ISOLDE**
- IS619: n-halo in ¹⁵C scattering at the Coulomb barrier

HIE-ISOLDE with 4 cryo modules reaching 10 MeV/u

IS606: Studies of unbound states in isotopes at the N= 8 shell closure a complementary measurement to ¹⁴B(p,2p)¹³Be performed at GSI

Thank you for your attention!

MAGISOL

O. Tengblad Nordic Meeting 2018 Longyearbyen