iThemba LABS: opportunities in nuclear science and applications

Mathis Wiedeking Department of Subatomic Physics

- Facilities and developments
- Measurements recent and future
- SAIF: Going neutron-rich

iThemba LABS : National Facility for research, development and training

Largest National Research Facility in SA and the largest accelerator facility in the southern hemisphere:

Injector cyclotron 1

Separated sector cyclotron

6MV Tandem

K11 Cyclotron

3MV Tandetron

Injector cyclotron 2

iThemba LABS: SSC (Separated Sector Cyclotron)

Subatomic Physics/ Nuclear Medicine / Radioisotope Production

Research is dependent on SSC accelerator:

- Operating 6000 h/year
- Physics beam not restricted any longer.

User facility: for local universities, but also for users from rest of the world.

K=600 developments

K600 is one of two facilities capable of high energy resolution (≤100 keV FWHM) measurements at zero degrees, with low background to the measured spectrum, for medium energy (E~50-200 MeV/A) light ions (p,d,t,He).

Two vertical drift chambers (position and angle measurements), two plastic scintillation detectors (trigger and particle identification) Full solid angle 3.5 msr and efficiency 80%

γ -ray array coupled to K600

New focal plane MICROMEGAS detector

Department: Science and Technology REPUBLIC OF SOUTH AFRICA RS: R Neveling & R Smit

Gamma-ray array(s) developments

- iThemba LABS embarked on mission to expand capabilities ~4.5M Euro total investment.
- AFRODITE (Clover, BGO and LEPS) to be doubled.
- Fast-timing array: 2.5x2.5cm LaBr3:Ce
- Segmented Clover detector.
- African LaBr Array: ALBA 89x203mm LaBr3:Ce (L Pellegri, Talk Friday 9:40)
- Coupled to CSI, recoil det., silicon, solar cells, plunger, neutron wall.
- Digital electronics (XIA).

RS: P Jones, E Lawrie, L Pellegri, M Wiedeking

Neutron beam facility developments

n tof spectra from 100 MeV p on Li, measured at neutron emission angles of 0^{0} and 16^{0}

- **2018:** Reconstruction of the neutron vault to meet requirements for high-energy neutron metrology facility.
- Additional shielding
- Optimized beam stops
- Extended flight path at 16°

RS: P Maleka

- Energies: 30 to 200 MeV
- Targets:
 - Li, Be: quasi-monoenergetic
 - C: quasi-white ('grey')
- Beam currents
 - 3-5 µA (E_p < 100 MeV)
 - 300 nA (\dot{E}_{p} = 200 MeV)
- Pulse selection: 1/1 1/7
- Time resolution: \approx 1 ns
- Flight paths:
 - 10 m (0°)
 - 8 m (16°)
- Fluence rate (1 mm Li): $j \approx 1.10^3$ cm⁻² µA⁻¹ at 10 m

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

Other developments

Electron Spectrometer

DSAM setup for half-lives of astrophysical important nuclei.

A new DSAM lifetime measurement setup for halflives of astrophysical important nuclei.

Very sensitive and able to measure lifetimes to ~10fs. Commissioning run April 2018.

RS: S Triambak

science & technology Department: Science and Technology

REPUBLIC OF SOUTH AFRICA

Refurbish (Siegbahn-Kleinheinz, Orsay). B_{max} ~0.15T, Si(Li) 5-6mm. conversion e spectroscopy Internal Pair Spectroscopy E0 decays Couple to K600 Commissioning run July 2018.

RS: P Jones

Tape station for beta-decay studies.

Metallic tape delivers implants ~2m from target.

SiLi and plastic detectors

Currently up to 4 Clover detectors.

Commissioning run April 2018.

RS: RA Bark

Physics case: PDR and SR

Pygmy Dipole Resonance (PDR)

- Observed in several neutron-rich nuclei
- Astrophysical implications: r-process nucleosynthesis and EoS
- Systematic measurements in deformed and spherical nuclei

- Observed in several deformed nuclei.
- Can be significantly fragmented
- Measurements to investigate splitting of SR and relationship to low-energy enhancement.
- Need new K600 focal plane detector.

science & technology Department:

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

K600+Gamma-ray detectors: PDR studies

Typical: 1) IS-IV mixed states at low energies 2) relatively pure IV states at higher energies.

Possible interpretation:

Deformed protonneutron saturated core, oscillating against а neutron skin along two different axes

¹⁵⁴Sm(α,α'γ) @ 120MeV **Preliminary results**

GATES: PID & Y1 plane & Gamma Time

REPUBLIC OF SOUTH AFRICA

Physics case:NLD and PSF – inverse kinematic

- NLD and PSF reproduce (n,g) cross sections.
- May be easier to measure than direct approaches.
- Oslo Method and Beta-Oslo Method have limits.
- Inverse kinematics method can fill the gaps.
- Applicable to stable and radioactive beam facilities.
- Obtain capture cross sections when targets cannot be manufactured.
- Opens up great opportunities to get astrophysical relevant cross sections.
- Complementary to Oslo Method, Beta-Oslo (Guttormsen Friday 9am).

Silicon telescopes+Clovers+LaBr₃:Ce

300MeV ⁸⁶Kr beam, deuterated polyethylene & polystyrene targets. AFRODITE + 2 LaBr₃(Ce) + Silicon telescopes. 2016

⁸⁷Kr: VW Ingeberg, MSc thesis, UiO, 2016 Ingeberg Talk Thursday 14:45 HIE-ISOLDE: PSF and NLD from ⁶⁷Ni 2016

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Statistical properties of warm nuclei: Investigating the low-energy enhancement in the gamma strength function of neutron-rich nuclei

S.Siem¹, M. Wiedeking², F.L.Bello Garrote¹, L. Bernstein³, D. Bleuel³, P.A.Butler⁴, T.Eriksen¹, F.Giacoppo¹, A.Görgen¹, M.S.Guttormsen¹, T.W.Hagen¹, P.Hoff¹, B.V.Kheswa², M.Klintfjord¹, A.C. Larsen¹, D. Negi², H.T. Nyhus¹, J.Rekstad¹, S. Rose¹, E. Sahin¹, G.M.Tveten¹, and A. Voinov⁴, J. Wilson⁶

⁶⁷Ni: VW Ingeberg, PhD project, UiO

300MeV ⁸⁴Kr beam, and 530 MeV ¹³²Xe beam, on deuterated polyethylene targets. AFRODITE + 6 LaBr₃(Ce) + Silicon telescopes. 2017

¹³³Xe: H Berg, MSc project, UiO Poster And many other ideas...

⁸⁵Kr: T Seakamela, PhD project, UJ

science & technology

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

South African Isotope Facility (SAIF)

Phase I: ACE Isotopes and LeRIB

- 70MeV cyclotron: dedicated to the production of isotopes.
- SSC: dedicated to beams for research (stable and LeRIB).
- Timeline 4 years to operations

Phase 2: ACE Beams

- SSC: dedicated to beams for research (stable and radioactive).
- Post-accelerated radioactive beams.
- Timeline 8 years to operations

Science & technology Department: Science and Technology

REPUBLIC OF SOUTH AFRICA

Summary

- Overview of facilities
 - K600, Gamma-ray arrays, n-beam line,...
- Physics cases:
 - PDR and SR
 - Gamma-decay from GR
 - PSF and NLD
- SAIF

Thank you!

