



### **Directed Flow of Identified Particles**







### **A Few Useful Concepts**





**Reaction plane :** Defined by the beam and the line connecting two colliding nuclei

Transverse momentum :

 $p_t = \sqrt{p_x^2 + p_y^2}$ 



**Peripheral collisions** : collisions in which two nuclei barely graze each other.



**Central collisions** : head-on collisions.





### Anti-flow / 3<sup>rd</sup> flow component



Brachmann, Soff, Dumitru, Stocker, Maruhn, Greiner Bravina, Rischke, PRC 61 (2000) 024909. L.P. Csernai, D. Roehrich PLB 458, 454 (1999) M.Bleicher and H.Stocker, PLB 526,309(2002)

Anti-flow/ $3^{rd}$  flow component : Flat  $v_1$  at midrapidity due to  $1^{st}$  order phase transition

Caution : Seeing anti-flow does not necessarily mean that there is a QGP EoS. (refer to UrQMD). In following slides, anti-flow only means zero or negative slope at midrapidity, due to the fast expansion of a tilted source.

NATIONAL LABORATORY







R.Snellings, H.Sorge, S.Voloshin, F.Wang, N. Xu, PRL (84) 2803(2000)

Baryon stopping + positive space-momentum correlation  $\rightarrow$  v<sub>1</sub> wiggle. No QGP necessary







# Collapse of Flow: Probing the Order of the Phase Transition

#### Horst Stöcker\*

FIAS- Frankfurt Institute for Advanced Studies, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany, Institut für Theoretische Physik, Johann Wolfgang Goethe - Universität, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany Gesellschaft für Schwerionenforschung (GSI), Planckstr. 1, 64291 Darmstadt E-mail: stoecker@fias.uni-frankfurt.de

We discuss the present collective flow signals for the phase transition to the quark-gluon plasma (QGP) and the collective flow as a barometer for the equation of state (EoS). We emphasize the importance of the flow excitation function from 1 to 50A GeV: here the hydrodynamic model has predicted the collapse of the  $v_1$ -flow at ~ 10A GeV and of the  $v_2$ -flow at ~ 40A GeV. In the latter case, this has recently been observed by the NA49 collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy, we interpret this observation as potential evidence for a first order phase transition at high baryon density  $\rho_B$ .



BROOKHA





#### **Directed Flow**

#### The Observable of Early Thermalization

- 1. Directed flow at RHIC  $\leftrightarrow$  **HYDRODYNAMICS** 
  - explains anti-flow
  - right magnitude
  - system size scaling
- 2. Qualitatively explains : PID flow (and  $p_{\perp}$  dependence)

#### See next talk.

Longitudinal pressure appears early!

Piotr Bożek Directed flow
Directed f

Piotr Bozek, RHIC/AGS workshop 2010

Piotr Bozek and Iwona Wyskiel-Piekarska, Arxive:1009.0701



#### v<sub>1</sub> at low energies





Aihong Tang ISMD, Univ. of Antwerp, Belgium, Sept 2010



#### $v_1$ at low energies





Aihong Tang ISMD, Univ. of Antwerp, Belgium, Sept 2010

STAR 🛧

v<sub>1</sub> at RHIC, measured by Phobos

![](_page_9_Figure_2.jpeg)

Aihong Tang ISMD, Univ. of Antwerp, Belgium, Sept 2010

BROOK

NATIONAL LABORATORY

![](_page_10_Picture_0.jpeg)

![](_page_10_Figure_2.jpeg)

STAR, PRL 101 252301 (2008)

Aihong Tang ISMD, Univ. of Antwerp, Belgium, Sept 2010

BROOKHAVEN National Laboratory

![](_page_11_Picture_0.jpeg)

### **STAR Experiment**

![](_page_11_Picture_2.jpeg)

![](_page_11_Figure_3.jpeg)

![](_page_12_Picture_0.jpeg)

## • Run7, 62 M events.

![](_page_12_Figure_3.jpeg)

Tracks used for TPC : No. of fit hits  $\in$ [15, 50] Global DCA $\in$ [0.0, 1.0] No. of fit hits/No.of possible hits  $\in$ [0.52, 1.05] 0.1 < pT < 12.0 GeV/c | n | < 1. PID achieved by TPC dE/dx

P<sub>t</sub> cut for protons/anti-protons [0.4,1 GeV/c]

![](_page_13_Picture_0.jpeg)

### **Pion v**<sub>1</sub> at **RHIC**

![](_page_13_Picture_2.jpeg)

![](_page_13_Figure_3.jpeg)

Hydro+tilted source describes the data the best

![](_page_14_Picture_0.jpeg)

### **PID** v<sub>1</sub> at **RHIC**

![](_page_14_Picture_2.jpeg)

![](_page_14_Figure_3.jpeg)

Anti-proton slope has the same sign of pions – consistent with anti-flow

Kaon suffers less shadowing effect due to smaller k/p cross section, yet we found negative  $v_1$  slope for Kshort – consistent with anti-flow

![](_page_15_Picture_0.jpeg)

**PID** v<sub>1</sub> at **RHIC** 

![](_page_15_Picture_2.jpeg)

![](_page_15_Figure_3.jpeg)

Difference seen between  $v_1$  of protons and anti-protons in 5-30% central collisions.

# **Centrality dependence of v<sub>1</sub> slope <b>BROOKHAVEN**

![](_page_16_Figure_1.jpeg)

STAR 🕁

Negative  $v_1$  slope for protons is observed in 30-80% centralities. Large difference seen between  $v_1$  of protons and anti-protons in 5-30% centralities.

Considering antiproton/proton ratio is almost flat as a function of centrality, what is observed does not match expectations.

#### **Proton v**<sub>1</sub> Excitation Function

STAR 🛧

![](_page_17_Picture_1.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

![](_page_18_Picture_2.jpeg)

- Negative slope of pions, antiprotons, protons and  $k_s^0 v_1$  is observed
- In mid-central collisions (5-30%), proton  $v_1$  slope becomes small (~-0.1%), and sizable difference is seen between  $v_1$  of protons and anti-protons.
- Anti-flow can explain the negative v<sub>1</sub>(y) slope but it has difficulties in explaining the centrality dependence of the difference between the v<sub>1</sub>(y) slope of protons and anti-protons.