Minimum Bias Distributions

Identified Particles

Summary

Studies of particle production in inelastic pp events with the ATLAS detector

Ben Wynne

ATLAS Collaboration University of Edinburgh

International Symposium on Multiparticle Dynamics, 2010

Minimum Bias Distributions

Identified Particles

Summary

Introduction

Presenting some early measurements made as a test of the detector performance - tracking in particular - and as a test of the Monte Carlo models used to simulate collisions

Minimum Bias Distributions

Identified Particles

Summary

Outline

The ATLAS Detector

Tracking and MBTS

Minimum Bias Distributions Results Tuning

Identified Particles

Ks and Lambda Results

Minimum Bias Distributions

Identified Particles

Summary

Tracking and Triggering

Minimum Bias Distributions

Identified Particles

Summary

Tracking

For the low $|\eta|$ region:

- 3 layers of silicon pixels, resolution 10 by 115 μm
- 4 double layers of single-sided silicon strips, 17 by 580 μm
- 73 layers of straws, r-φ resolution 130 μm

All within a 2T magnetic field

Minimum Bias Distributions

Identified Particles

Summary

Outline

The ATLAS Detector Tracking and MBTS

Minimum Bias Distributions

Results Tuning

Identified Particles

Ks and Lambda Results

Minimum Bias Distributions

Identified Particles

Summary

Event Selection

Primary vertex quality cut

- Three tracks with $p_T > 150 \text{ MeV}$
- Transverse closest approach to the beam spot < 4 mm
- Reject the event if there is a second primary vertex with \geq 4 tracks

Track quality cut

- Track *p*_T > 500 MeV
- At least 1 pixel hit and 6 strip hits
- Track must come within 1.5 mm (trans and long) of the primary vertex

Minimum Bias Distributions

Identified Particles

Summary

Measurements at different \sqrt{s}

Charged particle density vs: $1/N_{ev} \cdot dN_{ch}/d\eta$ 2.5 √s = 2.36 TeV = 900GeV 1.5 + √s = 7 TeV √s = 2.36 TeV 0.5 ATLAS Preliminary ATLAS Preliminary Data 2009/2010 -1 $p_{_{T}}$ [GeV]⁰

Pseudorapidity (η)

Transverse momentum (p_T)

Coloured regions are combined statistical and systematic errors

Tuning with ATLAS Data

ATLAS Minimum Bias Tune 1 (AMBT1) has been made using the $\sqrt{s}=$ 900 MeV and 7 TeV data

- Also tuned to the underlying event distributions (previous talk by Claus)
- Included CDF and D0 results as well to keep compatibility

No extrapolation: results from a well-defined phase space

- $|\eta| <$ 2.5: the extent of the ATLAS tracking volume
- $p_T > 500$ MeV for track quality
- Require more than 6 charged tracks per event to remove diffractive contributions

Minimum Bias Distributions

Identified Particles

Summary

AMBT1 Tuning

The low p_T cut-off for MPI was reduced by the tune, meaning the diverging cross-section has greater effect and more particles are produced

	MC09c	AMBT1
PARP(82)	2.31	2.292

PARP(90) governing energy extrapolation was tuned but did not change, suggesting this part of the model is well-motivated by physics consistent across Tevatron and LHC data

Also some changes in the parameters describing the proton hadronic matter distribution

Charged particle density vs p_T

Mean p_T vs charged particle number

Charged particle density vs p_T

Mean p_T vs charged particle number

Minimum Bias Distributions

Identified Particles

Summary

AMBT1 Tuning

Two parameters relating to colour reconnection (CR) were tuned, resulting in a softer p_T spectrum

	MC09c	AMBT1
PARP(77)	0.0	1.016
PARP(78)	0.224	0.538

PARP(77) suppresses CR for high momentum hadrons

PARP(78) indicates the strength of CR

Minimum Bias Distributions

Identified Particles

Summary

Still work to do!

From the minimum bias analysis using 100 MeV tracks:

Minimum Bias Distributions

Identified Particles

Summary

Outline

The ATLAS Detector Tracking and MBTS

Minimum Bias Distributions Results Tuning

Identified Particles

Ks and Lambda Results

Minimum Bias Distributions

Identified Particles

Summary

Decays

K_s^0 mesons

- Decay to $\pi^+\pi^-$ with branching ratio 69%
- Proper flight length 2.7 cm

 Λ^0 baryons

- Decay to $\mathrm{p}\pi^-$ with branching ratio 63%
- Proper flight length 7.9 cm

 $\overline{\Lambda^0}$ bayons decay to $\overline{p}\pi^+$

Identified Particles

Summary

Event Selection

Look for a secondary vertex formed by two oppositely charged tracks

- Require vertex fit $\chi^2 < 15$
- Both tracks must have $p_T > 100 \text{ MeV}$ and $\geq 2 \text{ silicon hits}$

Particle	Flight Length	$\cos \theta_K$
K_s^0	> 4 mm (transverse)	> 0.999
Λ ⁰	> 30 mm (3D)	> 0.9998

Where $\theta_{\mathcal{K}}$ is the angle between the flight direction and the momentum

Minimum Bias Distributions

Identified Particles

Summary

Example Event

Identified Particles 0000

3.87

Measured Masses

 1115.79 ± 0.02

"Width" is full width half maximum / 2.35 - resolution, not decay width All units MeV

2.32

 1115.683 ± 0.006

 1115.79 ± 0.01

Minimum Bias Distributions

Identified Particles

Summary

K_s Kinematic Distributions

Minimum Bias Distributions

Identified Particles

Summary

Λ^0 Kinematic Distributions

Minimum Bias Distributions

Identified Particles

Summary

$\overline{\Lambda^0}$ Kinematic Distributions

Minimum Bias Distributions

Identified Particles

Summary

Summary

Minimum bias:

- The minimum bias distributions have been measured at $\sqrt{s}=$ 0.9, 2.36 and 7 TeV
- Greater density of charged particles than predicted by previous MC tunes, AMBT1 gives better agreement

 K_s^0 and Λ^0 reconstruction:

- Measured masses consistent with PDG values
- MC consistent with data except for tails of p_T distributions
- Physics production measurement in progress

Minimum Bias Distributions

Identified Particles

Summary

Thanks to...

Emily Nurse, Jed Biesiada and Andy Buckley for their help with this talk

Everyone who worked on these analyses!

Further Reading

Charged particle multiplicities in pp interactions at $\sqrt{s} = 0.9$ and 7 TeV in a diffractive limited phase space measured with the ATLAS detector at the LHC and a new Pythia6 tune ATLAS-CONE-2010-031

Kinematic Distributions of K_s^0 and Λ_0 decays in collision data at $\sqrt{s} =$ 7 TeV ATLAS-CONF-2010-033

Charged particle multiplicities in pp interactions for track p_T > 100 MeV at $i\sqrt{s}$ = 0.9 and 7 TeV measured with the ATLAS detector at the LHC ATLAS-CONF-2010-046

Charged particle multiplicities in pp interactions at $\sqrt{s}=$ 2.36 TeV measured with the ATLAS detector at the LHC

ATLAS-CONF-2010-047

Appendix

Appendix

AMBT1 Details

Parameter	Related model	MC09c value	Tuning range	AMBT1 value
PARP(62)	ISR cut-off	1.0	fixed	1.025
PARP(93)	Primordial kt	5.0	fixed	10.0
PARP(77)	CR suppression	0.0	0.25 - 1.15	1.016
PARP(78)	CR strength	0.224	0.2 - 0.6	0.538
PARP(83)	MPI (matter fraction in core)	0.8	fixed	0.356
PARP(84)	MPI (core of matter overlap)	0.7	0.0 - 1.0	0.651
PARP(82)	MPI (p_{τ}^{min})	2.31	2.1 - 2.5	2.292
PARP(90)	MPI (energy extrapolation)	0.2487	0.18 - 0.28	2.50

100 MeV selections

Primary vertex quality cut

- Two tracks with $p_T > 100 \text{ MeV} + \text{beam spot constraint}$
- Track trans and long errors < 5 and < 10 mm respectively
- Track transverse closest approach to the beam spot < 4 mm
- Tracks with \geq 1 pixel, \geq 4 strip and \geq 6 total hits

Track quality cut

- Track *p*_T > 100 MeV
- At least 1 pixel hit
- 2, 4 or 6 strip hits for p_T > 100, 200 or 300 MeV
- Track must come within 1.5 mm (trans and long) of the primary vertex
- χ² < 0.01 if p_T > 10 GeV to remove mis-measured tracks

Appendix