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1. Relation BFKL evol. — Diffraction

Assumption: HE collisions driven by partonic subcollisions
(cf. PYTHIA)

Gluon cascades

Small x: BFKL \r:

Gluon exchange = C_
inelastic interaction

Multiple subcollisions
= saturation
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Eikonal approximation
Diffraction and saturation more easily described in impact
parameter space

Scattering driven by absorption into inelastic states i, with
weights 2f;

Structureless projectile

Optical theorem =

Elastic amplitude T =1 —e~F, withF =Y_f,
dO‘tot/dzb ~ 2T

Jinel/dzb ~1 _e—ZZfi = Otot — Oel
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Good — Walker

If the projectile has an internal structure, the mass eigenstates
can differ from the eigenstates of diffraction

Diffractive eigenstates: ¢,; Eigenvalue: T,

Mass eigenstates: Vi = ) Ckn®n (Vin = V1)

Elastic amplitude: (W1|T|Wy) =Y c2 Tn = (T)

doe/d?b ~ (Y- c2 Tn)? = (T)?

Amplitude for diffractive transition to mass eigenstate Wy:

(W|T W) = >, CknTnCin

dogi /d?b = Y0 (Wa| T [Wie) (Wi | T [W1) = (T?)

Diffractive excitation determined by the fluctuations:
._d(_Tdiff'ex{de. = .d(_Tdiff —dog = (T?) —(T)?
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Proton substructure: parton cascade
Depends on energy, i.e. on Lorentz frame

Can fill a large rapidity range =- high mass excitation possible

L L L]
L
IS -

virtual cascade  j ojasticint.  elastic scatt.  diffractive exc.

Cf. Miettinen—Pumplin (1978), Hatta et al. (2006)
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Diffractive cross sections

Good-Walker

kS BroL— BFKL evol.: Large fluctua-
‘ tions (Mueller-Salam)

Y1 :
| <<T >t2arg>Proj

R S ‘ gives diffractive scattering
‘ with M2 < exp(y1)

y2 | _ ,
‘ Vary y, gives do/dMg

X

target |

Can this reproduce the triple-regge result?
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Mueller Dipole Model:
A color charge is always associated with an anticharge

Formulation of LL BFKL in transverse coordinate space

Qe1 1

§eo0 0

Emission probability: 73 ‘”’

Color screening: Suppression of large dipoles

~ suppression of small k; in BFKL
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Dipole-dipole scattering

BFKL evol.:

Gluon exhange frame independent

= Color connection

projectile-target
3
Interaction probability:
2fj = a21n? (_r13r24)
S

14723

Largest k; can be any:
where in the evolution
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Multiple interactions = Dipole chains and color loops

r

| L+ rapidity

Frame independent formalism =- dipole loops in the evolution
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Note that
Gluon emission ~ & = e aq

Gluon exchange ~ as. Color suppressed
= Also loop formation color suppressed ~ as

Related to identical colors.

H><\

Quadrupole ~ recoupled dipole chains

Gluon exchange — same effect
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Relation Good—Walker — Multi-regge.

2. Lund Dipole Cascade model
(Avsar—Flensburg—GG-Lonnblad)

The Lund model is a generalization of Mueller’s dipole model,
with the following improvements:

» Include NLL BFKL effects
» Include Nonlinear effects in evolution (loop formation)
» Include Confinement effects

MC: DIPSY (CF, LL)

Initial state wavefunctions:

7*: Given by perturbative QCD. Wt (r, z; Q?)
proton: Dipole triangle

2 tunable parameters: proton size and Agcp
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Relation Good—Walker — Multi-regge

Total and elastic cross sectio

PP

Otot and Oe¢l
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Relation Good—Walker — Multi-regge

10° T T T T
swing + quark masses
H1,ZEUS &
10% | E
5
=
g 10t k J
xﬂ.
c)
10° f E
-1 1 1 1 1
107 107 10° 10* 102 10°

T

Satisfies geometric scaling
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Relation Good—Walker — Multi-regge

Diffractive excitation:  *p

Example My < 8 GeV, Q2 = 4,14,55GeV?.

(b) My< 8 GeV

02 T T 2 T > T
Q =4 GeV* —+——
14 ---x-—-
= 0.15 55 o o
&
= ’__}—/
X oaf T I i
\;é ___________
=
° o005} X % x
I
0 ! L ] I

140 160 180 200 220 240
W (GeV)
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Relation Good—Walker — Multi-regge.

Only events with a rapidity gap aty = 0, in the frame used for
the calculation, are treated as diffractive.

In other frames they are classified as inelastic.

1.8 TeV
04 T T T T T T T
0.35 |- .
0.3 .
pp coll. inaframe, 5 o025} -
. [ [
where the projec- % 021 i §
. . all diffractive
tile is evolved Y, ©° 015 elastic ’
e ; 0.1 f weeeeees SD B
rapidity units S [ T DD e
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Relation Good—Walker — Multi-regge

Can diffraction be uniquely defined?,

3. Relation Good-Walker — Multi-regge
(C. Flensburg-GG: arXiv:1004.5502)

Y P Fluctuations

Prob. distrib. for
Born ampl. F =} f;

dP/dF ~ AF~P

Wide distribution

(F) small
=T=1-eF~xF

relative frequency

W =220 Q=14

100000 F ;

10000
1000 F o=4
100 |
10

i f

01 L 1 1

b=6 " bIPSY ——
AFP + cutoff

"1e-05 0.0001 0.001
F

dogitt ex./d oot ~ 10%, decreasing with Q?

0.01
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Can diffraction be uniquely defined?,

PP:. Born approximation: large fluctuations
dP /dF ~ AFPe~F

Born ampl. F W =2TeV Uniterized ampl. T =1—e~F
04 T T T 25 T T T
DIPSY DIPSY ——
035 AFPe 1 AFPe "
z 03 z o
g g
El 0.25 2 15
£ o2 2 b=6 b=3
£ o015 S b=0
© ©
s s b=9
[ [}
s o1 e ol
0.05
0 - - 0 1 ! 1
o 1 2 3 4 5 & 0 02 04 06 08 1
F T

(F) is large: Unitarity important = fluctuations suppressed
(~ enhanced diagrams in multi-regge formalism)

Factorization broken between DIS and pp
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Can diffraction be uniquely defined?,

Impact parameter profile

Central collisions: (T) large = Fluctuations small

Peripheral collisions: (T) small = Fluctuations small

T T T T T T T T
W =100 GeV W = 14000 GeV

Largest fluctuations when (T) ~ 0.5

Circular ring expanding to larger radius at higher energy
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Can diffraction be uniquely defined?,

Triple-Regge parameters

proj.

5 ; gpr(0)

\
V1 | Traditionally fluctuations

| not taken into account
dooo- o ge(t)

Reggeon parameters and

Vo : couplings fitted to data

\
- target | 9pr (1)
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Can diffraction be uniquely defined?,

Bare pomeron

Born amplitude without saturation effects

Ttet; 7!, 7D dog /dt, dogodt
I I Y ' DIPSY elastic -------
* DIPSY SD ——
~ 1000 ¢ (\x fitted B, constant gsp
> Y exponential B --------
~ 3 .
ié’ 35 100
° E
- 5
A+ total S 10 L
elastic -------
single diffractive --------
10 1 I
100 1000 10000 1 0
Vs (GeV)

Agrees with triple-regge form, with a single pomeron pole
a(0) =121, o/ =0.2GeV 2
gpp(t) = (5.6 GeV 1) el gzp(t) =0.31GeV !
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Can diffraction be uniquely defined?,

Compare with multi-regge analyses:

a(0)=1.21, o/ =0.2GeV?
gpp(t) = (5.6GeV 1) el ggp(t) = 0.31GeV

Ryskinetal: «(0)=1.3, o <0.05GeV 2
Kaidalov etal.: «(0)=1.12, o =0.22GeV?

Note:
Fit ~ single pomeron pole (nhot a cut or a series of poles)
gsp approx. constant (cf LL BFKL ~ 1/4/[t]),
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Can diffraction be uniquely defined?
Preliminary final state results,

4. Can diffraction be uniquely defined?

Multipomeron diagrams
are included in the dipole picture, with fixed multi-pomeron

couplings
N - However, all events with
no gap are classified as
inelastic

Cf KMR: A large cross
section for overlapping
double diffraction

v

1
T4l ])1]
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Can diffraction be uniquely defined?
Preliminary final state results,

How to define diffraction?

Attempt: Two separate color singlet systems, containing the
original valence quarks?

Exchange of two gluons forming
color singlet?

But the gap can be filled by FSR
or nonpert. strings

or formed by color reconnection

Cannot be uniquely calculated
in pQCD
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Can diffraction be uniquely defined?

Preliminary final state results

Conclusion:

The definition of diffraction varies between different schemes

For one event, the diffractive capacity is not an observable

Solution: Study observables, gap events!
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Preliminary final state results
Summary,

5. Preliminary final state results

1. Remove virtual emissions,
which do not come on shell in
the interaction

(only preliminary results, due to
technical problems in the MC)

2. Add final state radiation

3. Hadronize (no color recon.)

Note: No input structure fcns. No quarks, only gluons, and only
2 free parameters

No precision results should be expected

We hope to reproduce the qualitative features, and get
insight into the basic mechanisms
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Preliminary final state results

Summary.

CDF 1.8 TeV

dNcr/dn dP /dN¢h

Charged multiplicity at /& = 1800 GeV, [5] < 1, pr > 0.4 GeV

£ LTI T T T T T
K s T T T T T T T ]
187Tev ) —e— CDF data
s 5 —
T St MC (TestFulli8oo)
R e El
o e
DIPSY: dor /i (Be)

PYTHIA dby i (GeV) —— 1

10 -
3 =
105 ]
P T O TIOTON TU ITTIOI £
2 o S A AR A Il
L i
Saap E
2L I ]
1 3 E
il I Y2

L I BN S Wit SR (| AN PN
0 T P 3 P 5 s 7 s o 5 10 15 20 25 3 35 40
n Nt

The BFKL evolution gives more activity forward than PYTHIA
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Preliminary final state results

Summary,

ALICE

Rapidity distribution and Multiplicity frequency.

DIPSY ——

LICE 7TeV —e—

ALICE 2.36TeV —e—
7+ ALICE 09TeV —e— o

ANg/dn
-

Bad simulation, or indication for new effects at higher energy?

Note also enhanced production of strangeness and baryons
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Extra slides

Summary

>

Parton cascades fill the whole rapidity range between
projectile and target, in a frame-independent way.

The fluctuations in BFKL evol. are large. Besides
enhanced forward activity, it can describe diffractive
excitation within the Good—Walker formalism (with no extra
parameters.)

In central pp collisions diffractive excitation is suppressed
by saturation. This leads to factorization breaking.

The result corresponds to a bare pomeron, which is a
simple pole, and an almost constant triple-pomeron
coupling.

Diffractive excitation is scheme dependent, and cannot-be
uniquely defined. Study gap events.

Prelim. results were presented for exclusive final states.

29 Gosta Gustafson Lund University




Preliminary final state results”
Summary

Extra slides

Extra slides

CDF

Pseudorapidity distribution and N¢;, in towards region.

Pseudorapidity distribution at /s = 1800 GeV Ny (toward) for min-bias

£ T T T T T —
s ey 2 O ]
el E 4
\55; —e— (DF data | N ]
z [ | Testffull18oo) | ] 8L 1
I T | r q
4?91'#‘%T { E [ %
£ 1 6 ai
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2 | L ]
r ] . 1
1 7 E q
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E = 6
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Extra slides

CDF

Angular distribution and multiplicity frequency.

Charged multiplicity at /s = 1800 GeV, || < 1, pr > 0.4 GeV

(p%™) vs. Ag from leading jet (plsd > 2 GeV)

- JH“H‘H“‘H‘H‘“H“H“H‘H_-gulfuH‘HH“‘H‘mWm‘mwm‘m‘

kN T F —e— CDF data

& o —e— CDF data N
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] 10’3;7

107t b eovees 1074 L
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MC/data

|
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Preliminary final state results”
Summary

Extra slides

Track pr and ) Ey distributions.

track pr, || <1, pL > 04 GeV

"
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Extra slides

t-dependence

Single diffractive and elastic cross sections

(@)
100 g~ T T ; ;
E W =546 SD ——

- W = 546 UA8 -+ ]
> 10 EN_ N, W =546 elastic ------- -
g - _
o)
E I
5
S 01

0.01
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n Effective multipomeron vertex ~ y"+M

cf Ostapchenko: ~ A"*M
KMR: ~ nm~A+m

m Tel Aviv: Only triple-pomeron vertices

Note: Overlapping double diffraction has a very large cross
section in the KMR multi-regge approach, with a corresponding
(or even larger) reduction of the inelastic cross section
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Extra slides

Triple-pomeron formulae:

Ot = 52(0)

dog L ey

- 16775
2 dO'SD .
“dtd(M2)

pt) = gpP(t)

gure D "
35

o(0)-1,

() a(t)— 1)

S\ 2a)-1) a(0)-1
6 08000 () (M)

Gosta Gustafson

Lund University



Preliminary final state results”
Summary

Extra slides

Energy dependence and effect of saturation on do/dt

(b) (@)
T T T 100 N T T T T
W = 2000 no sat A W =546 SD ——
—~ W =14000 - 4 E W =546 UA8 --------
s 10 W =2000 ------- ERS 10 W = 546 elastic ------- E
3 W =546 [
o Q
E 1y 1€ !
5 15
5 o1f L N S
0.01 . . . . 0.01 . ! LN
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
-t -t

546 GeV compared with
a fit to UA8 data, and with
elastic scattering

Energy dependence, and result
without saturation at 2 TeV
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Factorization breaking

Difference between
pp and v*p

F®

=

10

0.1}

00

- H1 fit-2
““““ H1 fit-3
(Q’= 75 GeV?)

—+ CDF data
EF?2 > 7 Gev
0.035 < € <0.095
|t]<1.0 GeV?

— H12002 o,> QCD Fit (prel.)

0.1 1

Cf. Goulianos’ saturation of
pomeron flux

pp scattering

Total Single Diffraction Cross Section (mb)

XD>@®+ Omm

< 005

Albrow et al.

Armitage et al

uAs

coF yd

E710 e
Cool et al.
g (Rencvma\ized flux

“knee" at 22 GeV

100 1000
Vs (GeV)

10900
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Diffractive excitation approximations
~v*p scattering: dP /dF ~ AF~P

dogitr.ex./dotor &~ (1 —1/2%7P)
The power p is independent of b (but grows slowly with Q?)
pp scattering: dP /dF ~ AFPe—aF

oot ~ 2(T) = 2(1 = (7)) = 2(1 - (£21)*F)) — Lwhen
<F> — 00

Tdiff.exc. ~ VT = (a+2)p+1 ( .?_1)2p+2 — O when (F) — &0
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Diffractive final states

Coherence effects important for subtracting el. scatt.
don = cf (X di tam — (1))

(t) = 2 om €4 dF tam
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Toy model

(Abelian emissions; no saturation)

Vin = [Ii(ai + 54)|0)

parton i produced with prob. |32, interacts with weight f;
Diff. exc. states:

Vi = (=6 + aj) [T 4(ci + £)[0)

doer ~ (3 52fi)?

023242
doj ~ o232,
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