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We introduce a backward evolution Monte Carlo algorithm implementation of the CCFM
equation and present latest developments in phenomenology of hadron-hadron collisions
for the Monte Carlo generator Cascade.

1 Introduction

The BFKLand the CCFM equations offer possibility to formulate so called unintegrated parton
density functions (uPDFs). In uPDFs, in contrast to parton density functions (PDFs), the
dependence on the transversal momentum of parton k is preserved. In PDFs, also sometimes
called integrated parton density functions, the transversal momentum of the evolved parton
density is integrated over, but on the other hand there is a dependence on a scale to which the
PDF is evolved. The corresponding equation for evolution of PDFs is the DGLAP equation.
Both uPDFs and PDFs depend on the longitudinal momentum fraction carried by the parton
x. The latter gives us also a hint for relation between uPDFs - F and PDFs - f which can be
sketched by equation

xf(x, µ) =

µ∫
0

d2k F(x,k) . (1)

Equation (1) shows that F(x,k) contains more information than the f(x, µ), one can there-
fore expect that uPDFs will be very interest for phenomenology. Note that the uPDFs obtained
using the CCFM equation depend on the longitudinal momentum fraction x, the transversal
momentum k and a scale µ. Indeed, particular studies [1–3] show that uPDFs, by looking on
observables connected to transversal momentum of the final state particles, effectively contain
information from higher orders of perturbation theory.

One of the most powerful methods, for solving evolution equations and obtain phenomeno-
logical results, is the probabilistic interpretation of their kernels and their implementation in
Monte Carlo programs in a form of parton shower generators. In Monte Carlo programs every
term in the expansion in αS of the solution of the evolution equation is interpreted as a chain of
parton emissions. The solution is obtained by summing all relevant terms and integrating them
over free kinematic variables. In the previous paragraph we mentioned two different approaches
to partonic content of the proton. From the point of view of a parton shower generator the
difference is not so obvious. In a Monte Carlo program, which is solving the DGLAP equation
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and using PDFs as an initial condition, the transversal momentum of the last parton in the
chain can be left free from integration and one can effectively obtain an uPDF which will also
depend on the scale µ (situation is similar to the one for the CCFM uPDFs). Most of the differ-
ences between the approaches with PDFs and uPDFs is in the dynamics, small x resummation
in the BFKL and the CCFM equations, but also in the way how is the transversal reflected in
the kinematics of the parton. In the BFKL and the CCFM equation the partons are off-shell
by k2 = −k2. In the DGLAP approach partons are kept on-shell which requires reshuffling of
components of momenta [4].

It seems that the truly unintegrated approach is more consistent and offers also richer
dynamics. We will describe theoretical foundations and phenomenological results Monte Carlo
generator Cascade [5] based on the CCFM equation.

2 The CCFM equation for a Monte Carlo generator

In the limit when the longitudinal proton momentum fraction x carried by the parton is very
small, x � 1, the proton structure is dominated by the gluon component. The leading order
in the BFKL equation includes only gluons. The CCFM equation can be formulated for the
gluon uPDF, just by extending the BFKL equation by 1/(1− z) term in the splitting function
and angular ordering of gluon emissions. There is also a formulation of the CCFM equation for
the valence quark uPDF which we will return to later.

The probability density for a splitting of a gluon into two gluons with angular ordering
constraint will be (without inclusion of small-x virtual corrections)

dPθ
i =

αS

2π
dzi

d2q′
i

q′
i
2 P̂gg(zi)Θ(|q′

i| > zi−1|q′
i−1|)Θ(1− zi − ε) (2)

with the first Θ-function forcing angular ordering and the second introducing an infrared
regulator ε, which can be shown has to be ε = Q0

|q′| [6], with Q0 being a constant infrared cut-

off. Variable q′
i = qi/(1− zi) is introduced as the transverse momentum of the emitted parton

rescaled by factor 1/(1− zi). By P̂gg(z) we denote the gluon to gluon splitting function devoid
of its non-singular terms.

Virtual corrections have to be included also into the splitting function used in the CCFM
equation. The difference between the virtual correction factors of the BFKL and the DGLAP
is that to be consistent one should apply the angular ordering condition also for the virtual
corrections included in them.

The Sudakov form factor will read

∆S(q
′2
i , (zi−1q

′
i−1)

2) = exp

(
−

q′
i
2∫

(zi−1q′
i−1)

2

d2q′

q′2

1− Q0
|q′|∫

0

dz
αS

π

NC

1− z

)
. (3)

The Non-Sudakov form factor is

∆NS(k
2
i , (zi−1q

′
i−1)

2) = exp

(
−

k2
i∫

(zi−1qi−1)2

dq2

q2

1∫
zi

dz
αS

π

NC

z

)
(4)
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in analogy to Regge form factor used in the BFKL equation respectively.
The CCFM equation reads

F(x,k,q′2) = F(x,k,q′
0
2
) +

q′2∫
q′
0
2

d2q̄′

q̄′2
NCαS

π

1− Q0
|q′|∫

x

dz

z
F(x/z,k′, q̄′2)

(
∆NS(k

′2, (zq̄′)2)

z
+

1

1− z

)
∆S(q

′2
0, (zq̄

′)2),

(5)

where k′ = k + q. The presence of the term responsible for soft gluon emissions in the
CCFM splitting function provides summation of logarithms of q′2/q′2

0 in addition to the 1/x
logarithms summed by the BFKL equation in leading logarithmic precission.

The Sudakov form factor (3), which gives the probability of no emission between to values of
the evolution scale, is used to determine the value of the evolution scale for the next emission.

Appearance of the Non-Sudakov form factor (4) and gluon virtuality brings technical diffi-
culties in backward evolution formulation of the parton shower. A solution is presented in [5].

3 Fits of uPDFs

In [7] this parameterisation was used to fit initial CCFM gluon uPDF at the starting scale
Q0 = 1.2 GeV

xA0(x, kt) = Nx−B(1− x)C(1−Dx)e−(kt−µ)2/σ2

(6)

where N,B,C,D, µ, σ should be in principle determined from fits. In practice, for the purpose
of the study some parameters were fixed to C = 4, µ = 0 GeV, σ = 1 GeV [8]. The value of
parameter C is dictated by the spectator counting rules [9]. Fit of χ2/n.d.f. = 1.4 was achieved.

Authors of [7] used a grid in the parameter space to parameterise the ep cross section
obtained from the Cascade Monte Carlo generator and to fit the ep cross section obtained
from HERA data. Details of the technique can be found in the publication.

4 Forward jets in Monte Carlo generators Pythia and
Cascade

The analytical results for forward jet production which are implemented in Monte Carlo gen-
erator Cascade can be found in [1].

4.1 Transverse momentum spectra

In Fig. 1 the prediction of differential cross section dσ
dp⊥

is shown as obtained from Cascade
and Pythia. The cross sections predicted from both simulations at low momentum are of the
similar order, however, at larger transverse momentum the Cascade predicts a larger cross
section what is clearly visible for central jets (Fig. 1 right). This behavior is expected since
Cascade uses matrix elements which are calculated within high energy factorization scheme
allowing for harder transversal momentum dependence as compared to collinear factorization.
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Figure 1: Transversal momentum spectra of produced jets at total collision energy
√
s = 7TeV with

requirement that p⊥>10GeV . We compare predictions obtained from Cascade and Pythia running
in a multiple interactions mode and no multiple interactions mode. Spectrum of forward jets (left);
spectrum of central jets (right).

Moreover Cascade applies CCFM parton shower utilizing angle dependent evolution kernel
which at small x does not lead to ordering in transverse momentum, and thus allow for more
hard radiations during evolution as compared to based on leading order DGLAP splitting
functions Monte Carlo generator Pythia. The parton shower has major influence on the side
where the small x gluon enters the hard interaction, thus the jets in the central region are
mainly affected by the parton shower.

4.2 Rapidity dependence

In fig. 2 we show prediction for pseudorapidity dependence of the cross section in two regions
0< |η|<2 and 3< |η|<5. We see that results from Cascade interpolate between Pythia with
multiple interactions in the central region and Pythia without multiple interactions in the
forward region. The result is due to the fact that Cascade (because of angular ordering), and
Pythia with multiple interactions (because of multi chain exchanges), predict more hadronic
activity in the central rapidity region as compared to the collinear shower. In the remaining
rapidity region cascade uses collinear parton shower of a similar type as in Pythia without
multiple interactions.

5 ZQQ̄ production in MCFM and Cascade Monte Carlo
generators

To compare with a collinear NLO calculation, we use again the Monte Carlo generator Mcfm.
This Monte Carlo generator provides the process gg → Zbb̄ at NLO only in the massless quark
limit. To avoid divergences, additional cuts are applied on transversal momenta of quarks, on
the invariant mass of the bb̄ pair, and on transversal momenta of a gluon which is produced
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Figure 2: Pseudorapidity spectra of produced jets at total collision energy
√
s = 7TeV with requirement

that pT > 10GeV . We compare predictions obtained from Cascade and Pythia running in multiple
interactions mode and no multiple interactions mode. Spectrum of forward jets (left); spectrum of
central jets (right).
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Figure 3: Transversal momentum spectrum of the Z boson produced associated with a bb̄ pair. Plotted
in logarithmic scale (left) and in linear scale (right).

in diagrams of real NLO corrections. Transversal momenta of produced quark, antiquark and
gluon have to satisfy the condition p⊥ > 4.62GeV (corresponding to the mass of the b-quark).
These cuts on quark (antiquark) momenta are automatically applied in Mcfm when one is
performing a calculation involving massless quarks (antiquarks). We choose the parton density
functions set CTEQ6M [10]. The same cuts on transversal momenta of quark and antiquark
are then applied in Cascade as well.

The result for the cross sections differential in the transversal momentum of Z can be seen in
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Fig. 3 left. The cross section changes especially at small pZ⊥ (see Fig. 3 right) from LO to NLO
calculation, and the difference between collinear calculation and kT -factorization calculation
becomes more pronounced. We observe that the maximum of the distribution in the NLO
calculation (Mcfm) stays approximately at same value of transversal momenta and the shape
of the peak is very different from the one we obtain in kT -factorization. Nevertheless, the pZ⊥
distributions match at very high pZ⊥ (O(102GeV)).

The broadening of the peak by inclusion of small x effects which can be seen in Fig. 3 is
consistent with prediction of [11].
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