Modelling of low transverse momentum in hadronic interactions

Šárka Todorova-Nová, Tufts U.

- **motivation**: characteristic data/MC discrepancies observed in LEP->LHC data

- low pT region (< 1 GeV) dominated by ‘intrinsic’ hadron pT (acquired in the fragmentation process)

- alternative models of fragmentation of the Lund string

- observables & model tuning
Intrinsic charged particle p_T in LEP data

Characteristic ‘bump’ around $p_T \sim 0.5$ GeV/c

\rightarrow fragmentation

Tails not well described \rightarrow parton shower

Intrinsic charged particle p_T in LEP data

Characteristic ‘bump’ around $p_T \sim 0.5$ GeV/c

\rightarrow fragmentation

Tails not well described \rightarrow parton shower

Intrinsic charged particle p_T in LHC data

ATLAS-CONF-2010-046

complex picture: diffractive physics,
multiple interactions, proton structure

technically demanding: low p_T tracking, not trivial

low p_T ‘bump’
much like the one known from LEP data

$\frac{1}{N_{ev}} \frac{d^2N_{ch}}{dp_T}$ [GeV$^{-2}$]

21/09/2010

S.Todorova, ISMD2010
Transverse momentum generation in Lund string fragmentation

- Standard Lund model: tunneling effect (at every breaking point, newly created quark/antiquark is assigned $+p_t/-p_t$):
 - \rightarrow size sampled from gaussian
 - \rightarrow azimuthal direction random
Alternative model

-> optimal packing of soft gluons at the end of parton cascade HELIX-LIKE

Hadron gets its transverse momentum by integration over momenta of soft gluons forming the corresponding string piece:

\[p_T = 2 \, r \, |\sin(0.5 \, \Delta \phi)| \]
\[r \, [\text{GeV/c}] \, , \, \Delta \phi \, \text{difference of helix phase} \]

An observable proposed:

\[\text{screwiness } S(\omega) = \Sigma_{ev} P_{ev} \left| \Sigma_i \exp(i(\omega y_i - \phi_i)) \right|^2 \]
\[y \, \text{rapidity of hadron} \]
\[\phi \, \text{azimuthal angle of hadron} \]
\[\omega \, \text{parameter} \]

The model was immediately tested (DELPHI 98-156 PHYS 799), no signal found (\(\tau \leq 0.3 \))
Proposal: modification of the helix-string model

Helix-like string maintained, but parametrized differently:
(lines show space-time evolution of fixed helix phase)

ΔΦ = Δy/τ
= 0.5/τ ln (k_i^+ k_j^- / k_i^- k_j^+)

ΔΦ = 0.5 S |k_i^+ k_j^- - k_i^- k_j^+| M
= 0.5 S κ Δl

M ... mass of the string
κ ... string tension
Proposal: modification of the helix-string model

Helix-like string maintained, but parametrized differently:
(lines show space-time evolution of fixed helix phase)

\[\Delta \Phi = \Delta y/\tau = 0.5/\tau \ln \left(k_i^+k_j^-/k_i^-k_j^+ \right) \]

\[\Delta \Phi = 0.5 \ S |k_i^+ + k_j^- - k_i^+ - k_j^+| M = 0.5 \ S \ \kappa \ \Delta l \]

BOTH VARIANTS REMOVE THE AZIMUTHAL DEGREE OF FREEDOM
helix phase fixed by parametrization
Helix parametrization introduces correlations

azimuthal direction – rapidity

(transverse momentum - energy)

(Lund helix)

modified helix

qq~ string, no parton shower

Lund helix, tau = 0.7

energy of primary hadron [GeV]

pl of primary hadron [GeV]
Helix: phenomenology

Not much effect expected in the screwiness measure for modified helix string ?
(further diluted by parton shower)

Inclusive pT spectra :
- bump at \(pT \sim 0.5 \text{ GeV} \) expected !
 (ex.: helix radius \(0.4 \pm 0.1 \) GeV/c, helix winding \(0.5 \text{ rad/GeV} \))

Lund helix shows similar tendency
(in already excluded region ..?)
Modified helix: implementation

E-pT correlation implemented in PYSTRF routine (Pythia6) on iteration basis. The real difficulty resides in treatment of hard gluon kink:*

helix phase difference between $qq\sim$ endpoints

$$\Delta \phi = S \Sigma M_{ij}$$

sum runs over all string pieces(*)

phase at a given point given by initial conditions and E_L/E_R fraction in corresponding string piece

This is not feasible in case of original Lund helix: gluon kink represents a singularity in helix phase – how to deal with it?
Modified helix: comparison with data (tuning)

The modified helix model in combination with ‘pT-ordered’ parton shower provides much better description of LEP inclusive pT:

Best fit to pT inclusive (more info in backup slides)

This should translate into better description of a jet profile, as well.
Modified helix: other observables?

Genuine azimuthal angle correlations are present in the model:

\[\psi_1 - \psi_2 = 0.5 (\phi_{i+2} - \phi_i) \]
\[= 0.5 \ast S \ast (E_1 + E_2) \]

in c.m.s. of the string

Strongly diluted by combinatorial background:

There is some hope to observe these correlations in case short-lived resonances ‘remember’ the gluon field structure

... under investigation
Modified helix parametrization: theory

Is the re-parametrized helix model compatible with theoretical arguments behind the introduction of the helix string?

YES! The modified model corresponds to a color ordered stream of gluons with constant \(k_T \) and \(\Delta y = 0 \). The gluons ‘go apart’ in the transverse plane (to satisfy the requirement of helicity conservation). The resulting chain of gluon dipoles (with similar mass) forms a regularly spiralling colour field with constant energy density (see next slide for numerical estimates).
Modified helix parametrization: theory

(Based on JHEP09(1998)014., eq.(7))

Minimal mass of di-gluon dipole allowed to emit additional gluon
\[s = \Lambda^2 e^c = \Lambda^2 e^{11/6} \approx 0.56 \text{ GeV}^2 \Rightarrow M \sim 0.75 \text{ GeV} \]
(helicity conservation)
Mass of the resulting dipoles (after the last emission)
\[s' \approx 0.19 \text{ GeV}^2 \Rightarrow m \sim 0.44 \text{ GeV} \]

Tuning of modified parametrization suggests \(\Delta \phi \approx 0.5 \text{ rad/GeV} \)

Mass of dipoles for 1 GeV gluons emitted with azimuthal distance 0.45 rad:
\[\sim 0.45 \text{ GeV} \]
Summary

This is an attempt to highlight some less understood features of fragmentation model, and to resuscitate the idea of helix-like ordered string color field.

A modification of a helix string model [JHEP09(1998)14] predicts observable effects compatible with LEP data. (LHC data under investigation)

Modified helix model successfully tuned to LEP (DELPHI) data. This is a non-trivial result – the helix model effectively removes one degree of freedom from the fragmentation process!

Observables (pT spectra, 2-particle correlations, jet shapes, ...) : indirect evidence?

Possible extension to resonance region? Under investigation ... in the absence of convincing theoretical picture, a lot of speculation involved.

Theoretical picture: possible reconciliation of the different helix parametrizations?

Acknowledgements to the Rivet/Professor project – a very useful tools!
BACK-UP slides
Helix on top of DELPHI tune

-> fixes low pT region
 (>90% of tracks below 1 GeV)
-> retuning not necessary – very
 little impact on other observables

These plots done with:
 helix radius 0.4±0.1 GeV/c
 winding 0.5 rad/GeV
pT ordered shower tune
(H.Schulz, ALEPH/DELPHI/OPAL/JADE data)

vs. DELPHI tune

- **pT—in/out equally underestimated**
- **scaled momentum worse ...(!)**
- **Try ARIADNE ? (not available for LHC)**
Helix + pT ordered shower tune
(6 parameters Professor tune, DELPHI data)
vs. DELPHI tune

Almost perfect tune of pT
but scaled momentum worse ... mostly due to parton shower ...
Quite some improvement in event shapes, too:

21/09/2010
S.Todorova, ISMD2010
Helix + pT ordered shower tune
(6 parameters Professor tune, DELPHI data)

Tuned parameters :

<table>
<thead>
<tr>
<th>Parameter</th>
<th>inclusive spectra</th>
<th>pT inclusive</th>
<th>event shapes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+event shapes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r PARJ(102)</td>
<td>0.36 \pm 0.1</td>
<td>0.28 \pm 0.1</td>
<td>0.42\pm 0.1</td>
</tr>
<tr>
<td>$d r$ PARJ(103)</td>
<td>fixed (0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S PARJ(104)</td>
<td>0.5 \pm 0.5</td>
<td>0.59 \pm 0.6</td>
<td>0.38\pm 0.6</td>
</tr>
<tr>
<td>Lund a PARJ(41)</td>
<td>0.08 \pm 0.7</td>
<td>0. \pm 0.6</td>
<td>0.6\pm 0.9</td>
</tr>
<tr>
<td>Lund b PARJ(42)</td>
<td>0.37 \pm 1.</td>
<td>0.77 \pm 0.8</td>
<td>0.9\pm 0.9</td>
</tr>
<tr>
<td>L_{QCD} PARJ(81)</td>
<td>0.237\pm 0.005</td>
<td>0.297\pm 0.056</td>
<td>0.23\pm 0.05</td>
</tr>
<tr>
<td>Q_0 PARJ(82)</td>
<td>0.65 \pm 0.8</td>
<td>0.41\pm 0.5</td>
<td>0.63\pm 0.9</td>
</tr>
</tbody>
</table>

Goodness of fit

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>1.3</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>754</td>
<td>124</td>
<td>457</td>
<td></td>
</tr>
</tbody>
</table>

Only helix ‘radius’ and Lambda$_{QCD}$ realy constrained => another iteration needed to study softer dependence (S, Lund a,b , ...)
Helix string & short lived resonances

Some hope to discover genuine, helix-string induced, azimuthal angle correlation, in case the short-lived resonances ‘remember’ gluon field structure

-> enhanced signal (primary + decay products)
-> polarized decay ? (2 degrees of freedom removed from 1-> 2 body decay)

Rho resonance enhanced helix signal in pT
(900 GeV pp non-diffractive minimum bias)